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Abstract—A flexible hardware architecture that implements a
set of new and efficient techniques to significantly reduce the com-
putational requirements of the commonly used Smith—-Waterman
sequence alignment algorithm is presented. Such innovative
techniques use information gathered by the hardware accelerator
during the computation of the alignment scores to constrain
the size of the subsequence that has to be post-processed in
the traceback phase using a general purpose processor (GPP).
Moreover, the proposed structure is also capable of computing
the n-best local alignments according to the Waterman-Eggert
algorithm, becoming the first hardware architecture that is able
to simultaneously evaluate the n-best alignments of a given se-
quence pair, by incorporating a set of ordering units that work in
parallel with the systolic array. A complete alignment system was
developed and implemented in a Virtex-4 FPGA, by integrating
the proposed accelerator architecture with a Leon3 GPP. The
obtained experimental results demonstrate that the proposed
system is flexible and allows the alignment of large sequences in
memory constrained systems. As an example, a speedup of 17 was
obtained with the conceived system when compared with a regular
implementation of the LALIGN35 program running on an Intel
Core2 Duo processor running at a 40 X higher frequency.

Index Terms—DNA sequence alignment, hardware accelerator,
Smith—Waterman (S-W), Waterman-Eggert (W-E).

1. INTRODUCTION

ITH the advent of the Next-Generation Sequencing
W Technologies [1], large amounts of sequenced deoxyri-
bonucleic acid (DNA) are currently available for analysis by
biologists and researchers. The current release of the GenBank
[2] database, one of the largest public databases of DNA
sequences, includes over 117 x 10? base pairs.

Biologists typically use the sequence alignment procedure as
the main tool to extract information from this huge amount of
data. Such a procedure can be divided in two major classes:
global and local alignments. While in global alignments the
complete sequences are aligned from one end to the other, in
local alignments only the subsequences that present the highest
similarity are considered.
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One of the most widely adopted algorithms to find the op-
timal local alignment between a pair of DNA sequences is the
Smith—Waterman (S-W) algorithm [3]. This algorithm makes
use of a dynamic programming (DP) method and is character-
ized by the smallest runtime, with a time complexity of O(nm),
where n and m denote the sizes of the sequences being aligned.
The S-W algorithm operates in two phases: a matrix fill phase,
which computes the alignment score, and a traceback phase,
where the alignment is actually determined. Alternative sub-
optimal heuristic algorithms, like BLAST [4], have been pro-
posed to reduce this runtime. However, such speedup comes at
the cost of a nonnegligible possibility of missing the optimal
alignment between the sequences. As a consequence, the op-
timal algorithm is often preferred but not always used due to its
significant runtime. Furthermore, besides determining the op-
timal local alignment, it is also frequently of interest to find
other alternative alignment positions with approximate scores:
the n-best local alignments [5].

Several different approaches have been proposed to accel-
erate the execution of the S-W algorithm. These solutions
range from parallel implementations running in general pur-
pose processors (GPPs) using SIMD instructions [6]-[8] and
graphics processing units (GPUs) [9]-[12] to specialized pro-
cessors [13] and dedicated hardware architectures. Among the
last, the most common are based on systolic arrays, such as
the bidimensional structure presented in [14]. Nevertheless,
unidimensional (linear) systolic arrays tend to be more com-
monly adopted [15]-[17]. Some commercial solutions using
proprietary architectures implemented in field-programmable
gate arrays (FPGAs) were also made available, such as the
Bioinformatics Cube by CLC bio [18] and the SeqCruncher by
TimeLogic [19].

However, most of these solutions are only focused on accel-
erating the matrix fill phase of the S-W algorithm, disregarding
the traceback phase, which is typically performed using a GPP
in a postprocessing step. Although [20] proposes an architecture
that also accelerates this traceback phase, such a solution is only
applicable to the global alignment problem, which has different
requirements than the local alignment. Moreover, none of the
proposed architectures has dealt with the problem of simultane-
ously determining, in a single pass, the set of the n-best local
alignment scores of the sequence pair under processing.

Meanwhile, there has been a growing interest in the devel-
opment of efficient and reconfigurable platforms for embedded
processing. Examples of such platforms include the new Intel
Atom Processor E600C series [21] and the upcoming Xilinx Ex-
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tensible Processing Platform [22], which merge the benefits of
a reasonably powerful GPP with the flexibility provided by a
FPGA. These platforms allow an embedded system to achieve a
reasonable performance level by implementing, in the reconfig-
urable fabric, an optimized accelerator, while still maintaining
a low power consumption and a reduced market cost.

In this paper, we propose a new hardware accelerator archi-
tecture that is the first to accelerate the execution of the Wa-
terman—Eggert (W-E) algorithm for the n-best sequence align-
ment problem and that is capable of efficiently exploiting re-
configurable embedded platforms. To attain the offered perfor-
mance levels, this architecture exploits several important con-
tributions: 1) an innovative and efficient technique to signifi-
cantly reduce the time and memory requirements of the software
traceback phase, by making use of a specially conceived hard-
ware processing array to gather additional information during
the computation of the alignment scores in the matrix fill phase;
2) a new hardware processing unit to track and accelerate the
calculation of the n-best alignments; 3) a partition buffer struc-
ture to compact and store intermediate results during the align-
ment of large sequences; and 4) integration of the proposed
hardware accelerator with a GPP to form a complete and effi-
cient local alignment system.

This paper is organized as follows. After a brief overview of
the commonly used S-W algorithm for pairwise sequence align-
ment and of the W-E algorithm used to solve the n-best align-
ment problem, provided in Section II, the proposed approach to
speed up the execution of the two previous algorithms is intro-
duced in Section III. Section IV presents the flexible acceler-
ator architecture that was developed to implement the previous
method. The used prototyping platform is detailed in Section V,
while Section VI presents the obtained experimental results. Fi-
nally, the conclusions are drawn in Section VII.

II. PAIRWISE LOCAL SEQUENCE ALIGNMENT

Considering any two strings S1 and Sy with sizes n and m,
respectively, the optimal local alignment reveals the pair of sub-
strings of .S; and S, that optimally align, such that no other pair
has a higher similarity score. Besides the optimal local align-
ment, it is also possible to find other locations where the two
sequences are similar, by finding the n-best alignments.

A. Optimal Local Alignment

The S-W algorithm, characterized by a O(nm) time com-
plexity [3], is commonly used for this purpose. This algorithm
operates in two distinct phases: it starts by filling a score matrix
H, followed by a traceback phase over this matrix. The matrix
is often filled using an affine gap penalty model, defined as

H(i—1,j = 1) 4 Sbe(51(4), S2(5)),

E(i,j) = max{g(,i:j - 1)) -, o
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Fig. 1. Example of a local alignment calculation using a linear gap model and
the presented substitution score matrix.

in which opening and extending a gap have different costs given
by « and 3, respectively. Sbe(S1(i), S2(j)) denotes the substi-
tution score value obtained by aligning character S (4) against
character S3(7). In the particular case of & = f3, a linear gap
penalty model is obtained, where opening and extending a gap
has the same cost («). The recurrence equations for this simpler
model are

54 — H(Z—IJ)—OZ
H(i,j) = max Hiij—1)—a 2)
0

with initial conditions H (z,0) = H(0,j) = 0.

The substitution score value Sbe(S1(7), S2(4)), typically rep-
resented by a score substitution matrix as the example presented
in Fig. 1, is usually positive for characters that match and nega-
tive for mismatching characters. The gap penalty costs « and 3
are always positive and o > (. Different sets of values may be
used to reveal different types of alignments.

