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Abstract
The Smith-Waterman algorithm is widely used to deter-
mine the optimal sequence alignment between two DNA se-
quences. This paper presents an innovative method to sig-
nificantly reduce the computation time and memory space
requirements of the traceback phase of this alignment al-
gorithm. It also presents a flexible and scalable hardware
architecture for accelerating such method, which can be
easily expandable by the interconnection of several FP-
GAs. The results obtained from an implementation us-
ing a Virtex-5 FPGA showed that the proposed method is
highly feasible in order to provide significant gains in terms
of the overall performance of the whole alignment proce-
dure when long sequences are processed. The obtained re-
sults also showed that it is preferable to span the array of
processing elements through several FPGAs, rather than
reusing the hardware resources of the individual array.

Keywords DNA; Local Sequence Alignment; Hardware
Accelerator; FPGA

1. Introduction

With the recent advances in sequencing technologies,
which allow the determination of the nucleotide sequence
of the Deoxyribonucleic Acid (DNA), biologists gained ac-
cess to an enormous amount of data. However, the DNA
sequence size of most living cells can be quite large. For
example, the size of the human DNA can be as large
as 3× 109 base pairs. This means that for each com-
plete human individual genome that is sequenced, an ad-
ditional dataset of 3× 109 base pairs will be available for
researchers. Such datasets are usually stored in databases
to which biologists submit the newly sequenced DNA seg-
ments. One of these well known public databases is the
GenBank [1]. The size of this database has doubled ap-
proximately every 18 months and the version released on
June 15th, 2009, had approximately 105×109 base pairs.

The information contained in the DNA sequences is
mainly extracted by homology, therefore requiring a large
number of comparisons between sequences. However, ex-
act search of a given sequence in the whole sequences
database is often unfeasible due to the frequent mutations to

which DNA is affected (nucleotide insertion, deletion and
substitution). To overcome this complication, several tech-
niques have been devised to find the optimal position where
as many as possible nucleotides are found in the same po-
sitions. These methods, denoted by sequence alignment
algorithms, are used to determine which sequences match
more closely and how they align in order to show the zones
that are common.

The alignments can be classified as either local or
global. In global alignments, the complete sequences are
aligned from one end to the other, whereas in local align-
ments only the subsequences that present the highest simi-
larity are considered in the alignment. The local alignment
is generally preferred when searching for similarities be-
tween distantly related biological sequences, since this type
of alignment more closely focuses on the subsequences that
were conserved during evolution.

The computational effort to perform such tasks in such a
large dataset poses considerable challenges. The Dynamic
Programming (DP) algorithm to find the optimal local se-
quence alignment between any two sequences has O(nm)
time complexity, where n and m denote the sizes of the se-
quences being aligned. Alternative sub-optimal heuristic
algorithms, like BLAST, have been proposed to reduce the
runtime. However, they may miss the optimal alignments
between the sequences. Therefore, the use of the optimal
alignment algorithms is usually preferred but not always
performed due to the excessive runtime.

The use of hardware accelerators based on Field Pro-
grammable Gate Arrays (FPGAs) for High Performance
Computing has been increasing over the past few years.
Several algorithms have been accelerated with specialized
architectures that were implemented in these devices. One
of such algorithms is the Smith-Waterman (SW) algo-
rithm [2], which uses DP to determine the optimal local
alignment between any two sequences with O(nm) com-
plexity.

Several accelerator architectures have been proposed to
implement the Smith-Waterman algorithm in FPGAs [3].
The most common architecture is based on a systolic array
of Processing Elements (PEs). An example of a bidimen-
sional systolic array, described using VHDL, is presented
in [4]. Nevertheless, unidimensional (linear) systolic ar-
rays are more commonly adopted [5, 6]. Some of these
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accelerators can take advantage of the reconfiguration ca-
pabilities provided by FPGAs to optimize the PEs to the
particular conditions of a given alignment [5]. Another im-
plementation, which is available as a commercial solution,
was developed by CLC bio [7]. The offered product also
makes use of a FPGA to accelerate the matrix fill stage of
the Smith-Waterman algorithm.

