ALGOS ALGORITHMS for Optimization and Simulation An Efficient Low Power Multiple-value Look-up Table Targeting Quaternary FPGAs

Cristiano Lazzari¹, Jorge Fernandes², Paulo Flores² and José Monteiro²

¹*INESC-ID* Lisbon, Portugal lazzari@inesc-id.pt

²INESC-ID / IST, TU Lisbon Lisbon, Portugal {jrf,pff,jcm}@inesc-id.pt

INSTITUTO SUPERIOR TÉCNICO Universidade Técnica de Lisboa

Talk Outline

- Motivation
- Binary vs Quaternary Lookup Tables
- New Quaternary-to-Binary Decoder
- Results
- Conclusions and Future Work

An Efficient Low Power Multiple-value LUT Targeting Quaternary FPGAs

Motivation – Field Programmable Gate Arrays

- Interconnections play crucial role in FPGAs
 - They severely impact on power and area (Singh, Sadowska; 2002)
 - Up to 90% chip area are interconnections (Cunha, Boudinov, Carro; 2006)

Major limiting factor for developing efficient FPGA designs!

An Efficient Low Power Multiple-value LUT Targeting Quaternary FPGAs

Introduction – Multiple-Valued Logic (MVL)

Multiple-valued Logic uses more than two logic values

Introduction – Multiple-Valued Logic (MVL)

- Compacting the information with MVL
 - Reduced number of wires to represent the same information
 - Reduced number of logic blocks to operate over data
 - Reduced wire lengths to connect logic blocks
- As a consequence
 - Smaller **Area** due to interconnection reduction
 - *Power consumption* and *delay reduction*
 - reduced load capacitance
- Physical implementation of the interconnects are the same in the binary logic and the MVL
 - We are left with the **implementation of the logic blocks**

Multiple-Valued Logic – Early Work

- Multiple-valued logic is not new
 - 1993 FPGA (Zilic, Vranesic)
 1995 Multiplier (Hanyu, Kameyama)
 1998 Adder (Gonzalez, Mazumder)
 1998 Lookup tables (Sheikholeslami, Yoshimura, Gulak)

- Logic is implemented using current-mode devices
 - Excessive power consumption
 - Complex Design

A Voltage-Mode MVL Device

- A voltage-mode MVL device has been recently proposed
 - Data is represented by quaternary values
 - Deals with the power dissipation problem
 - Based on standard CMOS circuits
 - Requires transistors with different V_{th}s

(Cunha, Boudinov, Carro; 2006)

- Multiple V_{th}s demand process modifications
 - More process steps
 - Increased production costs

Contributions of This Work

Implementation of a new MVL LUT

- Voltage-mode device

- No additional process steps are required

- Competitive with the binary LUTs

Binary & Quaternary Lookup Tables

Binary & Quaternary Lookup Tables

An Efficient Low Power Multiple-value LUT Targeting Quaternary FPGAs

Binary & Quaternary LUTs Implementation

International Workshop on Power and Timing Modeling, Optimization and Simulation (PATMOS2010)

inesc id

lisboa

An Efficient Low Power Multiple-value LUT Targeting Quaternary FPGAs inesc id **Binary & Quaternary LUTs Implementation** lisboa Q03 BO **BLUT QLUT** c15 c15 Q03 BO Q02 BO B1 c14 c14 Q02 BI BO Q01 BO B1 B2 Q13 c13 c13 Q01 **Configuration values** BI BO B2 Q13 **Configuration values** Q00 B2 BO Q12 B3 c12 c12 ລົດດ B2 BO B3 Q12 z |B3 B2 Q11 Q03 B2 Q11 B3 c3 B2 B1 Q10 Q03 Q02 Q10 BI c2 Levels: 4 Levels: 2 B1 BO Q02 Q01 c1 TG: 30 TG: 20 BI BO c1 BO Q01 000 c0 BO c0 Quaternary-to-binary 000 decoders B2 | B2 BO | BO | B1 B3 | B3 B1 **010** Ь IO IC O IO റ <u>803</u> 011 **Ø**12 **Q**13 800 <u>801</u> Q02 Q-decoder 0 Q-decoder 1 x2 x3 y0 x0 x1 y1

An Efficient Low Power Multiple-value LUT Targeting Quaternary FPGAs

Quaternary-to-binary Decoder

Q	Q_0	Q_1	Q_2	Q_3
04	1_{2}	0	0	0
14	0	1_{2}	0	0
24	0	0	1_{2}	0
3_4	0	0	0	1_{2}

Quaternary Comparators

Output is GND when $Vi \ge '1'$

Quaternary Logic Levels

inescid lisboa

Q-decoder Signals Waveforms

Experimental Results

- UMC 130nm technology (Cadence Virtuoso)
- Vdd = 1.2V, Vth~400mV
- Quaternary LUTs present power gains ranging from 22% to 39%
- Larger gains for larger loads

Voltage Swing

• On average, the voltage swing is $V_{DD}/2$

Process Variability and Noise Margin

- Process variability and reduced noise margin are important challenges on the development of MVL circuits
- We performed a Monte Carlo simulation
 - Considering random process and mismatch variations
 - Observed decision levels voltage variations were < 90mV
 - A 100mV gap between logic levels is still availble

Conclusions

- We propose a new design for a quaternary lookup table
 - This design allows for voltage discretization outside the reach of binary logic
- Results show that the proposed technique is competitive with binary FPGAs
- Fabricated chip using 130nm technology is under test

- We are developing a complete FPGA structure
 - Logic blocks, switch matrix, etc

Thank You !

technology from seed