As soon as the entire score matrix H is filled, the substrings
of S and S that best align can be found by first locating the
cell with the highest score in H. Then, all matrix cells that lead
to this highest score cell are sequentially determined during the
traceback procedure, as described in [3].

Fig. 1 illustrates a simple and rather small example of
the calculated score matrix for aligning two sequences
(S1 = CAGCCTCGGT and So = AATGCCATTGAC)
using a substitution score function where a match has a score of
3 and a mismatch a score of —1. A linear gap model was used
with a = 4. The shadowed cells represent the traceback path
that was taken in order to determine the best alignment, starting
at the cell with the maximum score of 10. If an affine gap model
had been adopted, it would be necessary to also build matrices
F and F at the same time as matrix H.

B. Determining the n-Best Alignments

Besides finding the optimal alignment between two se-
quences, it is often useful to find other alignments that still
have a significant and approximate score. The W-E algorithm,
as described in [5], is an extension of the S-W algorithm which
solves the n-best local alignments problem. This algorithm
determines the kth-best alignment (1 < k < n) by resetting
(replacing with value zero) the cells of matrix H that belong
to the (k — 1)th-best alignment. After this replacement, the



1264

0123456789101112 0123456789101112
HJsAATGCCATTG A C H[pAATGCCATTG A C
0[p[00000000000 0O 0O[¢]00000000000 0O
1/C[00000330000 0 3 1/{C|00000330000 0 3
2/ A[033000262003 0| 2|A[03300026200 3 0
3/G00220002513 02| 3[G|00220002513 0 2
4/Cl0001103014023| 4/{Cl00011030140 2 3
50Cl00000400003 05| 5/Cl00000400003 05
6/T{0003003003021| 6/T|00030030030 2 1
70 Ccl00002332002 05| 7/C000023320020 5
8/G00003122100 11| 8/G|00003122100 1 1
9/Cl000032011000 4| 9/C|00003201100 0 4
10T 00030210440 00|10/T[0003021044000
@ (b)

Fig. 2. Example of the calculation of the second-best alignment. (a) Recalcu-
lated cells. (b) Traceback for the second-best alignment.

neighbor cells are recomputed and a new matrix, H*, is calcu-
lated. For this new matrix, the highest score is determined and
the kth-best alignment is obtained using the same traceback
technique.

An illustration of this algorithm is shown in Fig. 2. The orig-
inal H matrix is the one presented in Fig. 1. The algorithm
started by replacing with zero all the scores of the cells that com-
posed the optimal alignment, recalculating all the neighboring
values that are dependent on these original cells [bold under-
lined values on gray cells in Fig. 2(a)]. Afterwards, the highest
score in the H™* matrix is found and a traceback is performed
for this new score, as shown in Fig. 2(b).

This algorithm only requires the recomputation of the neigh-
boring cells of the previously reported alignment, thus being
very efficient in terms of time [5]. However, it requires the entire
matrix H to be stored in memory (O(nm) space), thus imposing
a large memory overhead.

III. TRACKING THE ALIGNMENT ORIGIN INDEXES

As was previously referred, most sequence alignment accel-
erators that have been proposed until now [14]-[16] only im-
plement the score matrix computation, thus only returning the
alignment score. When the alignment is required, the H matrix
must be recalculated. Such a task is typically done by a GPP,
without reusing any information returned from the accelerator.

However, when the considered sequences have a very dissim-
ilar size (m > n), the size of the subsequences that participate
in the actual alignment is always in the order of n, meaning that a
large part of matrix H that is recomputed is not actually needed
to obtain the alignment. Moreover, even when sequences of sim-
ilar size are aligned, a significant part of matrix H is not nec-
essary if the subsequences that actually participate in the local
alignment are small.

From these observations, it can be shown that the time and
memory space that are required to find the n-best optimal local
alignments during the subsequent traceback phase can be signif-
icantly reduced. In fact, if only the cells required to obtain the
alignment are recomputed, the associated time will be signifi-
cantly reduced. Furthermore, when calculating the n-best align-
ments, which typically requires the entire H matrix to be stored
in memory, a significant reduction of space can be achieved if
it is possible to constrain the recomputation of the H matrix to
only those subsequences that include the n-best alignments.
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Hence, in the event that it is possible to know that the local
alignment of a given sequence pair S; and S5 starts at position
S1(p) and S2(q), denoted as (p, q), and ends at position Sy (p")
and S2(q’), denoted as (p’, ¢'), then the local alignment can be
obtained by just considering the score submatrix corresponding
to substrings S; = Si[p---p'] and S§ = Sa[g- - ¢].

To determine the character position where the alignment
starts, a new method is now proposed, denoted as the Alignment
Origin Index (AOI) tracking method. This method is based
on the computation of an auxiliary coordinate matrix C. For
simplicity of explanation, a linear gap model (2) will be consid-
ered without any loss of generality. Let Cy (i, j) represent the
coordinates of the matrix cell where the alignment of strings
S1[1---4] and Ss[l---j] starts. Using the same DP method
and associated branch conditions that were used to calculate
matrix H (%, j), it is possible to simultaneously build matrix Cj,,
with the same size as H, which maintains a track of the cell
that originated the alignment ending at cell (4,7) with score

H(i, 7). The recursive relations to calculate this matrix are
(LJ) if Hy A Cy,
Ch,, if Hg A notCy,
Co(1,7) =  Cor(i—1,7), if Hy,
Cvp(i,j — 1), if Hy,
(0,0), if H (i, ) =0
7 1) — Ob([’_ 1 j) ifFOs
ObF(L7J)_ {C};F( 17.7) lfF’I‘
7 1) — Ob(l_ 1 J) ifEO’
Hy :H(i,j) = H(6_17J_1)+5b0(51() 52(7))
Hy :H(i,j) = F(i,j)
H,:H(i,j) = E(i,j)
F,:F(i,j)= Hli—-1,j) —«
Fr:F<LJ> F(L_LJ) ﬂ
E,:E(i,j)= H(i,j—1) -«
E,:E(i,j)= E(i,j—-1)-p
Ch, :Cp(i—1,5—1) = (0,0) 3)

with initial conditions Cy(%,0) = Cy(0,5) = (0,0).

Hence, by applying the proposed AOI tracking method
and by knowing the cell where the maximum score occurred
(H(p',q")), it is possible to determine from Cy(p’, ¢') = (p, q)
the coordinates (p, q) of the cell where the alignment began.
Subsequently, to obtain the desired alignment, the postpro-
cessing traceback phase (performed by the GPP, as described in
Section I'V-F) will use the information of the alignment origin
coordinates ((p, ¢)) and the alignment score value (H(p',q")),
both returned by the accelerator, to rebuild the score matrix
for the rather small subsequences Sy[p---p’] and Sa[q---¢'],
leading to a significant reduction of processing time and storage
memory.

Fig. 3 shows the obtained Cj, matrix for the same alignment
example illustrated in Fig. 1. By knowing from the computed H
matrix that the maximum score occurs at cell (8, 10), it is pos-
sible to retrieve the coordinates of the beginning of such align-
ment in cell Cy(8,10) = (3,4) (black cell in Fig. 3). With this
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Fig. 4. Reduced alignment score matrix.
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Query Sequence Data SR | SR SR SR
(substitution matrix column) ‘

Reference Sequence

Sy(M) - 55(2) Sy(1) =

Auxiliary Query Sequence Data Load Structure

Fig. 5. Systolic array structure for DNA alignment algorithms.

information, the optimal local alignment between .S; and S can
be found by only postprocessing substrings S| = S1[3---8] =
GCCTCG and S} = So[4---10] = GCCATTG in the sub-
sequent traceback phase. Such alignment (between S] and S%)
can now be determined by computing a much smaller H matrix,
as shown in Fig. 4.