However, most of these accelerators have only focused
on the part of the algorithm that calculates the alignment
score. The alignment, itself, is usually obtained in a post-
processing stage (usually implemented in a general purpose
processor) where the scores are recalculated for the highest
scoring sequences, by saving additional information that
is required to retrieve the best alignment. In this paper,
a new and more efficient method is proposed that makes
use of the information obtained during the calculation of
the alignment scores (in hardware), in order to reduce the
time required to determine the alignment. To implement
such technique, a scalable architecture that also enables the
interconnection of several accelerators is presented and im-
plemented in FPGA, thus allowing the use of a larger num-
ber of processing elements to permit a higher throughput.

This paper is organized as follows: In Section 2 it is
presented the SW algorithm, which is used to determine the
optimal local alignment. Section 3 presents the architecture
used to accelerate the local alignment procedure. Section 4
shows the obtained results in an FPGA. The conclusions
are presented in Section 5.

2. Local alignment

Considering two strings S1 and S2 of an alphabet Σ with
sizes n and m, respectively, a local alignment reveals which
pair of substrings of sequences S1 and S2 optimally align,
such that no other pairs of substrings have a higher simi-
larity score. A commonly used algorithm to determine the
local alignment is the SW algorithm, which has a O(nm)
time complexity [2]. This algorithm uses a DP method
composed of three essential parts: the recurrence relation,
the matrix computation and the traceback [8].

2.1. Smith-Waterman Algorithm

Let G(i, j) represent the best alignment score between a
suffix of string S1[1..i] and a suffix of string S2[1.. j]. The
SW algorithm allows the computation of G(n,m) (the local
alignment between the two strings) by recursively calculat-
ing G(i, j) (the local alignment between prefixes of S1 and
S2).

The recursive relations to calculate the local alignment
score G(i, j) are given by Equation 1

G(i, j) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

G(i−1, j−1)+ Sbc(S1(i),S2( j)),
G(i−1, j)−α,

G(i, j−1)−α,

0

(1)

The Sbc(S1(i),S2( j)) function denotes the value ob-

Table 1: Example of a substitution score matrix.

Sbc A C G T
A 3 -1 -1 -1
C -1 3 -1 -1
G -1 -1 3 -1
T -1 -1 -1 3

tained by aligning character S1(i) against character S2( j).
This value represents the substitution score. The α value
represents the gap penalty cost (the cost of aligning a char-
acter to a space). An example of a substitution function is
shown in Table 1.

The alignment scores are usually positive for characters
that match, thus denoting a similarity between the two. On
the contrary, mismatching characters may have either posi-
tive and negative scores, according to the type of alignment
that is being performed, denoting the biological proxim-
ity between the two. In contrast, the gap penalty cost α is
always positive. Different substitution score matrices are
used to reveal different alignments. The particular score
values defined in these matrices are determined by biolo-
gists according to evolutionary relations.

The initial conditions for the calculation are the follow-
ing:

G(i,0) = G(0, j) = 0

After filling the entire matrix G, the substrings of S1 and
S2 that best align are found by first locating the cell with the
highest score in G. Then, all matrix cells that lead to this
highest score cell are sequentially determined by perform-
ing a traceback procedure. The traceback procedure ends
when a cell with a score of zero is reached. Such trace-
back identifies the substrings as well as the corresponding
alignment. The path taken at each cell is chosen based on
which of the three neighboring cells (left, top-left and top)
was used to calculate the current cell value based on the
recurrence equations (eq. 1). When the neighbor is the
left cell (G(i, j− 1)) then this corresponds to inserting a
space (opening a gap) in S1 at position i. If it was the top
cell (G(i−1, j)), then this corresponds to inserting a space
(opening a gap) in S2 at position j. When the neighbor is
the top-left cell (G(i− 1, j− 1)) then this corresponds ei-
ther to a match or to a substitution. The traceback phase
has a O(n + m) time complexity.

Table 2 shows an example of the calculated score ma-
trix for aligning two sequences (S1 = CAGCCTCGCT and
S2 = AATGCCATT GAC) using the substitution score ma-
trix presented in Table 1, where a match has a score of 3
and a mismatch a score of -1. A gap has a penalty of 4. The
shadowed cells in the table represent the traceback path that
was taken to determine the best alignment, which is shown
in Figure 1.
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Table 2: Example of an alignment score matrix.