One key observation on matrix Cj is the coordinate zone,
which is composed of all of the cells that have the same co-
ordinates of the alignment origin and that reveals the zone of
influence of such origin. The coordinate zone typically extends
in a diagonal way, as it is shown in Fig. 3 by the gray shaded
cells. This is an important characteristic that will be further ex-
ploited in Section I'V-F.

IV. ALIGNMENT CORE ARCHITECTURE

Specialized parallel structures capable of performing a great
number of simultaneous arithmetic operations are especially
suited for accelerating the computation of matrix H. As such,
linear systolic arrays with several identical Processing Element
(PEs) have proved to be particularly efficient to implement
this type of computation [15] (see Fig. 5). Their efficiency
is attained by simultaneously computing the values of the H
matrix that are located in each anti-diagonal, since these ele-
ments do not present data dependencies between each other. In
these particular structures, each symbol of the query sequence
(S1(4)) is assigned to a single PE in the array (P E;) whereas
each symbol of the reference sequence is streamed through all
of the PEs.
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Fig. 6. Base architecture of processor element PE;.

The proposed accelerator architecture is a flexible and con-
figurable structure that can be adapted to a wide range of ap-
plication scenarios, ranging from aligning short-reads against a
reference genome (where m > n) to gene database searches
(where m =~ n). It can also be optimized for either affine or
linear gap models, as well as for different sequence size require-
ments. Moreover, to cope with hardware resources restrictions,
the computation of matrix H can be partitioned into several
parts, allowing a small processing array to compute a large H
matrix.

The high flexibility of the proposed accelerator is provided by
an important set of distinct configurable options: 1) the number
of PEs instantiated in the array, which allows a fine adaptation
of the size of the array to better suite the query sequence size;
2) optional inclusion of the n-best calculation unit, to enable the
acceleration of the W-E algorithm; and 3) optional inclusion of
partition buffers, which allow the alignment of query sequences
larger than the number of available PEs.

Both the n-best calculation unit and the partition buffers can
be used in conjunction or independently, allowing for a wide
range of potential applications for this accelerator.

Consequently, the reconfiguration capabilities offered by an
FPGA device make it the most suitable platform to exploit the
proposed architecture. However, it is also possible to imple-
ment the accelerator as an application-specific integrated circuit
(ASIC), specifically tuned for a predefined set of application
scenarios.

A. Processing Element

The simplest configuration of the PE’s architecture described
in this paper is based on the structure described in [15]. This
base PE (shown in Fig. 6) is composed of a two-stage pipelined
datapath capable of calculating a given matrix cell value H (i, j).
The throughput of each element is one score value per clock
cycle. The computation of each cell H(i,j) requires, among
other operations, the evaluation of the substitution score cor-
responding to the pair of characters under comparison, i.e., the
value of Sbe(S1(4), S2(4))- Since each PE performs the opera-
tions over only one single character of .Sy, it only needs to store
the corresponding column of the substitution score matrix. Such
column represents the costs of aligning character S (4) to the
entire alphabet. The computation of H(4,5) also requires the
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Fig. 7. Enhanced architecture of processor element PE; for linear gap model.

evaluation of the maximum value among the results of the three
distinct possibilities presented in (2). The zero condition of the
S-W algorithm is implemented by controlling the reset signal of
the registers that store H (%, j). Such reset makes use of the sign
bit of the evaluated score, i.e., if the maximum value among the
three partial scores is negative, then the registers that hold such
score are cleared.

Each PE also contains the logic structures required to calcu-
late the absolute maximum score of the entire H matrix. This
logic, enclosed in the area denoted as MAXSec in Fig. 6, out-
puts the maximum of the set of scores that have been calculated
by elements PE; through PE;. After all the reference sequence
(S2) characters have passed through all the PEs, the alignment
score is available at the output Max(i, j) of the last PE.

To support the implementation of the new AOI method that
was described in Section III, an enhanced architecture of this
base PE structure was developed. The logic diagram of such
enhanced PE architecture is presented in Fig. 7 for the partic-
ular case of the linear gap model. It features a datapath that im-
plements the whole set of calculations of (2) and (3), in order
to propagate, through the PEs, not only the partial maximum
scores (as in the base PE), but also the coordinates of their origin
(the beginning of the alignment). In a similar way, an alternative
PE architecture for the affine gap model [(1) and (3)] was also
developed and is shown in Fig. 8. This PE architecture features
some additional hardware structures to store the values of ma-
trices F' and F that are required for the calculations.

The additional hardware that is required to implement (3)
(the AOI method) is mainly composed of multiplexers and
registers. The control signals of the multiplexers are generated
by the magnitude comparators of the MAX units that were
already present in the base PE architecture. In what concerns
the multiplexers input data signals, the origin coordinates cor-
responding to the score value at input H (i — 1, j) are present at
Cy(i — 1, 7). Likewise, the origin coordinates corresponding to
the score value at output H (4, j) are present at Cy (¢, 7). Finally,
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Fig. 8. Enhanced architecture of processor element PE; for affine gap model.

the coordinates of the highest score, present at Max(z, j), are
output at MaxC}, (4, j). The coordinates of the current processed
cell are obtained by using the hardwired PE index (7) and the
symbol coordinate () that comes alongside with the reference
sequence character, present at input Sa(5).

B. n-Best Calculation

To allow the simultaneous evaluation of the n-best align-
ment scores using the proposed hardware accelerator (required
to speedup the execution of the W-E algorithm), the architecture
of an ordering unit responsible for keeping track of the n-best
scores is now proposed (henceforward denoted as n-best calcu-
lation unit). This additional unit is integrated in the linear sys-
tolic array structure and receives, in parallel, all the data values
processed by the PEs. The actual value of n is defined by the
user and specified at compile time. A typical range would be
4 <n < 16.

For a given sequence pair, the n-best calculation unit deter-
mines, alongside with the processing of the H matrix by the ac-
celerator, the n-best local alignment scores which do not share
the same coordinates zone (do not have the same alignment
origin coordinate).

In order to provide for a scalable solution, the ordering unit
is subdivided in several subunits that process the data gener-
ated by each group of k PEs, as shown in Fig. 9 (typically,
22 < k < 2%). Each of these subunits maintains a list of the
n-highest scores and of the corresponding coordinates, calcu-
lated up to that instant by the respective PEs, thus working com-
pletely independently of the remaining subunits.
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Within each subunit, the n-highest scores are stored in an or-
dered Register Bank, alongside with the corresponding coordi-
nates (C}). This bank has n positions and is always ordered by
score value. Position 0 holds the highest score value, whereas
position n — 1 holds the nth highest score. The ordered bank
only stores the scores that have distinct origin coordinates. A
new data pair (score and origin coordinate) is ordered by se-
quentially comparing the score with the previous scores already
stored at the bank. If it is found to be higher than the score at
a given position, the previous data pair is immediately replaced
by the new one at that position, forcing a cascading replacement
of the remaining data pairs in the bank. A different case occurs
if during the comparison process it is found that the new data
pair has the same origin coordinates as an already stored data
pair. In such a case one of two situations will occur: 1) if the
new data pair has a score that is lower or equal than the score of
the already stored data pair, it is immediately discarded, since a
better alignment starting at the same position has already been
found, otherwise 2) the new data pair replaces the stored data
pair, since it represents a better alignment starting at the same
position. In both cases, the ordering procedure stops at that po-
sition, since it is not possible to store two score values with the
same associated origin coordinate. Since a single comparison is
performed in every clock cycle, this unit guarantees that a new
data pair is ordered at most within 7 clock cycles.

The ordering requests (REQ;) are generated within each
subunit by comparing the current score output of each of the
k PEs with the smallest of the n-best scores stored at the corre-
sponding subunit. This leads to a reduction in the overall amount
of ordering requests since only those values greater than the
minimum score stored at a given subunit will activate the cor-
responding RFEQ); line. Since each of these subunits receives
scores from k PEs (S - - - Sk ), there is a chance that several of
the k£ PEs connected to the same subunit simultaneously gen-
erate values that should be included in the n-best list. There-
fore, to guarantee that none of the calculated scores are improp-
erly discarded, the processor array is halted if more than one
ordering request (line REQ); in Fig. 9) is simultaneously ac-
tive. The score associated with a given REQ); line, and the cor-
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responding coordinates, are then stored in a FIFO queue where
they are kept until the ordered bank is available to process them.
This FIFO queue allows the array to resume its operation as soon
as the data to be ordered is stored in it. In the event of the FIFO
queue is full, the processing of the array is further halted until
there are sufficient available positions to store the data corre-
sponding to all of the ordering requests. Considering that d sub-
units are present to process the ordering requests, the array will
proceed as soon as all requests of all the d subunits are serviced.
It is worth noting that whenever this unit is instantiated to
evaluate the n-best alignments, the logic circuit that locally
computes the maximum score at each PE (MAXSec) becomes
redundant. As a consequence, to maximize the hardware ef-
ficiency of this configuration of the accelerator, the MAXSec
circuit is not implemented whenever this setup is adopted.

C. Array Programming

As it was previously observed, for a given query sequence
each PE only performs comparisons with a single query se-
quence character. Consequently, the query sequence (.S7) data
which has to be loaded into each PE is simply the substitution
score matrix column that corresponds to the symbol at that po-
sition. Thus, when the accelerator is initialized, the entire sub-
stitution score matrix is loaded and stored in a central location.
During computation, the relevant query sequence symbols are
input and their values are used to index this global substitution
score matrix which, in turn, will select the corresponding sub-
stitution matrix column to be loaded into the corresponding PE.

The substitution score data is stored in dedicated registers
within each PE, since this allows for a fast reprogramming of
a new query sequence. In the event of a PE is not being used
(because the query sequence has a smaller size than the number
of available PEs (V)), the substitution score data that is stored
in such PE corresponds to a matrix column in which every value
is zero.

To program the score values corresponding to query sequence
S1, an auxiliary data load structure (shown in Fig. 5), composed
by an 8 bit-wide shift register, was included in the array. This
structure allows the pre-loading of the next query sequence data
into this temporary storage shift register, by serially shifting the
substitution matrix column while the array is still processing
the data corresponding to the current query sequence. As soon
as the array has finished the processing of the current query
sequence, the next query sequence data (already stored in the
auxiliary shift register) is parallel loaded (in just one clock
cycle) into the respective PEs. This allows to mask the time that
would be required to shift the new query sequence data into the
array. Therefore, it ends-up by programming the actual query
sequence in just one clock cycle, which significantly reduces
the amount of time required for programming the array with a
new query sequence. Furthermore, the use of this shift register
also provides a scalable method to program the processor array,
as it avoids a common data bus to program the several PEs.

D. Partitioned Processing

In order to make the processing of very long sequences pos-
sible (both the query and reference sequences), the proposed ac-
celerator architecture is able to partition the evaluation of ma-
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trix H. With such procedure, the accelerator divides the H ma-
trix in several submatrices, with the number of rows equal to
the number of implemented PEs in the array. The number of
columns in such submatrices depends on the amount of avail-
able RAM to store the intermediate results.

The processing is performed in several iterations, as shown in
Fig. 10. Each iteration is further divided in several subiterations
corresponding to the computation of a restricted set of rows,
where a section of the query sequence is aligned with a section
of the reference sequence. After the processing of a complete
iteration, the whole query sequence is aligned to a section of
the reference sequence.

To implement this partitioned processing procedure, the ar-
chitecture must be able to store the intermediate results of the
several computations that are undertaken. For each subitera-
tion, it is necessary to store the respective bottom row of the
processed submatrix to be used in the following subiteration.
Furthermore, the right column values also need to be stored, in
order to be used in the next iteration. These values are accomo-
dated in two buffers: the iteration and the subiteration buffers.
Each of these buffers store all the information required to con-
tinue the processing. In the particular case of the PEs that im-
plement the affine gap model, the subiteration buffer must store
the H(4,3), Cv(i,7), F(i,7) and Cyg (i, 7) values, while the it-
eration buffer stores the H (i, 5), Cy(i,7), F(i,7) and Cpr (2, j)
[see (1) and (3)].

The maximum size of the partition buffers is constrained by
the amount of memory that is available in the device. Therefore,
this constraint will also limit the maximum length of the query
sequence, since the contents of an entire column of matrices H,
Cy, E, and Cyr will have to be stored in the iteration buffer.
Furthermore, some memory resources are also required for the
subiteration buffer. These do not impose such a hard constraint
on the reference sequence length, but if its size is too small, the
performance of the array will be affected, since the amount of
load operations on the array will be significantly higher.

Hence, since the space that is required to store all of the
temporary information is significant, some optimizations were
considered in order to achieve some data compression on the
stored data. Two important observations are worth noting: 1) the
difference between the scores of two adjacent cells is usually
small and its absolute value is commonly less than the gap open
penalty value (<) and 2) the probability of the coordinates cor-
responding to two adjacent cells being the same is high. From
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the first observation, it is possible to design a buffer that stores
the difference between consecutively stored score values (AS)
instead of storing the actual scores. However, considering the
fact that this difference is small in terms of its absolute value,
it is also possible to distinctively store the least significant bits
(LSBs) and the most significant bits (MSBs) of AS, since the
MSBs have a zero value in most of the cases. The LSBs are al-
ways stored in a FIFO queue with a depth equal to the number
of storable cell values and a bit-width related to the « value. The
MSBs are stored in an independent FIFO queue, with a bit-width
corresponding to the difference between the number of bits used
in the score calculation and the number of LSBs already stored,
when its value is different from zero. The depth of this FIFO
is heuristically determined by the user at compile time. A typ-
ical value would be one eighth of the depth of the LSBs’ FIFO.
Similarly, the coordinates values are stored in a FIFO queue,
which has a depth that is also configurable by the user at com-
pile time, when they differ from the previously stored value. A
typical value would be one quarter of the number of cells to
store.

Fig. 11 shows the architecture of the developed partition
buffer. This buffer contains the different depth FIFOs (LSBs,
MSBs, and Coordinates) as well as a FIFO to store the control
signals that ensure that, at the output, the values from the three
different depth FIFOs are correctly synchronized. Since the
depth of the control signals’ FIFO and the LSB’s FIFO are
equal, they were collapsed into a single FIFO. Hence, according
to what was previously described, to perform the partitioned
processing it is necessary to store four different data pairs.
Therefore, the accelerator structure must include four of these
complex partition buffers, as it can be seen in Fig. 12: two
for the iteration data (H (7, ), Cy(7,7) and E(i,7), Cyr(i,7))
and another two for the subiteration data (H (, j), Cy(4,7) and
F(i,5), Cor (i, 5)).

The number of cells to store in the iteration buffer is equal to
the maximum query sequence size handled by the accelerator.
On the other hand, the number of cells to store in the subiteration
buffer is dependent on the remaining RAM resources present at
the implementation device (e.g., FPGA). However, the higher
the number of stored cells in the subiteration buffer the better,
since this leads to a smaller number of partitions to be processed,
which decreases the overall penalty imposed by the switching
procedure between the processed submatrices.