0 1 2 3 4 5 6 7 8 9 10 11 12
G ø A A T G C C A T T G A C

0 ø 0 0 0 0 0 0 0 0 0 0 0 0 0
1 C 0 0 0 0 0 3 3 0 0 0 0 0 3
2 A 0 3 3 0 0 0 2 6 2 0 0 3 0
3 G 0 0 2 2 3 0 0 2 5 1 3 0 2
4 C 0 0 0 1 1 6 3 0 1 4 0 2 3
5 C 0 0 0 0 0 4 9 5 1 0 3 0 5
6 T 0 0 0 3 0 0 5 8 8 4 0 2 1
7 C 0 0 0 0 2 3 3 4 7 7 3 0 5
8 G 0 0 0 0 3 1 2 2 3 6 10 6 2
9 C 0 0 0 0 0 6 4 1 1 2 6 9 9

10 T 0 0 0 3 0 2 5 3 4 4 2 5 8

G C C A T T G
| | | | |

G C C T C G

Figure 1: Obtained alignment.

2.2. Tracking of the Origin and End alignment in-
dexes

When only the alignment score is required, it is not
necessary to perform the traceback phase of the SW al-
gorithm. However, whenever the alignment between the
sequences must also be determined, the traceback phase
must be implemented. However, most hardware acceler-
ators that have been proposed for the alignment algorithms
only implement the matrix computation (without perform-
ing the traceback phase). Therefore, only the alignment
score is calculated by the accelerator. Afterwards, when-
ever the alignment score is greater than a given threshold,
the whole G matrix is recalculated (usually by using a gen-
eral purpose processor) maintaining enough intermediate
data to perform the traceback and retrieve the correspond-
ing alignment. Hence, the recalculation of the entire G ma-
trix is performed outside the accelerator without keeping
any data from the previously calculated matrix score.

However, it can be shown that the time and memory
space that is required to find the local alignment can be sig-
nificantly reduced. In fact, and considering a given pair of
sequences S1 and S2, if it is possible to know that the local
alignment starts in characters at position S1(p) and S2(q)
represented as (p,q) and ends in characters at position
S1(u) and S1(v) represented as (u,v), then the local align-
ment can be obtained by just recalculating the alignment
between the subsequences Sa = S1[p..u] and Sb = S2[q..v].

As an example, from the data shown in Table 2, it is pos-
sible to determine that the alignment starts in characters at
position (3,4) and ends in the characters at position (8,10).
With this information, the optimal local alignment between
S1 and S2 can be found by only calculating the alignment
between subsequences Sa = S1[3..8] = GCCTCG and Sb =
S2[4..10] = GCCATT G. The alignment between Sa and Sb

Table 3: Reduced alignment score matrix.

G ø G C C A T T G
ø 0 0 0 0 0 0 0 0
G 0 3 0 0 0 0 0 3
C 0 0 6 3 0 0 0 0
C 0 0 3 9 5 1 0 0
T 0 0 0 5 8 8 4 0
C 0 0 3 3 4 7 7 3
G 0 3 0 2 2 3 6 10

can now be determined by computing a much smaller G
matrix and performing the traceback, as shown in Table 3.

Hence, the advantage of this method resides in the fact
that the time and memory space required to recompute the
G matrix for the subsequences that participate in the align-
ment is usually significantly reduced when compared to the
entire sequences. Consequently, this method also reduces
the computational effort of the alignment algorithm.

To determine the character positions where the align-
ment starts an auxiliary matrix, Cb, will be used. Let
Cb(i, j) represent the coordinates of the matrix cell where
the alignment of string S1[1..i] and string S2[1.. j] starts. Us-
ing the DP method that is used to calculate G(i, j), it is pos-
sible to simultaneously build a matrix Cb, with the same
size as G, that maintains a track of which cell originated
the score that reached cell (i, j).

The recursive relations that determine the coordinates of
the matrix cell that originated the alignment ending at cell
(i, j) are given by Equation 2.

The initial conditions for the calculation are:

Cb(i,0) = Cb(0, j) = (0,0)

With this method, it is possible to find, at cell Cb(i, j),
the coordinates of the cell where the alignment ending at
cell G(i, j) was originated. Afterwards, by knowing the
cell where the maximum score occurred, G(u,v), it is pos-
sible to determine from Cb(u,v) = (p,q) the coordinates of
the cell where the alignment began. Then, to obtain the de-
sired alignment, the score matrix has to be rebuilt only for
the subsequences S1[p..u] and S2[q..v] which are usually
considerably smaller than the entire S1 and S2 sequences.

An example of table Cb for the alignment of sequences
S1 and S2, whose G matrix was presented in Table 2, is
shown in Table 4. In this example, by knowing from the G
matrix that the maximum score occurs at cell (8,10), it is
possible to retrieve the coordinates of the beginning of the
alignment in cell Cb(8,10) = (3,4).

3. Architecture

The local alignment algorithm described in Section 2 is
usually applied to biological sequences in which m � n
(e.g. n≈ 500 and m≈ 106). The matrix fill stage of this al-
gorithm is the most computationally intensive and is there-
fore a good candidate for parallelization. However, the data
dependencies that exist to calculate each matrix cell value
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Cb(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i, j), i f G(i, j) = G(i−1, j−1)+ Sbc(S1(i),S2( j)) and Cb(i−1, j−1) = (0,0)

Cb(i−1, j−1), i f G(i, j) = G(i−1, j−1)+ Sbc(S1(i),S2( j)) and Cb(i−1, j−1) �= (0,0)

Cb(i−1, j), i f G(i, j) = G(i−1, j)−α,

Cb(i, j−1), i f G(i, j) = G(i, j−1)−α,

(0,0), i f G(i, j) = 0

(2)

Table 4: Example of an Origin and End Alignment Indexes tracking matrix.

0 1 2 3 4 5 6 7 8 9 10 11 12

Cb ø A A T G C C A T T G A C

0 ø (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

1 C (0,0) (0,0) (0,0) (0,0) (0,0) (1,5) (1,6) (0,0) (0,0) (0,0) (0,0) (0,0) (1,12)

2 A (0,0) (2,1) (2,2) (0,0) (0,0) (0,0) (1,5) (1,6) (1,6) (0,0) (0,0) (2,11) (0,0)

3 G (0,0) (0,0) (2,1) (2,2) (3,4) (0,0) (0,0) (1,6) (1,6) (1,6) (3,10) (0,0) (2,11)

4 C (0,0) (0,0) (0,0) (2,1) (2,2) (3,4) (4,6) (0,0) (1,6) (1,6) (0,0) (3,10) (4,12)

5 C (0,0) (0,0) (0,0) (0,0) (0,0) (2,2) (3,4) (3,4) (3,4) (0,0) (1,6) (0,0) (3,10)

6 T (0,0) (0,0) (0,0) (6,3) (0,0) (0,0) (3,4) (3,4) (3,4) (3,4) (0,0) (1,6) (3,10)

7 C (0,0) (0,0) (0,0) (0,0) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4) (0,0) (1,6)

8 G (0,0) (0,0) (0,0) (0,0) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4) (3,4)

9 C (0,0) (0,0) (0,0) (0,0) (0,0) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4)

10 T (0,0) (0,0) (0,0) (10,3) (0,0) (8,4) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4)

(to calculate the value for cell G(i, j) it is necessary to know
the values of G(i− 1, j− 1), G(i, j− 1) and G(i− 1, j))
highly restrict the parallelization to the simultaneous com-
putation of the values along the matrix anti-diagonal direc-
tion.

Specialized parallel hardware that is capable of perform-
ing a high number of simultaneous matrix computations is
especially suited for this task. A linear systolic array with
several identical PEs, as shown in Figure 2, is an efficient
architecture to implement this type of computation, by si-
multaneously computing the values of the G matrix that are
located in a given anti-diagonal.

3.1. Processing Element

The PEs architecture described in this paper is based
on the PEs architecture presented in [5]. The simplest PE
only implements the function of the basic local alignment
algorithm and is shown in Figure 3. It has a two stage
pipelined datapath to calculate a score matrix cell value
(output in G(i, j)). The throughput of each element is one
score value per clock cycle. Since the Smith-Waterman al-
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Figure 2: Systolic array structure.

gorithm requires the determination of the maximum score
value throughout the entire matrix, it is necessary to have
an additional datapath that selects the maximum score that
has been calculated in the array (output Max(i, j)). The PE
i selects and stores the maximum score that was computed
by PEs 1 through i.

The array evolves along the line by shifting the reference
sequence character symbols through the PEs. In this array,
the character S1(i) is allocated to the ith PE and this PE
performs, at every clock cycle, the computations required
to determine the score value of a certain matrix cell. This
computation involves, among other operations, determin-
ing the substitution score between two characters (the value
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Figure 3: Simple PE architecture.
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of Sbc(S1(i),S2( j)). Since each PE performs the operations
only over one character of S1, it only needs to store the col-
umn of the substitution cost matrix that represents the costs
of aligning character S1(i) to the entire alphabet. The com-
putation of the matrix cell value G(i, j) also requires the
determination of the maximum values that are the result of
the three distinct possibilities presented in Equation 1. The
zero condition of the Smith-Waterman algorithm is imple-
mented by controlling the reset signal of the registers that
store the value G(i, j), by using the most significant bit
(sign bit) of the score value, i.e., if the maximum value
among the three partial scores is negative, then it clears the
registers that hold that given score value.