SEBASTIAO e al.: INTEGRATED HARDWARE ARCHITECTURE FOR EFFICIENT COMPUTATION OF THE n-BEST BIO-SEQUENCE LOCAL ALIGNMENTS

Command buffer

D:' Controller §
Query buffer
1

==.]fg

Reference buffer ~__J|-"

Status w .

Output buffer

-

PE array

(Crmsionsirer
U Sub-teration buffer |<

(H(ij), Cplif))
|_ partition buffer partition buffer
'|__ (F(i), Cor(i)) I (E(i)). Coeli)
/|___partition buffer partition buffer

Out_Score (i) l«—In_Score (i,j)
Partition Buffer . .
Out_Coordinate (i,j) «—In_Coordinate (i,j)

Fig. 12. Architecture and interface of the developed accelerator.

(H(), Cp(i))
1

.

This penalty is related to the fact that the “initial” values
for the next submatrix to be processed (stored in the partition
buffers) need to be loaded into the array. This is done by shifting
in the new values at the same time as the remaining values of the
previous submatrix are still being computed and shifted-out of
the array. This is accomplished with just one additional multi-
plexer on specific registers of the PE, to select between the reg-
ular value or the “initial” value being shifted in. Although this
load operation is being done while the array is processing the
remaining data (therefore having a minimal impact on perfor-
mance), there is still a slight penalty imposed by the array itself
for each submatrix to be processed (load operation of the array
until all PEs are processing valid data). Therefore, to reduce the
number of processed submatrices, the subiteration buffer should
be as large as possible.

Since the selected values for the partition buffers’ depths are
heuristically determined by the user, it is possible that they may
not be well dimensioned for all situations and an overfill may
occur during processing. In such situation (either due to the
score differences being higher than anticipated or to the coor-
dinates changing more than anticipated), the accelerator reports
this fact to the controlling host which will proceed with one of
two possible options: either align the sequences in the GPP (if
there are enough resources to perform such an alignment), or
the sequences are placed on hold until a new configuration is
loaded into the FPGA, so that the buffers have more appropriate
sizes and different tradeoffs between the several parameters of
the iteration and subiteration buffers are selected.

E. Interface

In order to integrate the proposed accelerator with the GPP
that will implement the remaining tasks of the alignment proce-
dure (i.e., the traceback), the processing array includes an em-
bedded controller that is responsible for decoding nine distinct
instructions. These instructions are used to properly control the
array, as well as to receive the data to be processed. The devel-
oped interface, illustrated in Fig. 12, is composed of three input
FIFO queues (one for the reference sequence, another for the
query sequence, and the other for commands), one output FIFO
(toreturn the processed values) and one status register. The three
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input FIFOs allow an efficient processing of the data, with inde-
pendent access to the query and reference sequences, as needed
by the processing flow in the array.

Each of these FIFOs has a depth of 64 words and is 32 b wide,
to match the typical bus-width of current GPPs. The status reg-
ister contains information about the available positions in each
of the input FIFOs, to allow the implementation of a flow control
mechanism. Complementary information regarding the avail-
ability of data in the output FIFO is also provided, indicating
when the accelerator has concluded the alignment between the
two processed sequences.

FE. Postprocessing Operations

The type of information that is provided by the accelerator
varies according to the adopted configuration. At its simplest
setup, the accelerator returns the best local alignment score and
the alignment origin coordinates, whereas at its most complex
form it returns several possible (non)optimal local alignment
scores and the corresponding origin coordinates. In both cases,
a postprocessing step executed in the GPP is needed to obtain
the final information: whether it is the optimal local alignment
or the n-best local alignments.

With the information provided by an outputted data pair (the
alignment score and the corresponding origin coordinate), it is
possible to significantly constraint the computation of matrix H
in the traceback phase to a much smaller submatrix H’ that must
be built for the alignment of the subsequences Si[p---n] and
Sa[q - - - m]. Moreover, it can also be shown that, by processing
this H’ matrix in a wavefront manner (progressively processing
the anti-diagonals), it is possible to further constraint the number
of cells that actually need to be computed. In fact, by sequen-
tially calculating the anti-diagonals of H’, it is possible to halt
its processing as soon as the score, calculated at a given cell,
equals the alignment score that was previously returned by the
accelerator. This will reveal the location of the cell where the
alignment ended. With this optimization, the cells that are on
the right of the anti-diagonal containing the cell that holds the
alignment score value are not computed.

To further reduce the number of computed cells, it is also
possible to apply another optimization based on the proposed
AOI method. Such optimization takes into account that, when
the computation of the H’ matrix begins, it is already known that
the alignment origin is the cell (1,1) of H' and whichever cells
(7, 7) participate in the alignment, they will necessarily have the
corresponding value C} (4, j) = (1,1). The same is true for the
remaining cells that belong to the coordinate zone of the align-
ment starting at (1,1). Therefore, for the purpose of computing
matrix H’, it is sufficient to use a coordinate representation that
simply holds a boolean value of 1 or 0 (C; (¢, ) = 1 if the origin
is cell (1,1), C}(4,5) = 0 otherwise). With this method, it is
possible to constrain the computation to only those cells that
have Cj(i,7) = 1, as well as to those that are immediately adja-
cent to the right or below. This reduces the number of cells that
are computed within each of the anti-diagonals. The proposed
optimization is a direct consequence of one of the properties
of the adopted coordinates system: if a given cell (u, v) has all
of the corresponding coordinates with a null value (C} (u,v) =
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Fig. 13. Example of the postprocessing calculations. (a) Scores matrix H'.
(b) Coordinates matrix C7.

vz (u,v) = C)p(u,v) = 0) and all cells in the left column and
below have the same null value (Cy(u + 6,v — 1) = Cypp(u +
6,v —1)= Cop(u+6,v—1)=0(0 < 6 <n—u)),then all
of the cells below (u,v) (cells (u 4 6,v), with 0 < § < n — )
will also have a zero value in the corresponding coordinates.
Therefore, all of the cells below (u, v) will not participate in the
alignment. The same holds true for each row: if all of the cells
in the above row and to the right have the same null value, then
all cells to the right of such cell will also have a zero value.

The example presented in Fig. 13 illustrates the matrix H'
that is calculated in the postprocessing phase, considering the
previously used sample sequences S; and Ss. In this example,
the subset of cells of the smaller H' matrix whose values are ac-
tually calculated in this phase are highlighted with a gray back-
ground. For simplicity, the presented example considers that
only the best alignment is requested, where the cell computa-
tions are performed until the highest score is found. As men-
tioned before, the cells are processed in an anti-diagonal way
starting from the top left cell and, therefore, the processing stops
in the anti-diagonal that contains the cell where the alignment
score occurs [cell (8,10)]. The simplified matrix Cj is presented
in Fig. 13(b). This auxiliary matrix is used to constrain the com-
putations of H' to those cells that belong to the same coordi-
nates zone as the origin cell and is progressively and simultane-
ously built with matrix H'.

To improve the performance of such postprocessing compu-
tation, the GPP memory is allocated in rectangular blocks, each
one comprising several columns and rows, instead of cell by
cell. To allocate a new block in the vertical (horizontal) direc-
tion, it is necessary that one of the columns (rows) encompassed
by the current block still requires the computation of additional
cells. The example in Fig. 14 shows the previous example ma-
trices but when calculated using 3 X 3 cell blocks. Note the
values of the C{, cells in the borders of the blocks, which dic-
tate the conditions to not process the adjacent block on the right
or below. One exception is observed in the bottom-right block,
since the cell with the maximum score [located at (8,10)], and
whose score value was determined during the matrix-fill phase
(implemented by the accelerator), is used as the stopping con-
dition for this processing step.

In case the n-best calculation unit is used, the information re-
turned by the accelerator comprises d X n data pairs composed
of the alignment score value and the corresponding origin co-
ordinate (where d is the number of ordering subunits present in
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Fig. 14. Example of the postprocessing calculations when performed in blocks.
(a) Scores matrix H'. (b) Coordinates matrix C.

the hardware accelerator). Each of these data pairs represents a
candidate for the set of n-best alignments. Thus, the postpro-
cessing operations on this data start by first ordering the d x n
data pairs by score value, while guaranteeing that only data pairs
with distinct origin coordinates are kept. Afterwards, only the
data pairs with the n-highest scores are stored in an ordered list
that will be considered for the next postprocessing step. How-
ever, in this particular case, the processing of matrix H’ does
not halt when the cell with the alignment score is found, but
rather when all the cells in the coordinate zone have been recal-
culated. This means that the calculation of matrix H’ continues
until all of the newly calculated cells in an anti-diagonal do not
belong to the coordinate zone of the upper left cell (cells with
C}(u,v) = C;g(u,v) = Cf z(u,v) = 0). This is done in order
to ensure that the results are consistent with the W-E algorithm,
which requires the recalculation of the scores in the cells be-
longing to the same coordinate zone.

For each of the data pairs stored in the ordered list, and once
the corresponding smaller H' matrix is calculated, the W-E al-
gorithm is iteratively applied to this matrix to obtain the next
best alignment occurring within the coordinate zone of the ini-
tial alignment. If this alignment score is higher than the smallest
of the n-best alignment scores determined until that moment,
the n-best alignments list is updated. Otherwise, the iterations
of the W-E algorithm over the current H’ matrix are halted and
the processing of the next data pair stored in the ordered list is
started.

It can be easily seen that after the execution of these postpro-
cessing operations, the alignment results are consistent with the
results produced by the original W-E algorithm, using the whole
sequences. In fact, the propagation of the origin coordinates in
the proposed accelerator guarantees that the reported alignment
scores and corresponding origins are nondependable (a change
in a score value of one of the considered alignments will not
change any value in the score calculation of the other align-
ments). However, the W-E algorithm applies to all nonoverlap-
ping alignments and these also include those alignments which
are close to another alignment and which, in this case, may ap-
pear in the same coordinate zone of the first alignment. There-
fore, to determine possible alignments that could be present in
the same coordinate zone of a given alignment, the W-E algo-
rithm has to be implemented over the restricted submatrix H’
during the postprocessing phase to completely determine the
n-best alignments.
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TABLE 1
CONFIGURATION PARAMETERS OF THE ACCELERATOR PLATFORM
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(IRS - Reference Size; 2QS - Query Size)

G. System Configuration

The proposed accelerator has several different configuration
parameters, such as the score bit-width and the coordinates bit-
width. Although a trained user could directly specify each of the
configuration parameters, typically these will be automatically
inferred from a restricted set of user-defined values, as shown
in Table I. The inferred accelerator parameters are determined
by mathematical relations considering the set of user-defined
parameters as input variables. These user-defined values are the
same that are usually found in popular software frameworks and
tools that are commonly used by biologists (e.g., SSEARCH35),
therefore being easy for a typical user of this type of software
to also use the proposed system.

V. PROTOTYPING PLATFORM

To validate the functionality and to assess the performance
of the proposed hardware accelerator in a practical realization,
a complete local alignment embedded system based on the de-
scribed algorithms and architecture was developed and imple-
mented. The base configuration of this system consists of a
Leon3 [23] GPP that executes all of the operations of the S-W
algorithm, except for those concerning to the demanding score
matrix computation phase. Such phase is executed by the pro-
posed hardware accelerator, acting as a specialized functional
unit of the GPP.

The Leon3 processor consists of a highly configurable and
fully synthesizable VHDL core of a RISC architecture con-
forming to the SPARC v8 definition. It integrates a seven-stage
instruction pipeline Harvard micro-architecture, with 32-b in-
ternal registers. The adopted Leon3 processor is based on ver-
sion gpl-1.0.20-b3403 of GRLIB.

The proposed accelerator architecture was interconnected to
the GPP as a specialized alignment peripheral, by making use of
the AMBA-2.0 APB bus. Besides the proposed DNA alignment
accelerator, the GPP core also encompasses two 32-b timers
for benchmarking purposes, which were all connected to the
AMBA-APB bus.

The implementation of the proposed local alignment system
was realized in an FPGA device by using a GR-CPCI-XC4V
development board from Pender Electronic Design. Such de-
velopment system includes a Virtex4 XC4VLX100 FPGA de-
vice from Xilinx, a 133-MHz 256-MB SDRAM memory bank,
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and several peripherals for control, communication, and storage
purposes.

VI. EXPERIMENTAL RESULTS

The presented architecture was fully described using param-
eterizable VHDL code, synthesized using the Xilinx ISE 10.1
(SP3) software tools, and implemented in the previously de-
scribed FPGA. This embedded system, used fundamentally as
a proof-of-concept prototyping platform, is composed by the
Leon3 GPP and the alignment accelerator core including the
n-best score calculation unit. The operating frequency of the
entire system is limited to 60 MHz, restricted by the adopted
Leon3 IP core.

To properly evaluate the proposed system, two distinct appli-
cation scenarios were considered: 1) a gene versus gene data-
base search, where the two sequences to be aligned have similar
sizes and 2) a short-read versus a reference genome, where the
reference sequence is much larger than the query sequences.

The dataset used in the first scenario comprises 43 887 se-
quences with a length ranging from 21 to 104 026 nucleotides
(an average of 1273) used as the reference and 100 sequences
with an average length of 988 nucleotides used as the query se-
quences. For the second scenario, a reference sequence with
about 250 x 10° nucleotides was used as the reference and
100 sequences with 35 nucleotides each were used as the query
sequences.

All of the implemented configurations that adopted the pro-
posed partitioned processing scheme had the partition buffers
size adjusted in such a way that: 1) the number of positions of
the LSB&Control FIFOs of the iteration and subiteration buffers
is equal to the maximum query size and to the maximum ref-
erence iteration size, respectively; 2) the number of positions
of the score’s MSB FIFO is one eighth of the positions of the
LSB&Control FIFO; and 3) the number of positions of the co-
ordinates FIFO is one quarter of the positions of the LSB&Con-
trol FIFO. The bit-width of the score’s LSBs part is 5 b, con-
sidering the adopted score substitution function (match = 3,
maismatch = —1, « = 4, f = 3). The remaining score bits are
stored in the MSB FIFO. Furthermore, the maximum reference
iteration size was set to 32 768 (2'°) positions, since this value
is feasible for all of the considered configurations and does not
impose a noticeable reduction in the performance of the array.

With the considered configurations, it is possible to align
DNA sequences with a wide range of sizes starting from a few
nucleotides to several million nucleotides.

A. Processing Efficiency of the PE Array

The maximum attainable throughput of the proposed PE array
can be defined as the product of the adopted operating frequency
and the number of PEs present in the array. Nevertheless, there
are some situations where the maximum performance value may
not be achieved: 1) when the query sequence does not make use
of the full number of PEs; 2) when the partitioned processing
is used, since loading operations into the array need to be per-
formed for each of processed blocks; and 3) when the n-best
calculation unit is used, since some wait states may be imposed
on the array to guarantee the ordering of the n-best scores. In-
dependently of these situations, the greatest performance level
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Fig. 15. Array efficiency for several subiteration buffer sizes.

is achieved by defining the largest sequence to be aligned as
the reference sequence, whereas the shortest sequence should be
used as the query sequence. This improves the array efficiency,
since less load operations of the array need to be performed.

In the partitioned processing scenario, the extra penalty due
to the additional load operations is directly related to the size of
the subiteration buffer, which holds a row of data and limits the
maximum length of the reference subsequence that is processed
in each iteration. In contrast, and as it was referred to before, the
iteration buffer size does not influence the array efficiency, since
its size only limits the maximum size of the processed query
sequence. However, when the hardware resources are limited, a
strict balance between the size of the subiteration buffer and the
size of the iferation buffer must be achieved.

The chart in Fig. 15 depicts the efficiency results, measured
as the ratio between the actual array throughput and the op-
timal maximum throughput of the array. These particular results
were obtained when aligning a 256-long query sequence with a
10°-long reference sequence. The exact values may vary ac-
cording to the sequences that are being aligned, but the trend is
the same. As it can be seen, the larger the subiteration buffer,
the higher the efficiency of the array.

B. Assessment of the n-Best Operation Mode

As it was previously referred, the advantages provided by the
newly proposed unit for the computation of the n-best alignment
scores arise with an inherent cost of the attainable processing
throughput. This is mainly due to the amount of halt cycles that
are required in order to execute the simultaneous ordering re-
quests generated by the several PEs connected to the same sub-
unit, as described in Section IV-B. In fact, when the number of
best alignments (n) to be evaluated increases, the number of
wait states of the array also increases. This is mainly due to a
twofold effect: i) the ordering unit will take more time to order
each single request and ii) the number of ordering requests will
be greater, since the minimum value present at each unit will
also be smaller for the same set of sequences.

As an example, Table II presents the variation of the average
number of required clock cycles to obtain the corresponding
n-best alignments, considering the practical situation of a gene
versus gene database search scenario. In this situation, the
average number of clock cycles to obtain the four best align-
ments of the considered test sequences increases by a factor
of 3. The exact increase rate is dependent on the dataset that
is under processing. However, even with such decrease of the
array throughput, it was observed that a significant speedup is
still attainable by using this accelerator when compared to the
LALIGN35 program running on the Intel Core2 Duo processor,
as will be seen in Section VI-D.
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TABLE II
NUMBER OF CLOCK CYCLES NECESSARY TO OBTAIN THE n-BEST ALIGNMENTS
(CONSIDERING k = 8)

n-best Average number of Increase
alignments clock cycles (x103)
1 35.6 1.0
2 53.1 1.5
4 109.3 3.1
8 264.8 74
Average number of clock cycles (x10°) Frequency (MHz)
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Fig. 16. Array performance for several grouping sizes k (considering n = 4).

To analyze the impact of the additional configuration param-
eter k (the number of PEs grouped in each subunit, as referred
to in Section IV-B) in the array performance, several configu-
rations were implemented and the average number of clock cy-
cles required to obtain the four best alignments was determined
for the considered test sequences. These results, as well as the
corresponding values for the maximum operating frequency of
the array (without considering the limitation imposed by the
Leon3 GPP) and the required hardware resources are presented
in Fig. 16.

According to these charts, the grow of & leads to a moderate
increment of the amount of clock cycles required to obtain the
alignments [Fig. 16(a)], due to the resulting increase of the re-
quired wait states. As a collateral effect, the maximum attainable
frequency also decreases with the increment of % [Fig. 16(b)].
The combination of these two effects results in the increase of
the total processing time required to obtain the alignments, as
presented in Fig. 16(c).

On the other hand, it was also observed that the increase of
k results in a decrease of the amount of resources used by the
accelerator [Fig. 16(d)], since the total number of subunits de-
creases. Hence, by optimizing the balance between the used re-
sources of the circuit and the corresponding processing time, it
was concluded that the configuration corresponding to k = 8
yields the best compromise. Note that, for a value of k = 2, the
significant increase of the amount of used resources and larger
interconnections directly impacts the timing performance of the
circuit, resulting in a lower maximum frequency than the one
obtained with a value of £ = 4.
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TABLE III
FPGA RESOURCE USAGE
Config PE type # PEs Scfore Pamuor}ed Max.query Max ref size | n-best unit LUTs Registers BRAMs
width Processing size
#1 Leon3 only 0 - - - - - 17788 (18%) 6246 (6%) 43
#2 Linear 64 11 No 64 65536 No 34197 (35%) | 18407 (19%) 46
#3 Affine 64 11 No 64 65536 No 42503 (43%) | 22566 (23%) 46
#4 Affine 64 17 Yes 4096 65536 No 72602 (74%) | 29315 (30%) 155
#5 Affine 64 17 Yes 4096 65536 n=4 62945 (64%) | 25806 (26%) 155
#6 Affine 64 17 Yes 4096 65536 n=8 63777 (65%) | 27385 (28%) 155
#7 Linear 128 14 Yes 512 1 x 108 No 57747 (59%) | 36085 (37%) 92
#8 Linear 128 13 Yes 512 268 x 106 No 58914 (60%) | 35712 (36%) 88

C. Hardware Resource Usage

To demonstrate the flexibility of the proposed alignment plat-
form, several different hardware configurations have been im-
plemented. Table III presents the obtained resource usage re-
sults of the considered configurations. A maximum of 128 PEs
can be implemented in the adopted FPGA when the affine gap
model is considered.

Configuration #1 corresponds to the base setup of the em-
bedded system, where the Leon3 GPP was implemented alone,
without the proposed alignment accelerator. The presented re-
sults show that this processor alone occupies 18.1% of the avail-
able logic resources.

By comparing the results corresponding to configurations 2
and 3, it is observed that the implementation of a processing
array using an affine gap penalty PE with coordinate tracking
support yields a 24% increase of the amount of resources used
by the whole system, when compared with a similar linear gap
penalty PE. This increase of used resources is also dependent on
the particular adopted conditions in what concerns the required
operating environment, namely, the size of the sequences to be
aligned (which determines the bit-width of the coordinates rep-
resentation) and the substitution score function values (which
influence the bit-width of the score calculations).

In what concerns the proposed partition processing scheme,
it can be observed, by comparing the BRAMs allocation results
of configurations 3 and 4, that this offered feature imposes a
significant increase of the number of used memory blocks of
this FPGA device, where the required FIFO memories need to
be accommodated.

The setups identified as configurations 5 and 6 in Table III
correspond to the cases where the n-best alignment facility was
assessed. The corresponding ordering unit simultaneously pro-
vides the four-best and eight-best alignment scores and has a
grouping (k) of 8. By comparing the obtained LUT allocation
results with those obtained with configuration 4, it is observed
that the amount of required hardware resources slightly reduces.
This is due to the fact that, when the n-best unit is used, the
MAXSec section present in each PE is discarded (as mentioned
in Section IV-B), therefore reducing the overall amount of used
resources. However, the absolute amount of used resources im-
poses a limit on the maximum number of instantiated PEs. For
the particular considered cases (with n = 4 or n = 8) it was
decided to fix the number of PEs to the closest lower power of
2, leading to a maximum of 64 PEs.

Finally, when the proposed hardware platform was assessed
in what respects the two considered alignment scenarios, it was

observed that the most appropriate configuration for the gene
versus gene database scenario is configuration 5 in Table III.
This configuration computes the scores using an affine gap
penalty model, includes the n-best calculation unit withn = 4
(which is particularly used in this application to find other
equal or similar alignments, as well as repetitive DNA regions),
and is capable of handling sequence sizes that are common in
this particular scenario. When the short-read versus reference
genome scenario is considered, configuration 8 is regarded as
the most appropriate, since it is capable of handling very large
reference sequences and does not require the use of the n-best
alignment unit, since typically only the position of the best
alignment is of interest. This comes with an inherent cost of
only handling shorter query sequences. Nevertheless, in this
application scenario, the samples are typically smaller than 512
nucleotides, which validate this configuration for this specific
scenario.

D. Performance Evaluation

The overall performance of the developed accelerator, to-
gether with the proposed AOI method, was assessed using the
previously referred test sequences which were aligned using
two different approaches: 1) using the developed architecture
to accelerate the execution of the S-W and of the W-E algo-
rithms running on the 60-MHz Leon3 GPP and 2) using the
SSEARCH35 (for the S-W algorithm) and the LALIGN35 (for
the W-E algorithm) software tools from the FASTA frame-
work, by using a 2.4-GHz Intel Core2 Duo processor. Both the
SSEARCH35 and the LALIGN35 programs were compiled by
considering the SIMD optimizations proposed by Farrar et al.
[6], as well as with multithread capabilities that are capable of
exploiting multicore processors. The SSEARCH35 program
was used to align the short-read query sequences with the
reference genome, whereas the LALIGN35 program was used
to obtain the four best alignments when searching the whole
gene database.

The obtained execution times for the two considered sce-
narios (gene versus gene database and short-read versus refer-
ence genome) are presented in Table IV. The presented results
correspond to the computation of complete alignments. In the
case of the proposed accelerator, the postprocessing operations
in the GPP are performed in parallel, while the accelerator is
calculating the scores for the next sequences.

In a preliminary assessment, configuration 7 of the acceler-
ator was applied to align query sequences with 128 nucleotides
to a745 211 nucleotide long reference sequence. The partitioned
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TABLE 1V
PERFORMANCE RESULTS
Embedded Usage Scenario
Comparison | Gene vs | Short-read
gene vs reference
database genome
Used Configuration #7 #5 #3
Pure software alignment time | 312360ms - -
using Leon3 processor
Pure software alignment time - 13968s 4115s
using Intel Core 2 Duo proces-
sor @ 2.4GHz
Alignment time using the pro- 51.7ms 827s 383s
posed architecture @ 60MHz
Speedup [ 6042 [ 17 ] 11
TABLE V
PERFORMANCE COMPARISON
[141* | [151% | [16]® | Proposed*
Equivalent Alignment
Performance [MCUPS] 812 7600 | 5400 7605

(* 140 Linear PEs (Estimated); 2168 Affine PEs; 135 Affine PEs;
4128 Linear PEs)

processing feature was not used, since all considered query se-
quences fit in the available PEs. The same alignment task was
also executed by using a pure software implementation of the
S-W algorithm running in the Leon3 GPP, which performs the
whole alignment procedure. The obtained results show that the
Leon3 GPP alone takes 312360 ms to perform the complete
alignment (traceback included) which corresponds to an average
processing rate of 0.3 million cell updates per second (MCUPS).
In contrast, when the proposed accelerator is used together with
the Leon3 processor, the same alignment task is performed in
just 51.7 ms, which corresponds to a remarkable speedup of
6042. In this assessment, the Leon3 processor was the limiting
factor on the attainable performance, while the accelerator alone
presented an equivalent performance of 7605 MCUPS. These
results are in line with the performance presented by similar ar-
chitectures proposed in the past [14]-[16] (see Table V). How-
ever, it is important to emphasize that such past architectures
were only focused on accelerating the matrix-fill phase of the
S-W algorithm. In contrast, besides accelerating the matrix-fill
phase, the presented accelerator architecture also implements
the new AOI method and the conceived n-best alignment op-
tion, therefore returning additional information that can be use-
fully applied to further reduce the computational requirements.
Such features are not included in other proposals, being there-
fore differentiating characteristics of this work and hindering a
direct and fair comparison.

In a more challenging comparison, it was determined that the
speedup that is achieved by comparing the time required to ob-
tain a whole alignment using the SSEARCH35 and LALIGN35
software implementations running in a Core2 Duo processor
and the time required to obtain the same whole alignment with
the proposed integrated accelerator architecture. Configuration
5 was adopted for the gene versus gene database scenario, while
configuration 8 was chosen to implement the short-read versus
reference genome application scenario. The obtained results re-
veal that the attained speedup, over a software implementation
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running on the Core2 Duo, may be as high as 17. These speedup
values are the direct consequence of a twofold contribution: on
the one hand, the parallelization of the whole matrix fill phase by
the processing array, due to the parallel processing in the NV PEs;
on the other hand, the substantial decrease of the processing time
required to perform the traceback and the n-best calculation in
the GPP, mainly due to the significant reduction of the size of
the H' matrix that must be recomputed in this phase. For the en-
tire set of considered test sequences, the usage rate of the parti-
tion buffers was always below 75%, therefore demonstrating its
adequacy to a large range of application scenarios. For the com-
putation of the optimal local alignments in the gene versus gene
database scenario, the proposed accelerator presented an equiv-
alent average performance of 6400 MCUPS and a maximum of
7612 MCUPS. These performance metrics contrast with the 750
MCUPS presented, on average, by the Core2 Duo processor to
implement the same alignment task.

E. Discussion

As it was shown, the application of the proposed AOI method
substantially reduces the computational requirements (both in
terms of memory and time), making it possible to align larger se-
quences in memory constrained environments as those typically
imposed by most current embedded platforms. The proposed ac-
celerator also allows the execution of the W-E algorithm in such
embedded platforms, without the need to keep the entire orig-
inal H matrix in memory, since only the smaller H' matrices
are required. Moreover, even thought the conceived embedded
platform operates at a clock frequency of 60 MHz (imposed by
the adopted GPP), with the consequent advantage of reducing
the consumed power, it is still capable to achieve better perfor-
mance levels than a standard GPP processor (Intel Core 2 Duo
processor) operating at a 40 times higher frequency (2.4 GHz).

Although the conducted evaluation was performed in a stan-
dard FPGA prototyping board, it is important to note that the
proposed architecture could equally be implemented in other
more sophisticated platforms. For instance, on the Intel Atom
E600C series processor, which includes a GPP and a FPGA in-
terconnected using a PCle link. Furthermore, the developed ac-
celerator can also be implemented in standard commodity hard-
ware systems. In such a case, it is possible to easily scale the
system by adding additional accelerators that work in parallel.

VII. CONCLUSION

An integrated hardware platform for efficient computation
of local alignments of DNA sequences was presented. The
proposed architecture is based on an innovative strategy that
provides a significant reduction of the computational require-
ments needed by the traceback phase of the S-W algorithm.
Such strategy makes use of some information gathered during
the computation of the alignment scores by the hardware accel-
erator, to significantly constrain the size of the subsequences for
which it is necessary to recompute the dynamic programming
matrix required to perform the traceback phase. Contrasting
with previously proposed hardware structures, the presented
architecture also allows the simultaneous evaluation of the
n-best alignments of a given sequence pair, by incorporating a
set of ordering units that are capable of registering the scores
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and origin coordinates of such alignments. To accommodate
the alignment of large sequences, a new buffer architecture
for partitioned processing was also implemented, which also
provided a significant reduction on the storage space for iter-
ative processing of these larger sequences. Moreover, several
different configuration options are provided to allow the usage
of the proposed accelerator structure in various different appli-
cation scenarios.

The developed accelerator was integrated with a Leon3 GPP
to form a complete and embedded alignment system that was
implemented in a Virtex-4 FPGA. The presented results showed
that the developed system is capable of providing speedups up
to 17, when compared with the LALIGN35 software tool from
the FASTA framework running on an Intel Core2 Duo processor
with a 40x higher clock frequency.
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