After all the reference sequence (S2) characters have
passed through all the PEs, the alignment score is available
at Max(i, j) output of the last PE.

3.2. Array programming

The query sequence (S1) data which is loaded into the
array is the substitution score matrix column that corre-
sponds to the symbol at that position. In fact, since each
PE only performs comparisons to a given query sequence
character, it will just access the values present in a certain
matrix column. Therefore, each PE will only receive the
substitution score matrix column that corresponds to the
query sequence character allocated to that PE.

Within each PE, such data is stored using dedicated reg-
isters since this allows for a fast reprogramming of the PEs
for a new query sequence. In the event of a PE is not being
used (because the query sequence has a smaller size than
the number of PEs (N)), the substitution score data that is
stored in such PE corresponds to a substitution matrix col-
umn in which every value is zero.

To program the query sequence (S1) score values, an
auxiliary structure was included in the array. This struc-
ture is composed by a n bit-width shift register that allows
to shift the values of a substitution matrix column through
the several PEs. This approach provides the load operation
of a new query sequence into this temporary storage shift
register, by serially shifting the substitution matrix column
data while the array is processing the data regarding the
current query sequence. As soon as the array has finished
processing the data regarding the current query sequence,
the new query sequence data, which is stored in the auxil-
iary shift register, is parallel loaded (in just one clock cycle)
into the respective PEs. This allows to mask the time that
would be required to shift the new query sequence data into
the array, while the array is processing the current data and
therefore, it ends-up by programming the actual query se-
quence in just one clock cycle, which significantly reduces
the amount of time required for programming the array.

To allow the usage of the same array to process query se-
quences (S1) larger than the number of available PEs (N), it
is possible to store intermediate results in a local memory.
These results are the output values of the last PE in the array
and correspond to the scores of a complete row of matrix

G. The size of this memory limits the size of the reference
sequence (S2), since it must entirely fit, along with the in-
termediate calculation data, in this memory. This memory
is organized as a FIFO memory and the values stored on it
will be later reintroduced in the array and used to compute
the alignment for larger sequences.

3.3. Tracking of the Origin and End Alignment
Indexes

As it was previously referred, typical applications of
hardware accelerators for sequence alignment focus on ac-
celerating only the matrix computation, leaving the trace-
back for a posterior phase. Furthermore, such implementa-
tions only return the alignment score between the two se-
quences and not all the values of matrix G. Therefore, to
obtain the actual alignment, these accelerators force the re-
computation of the entire matrix (using a general purpose
processor) to be able to perform the traceback phase. This
recomputation (and subsequent traceback) is performed in
the cases when the alignment score, calculated by the ac-
celerator, is above a given threshold which is defined by the
user.

The proposed architecture avoids the recomputation of
the entire G matrix by propagating through the PEs, not
only the partial maximum scores in the matrix, but also the
coordinates where such scores had their origin (the begin-
ning of the alignment), together with the coordinates where
the maximum score occurred. As it was shown in Sec-
tion 2.2, this enables the recomputation phase of matrix G
to only focus on the substrings that are actually involved
in the alignment and avoid the recomputation of the whole
matrix G. Thus, the time and memory space requirements
to obtain the sequence alignment are substantially reduced.

To achieve this, an enhanced PE, whose architecture is
presented in Figure 4, was developed with the hardware
necessary to implement the calculation and propagation of
matrix Cb. The datapath that implements this computation
is similar to the datapath of a simple PE. The decision
logic (inside the maximum calculation units - Max) is also
used, in this case, to control the selection units of the Origin
and End Alignment Indexes (OEAI) tracking coordinates.
In each PE, the origin index coordinates, which indicate
where the alignment began, are propagated based on the
conditions shown in Equation 2.

Since only the coordinates of the origin cell need to be
selected alongside with the scores, the PE only incorpo-
rates hardware resources to implement such selection in the
score calculation datapath. Furthermore, since the simple
PEs array is not capable of determining and keep track of
the location of the maximum score cell, additional hard-
ware was also included, in the maximum selection datap-
ath, to support the propagation of the coordinates of the cell
where the maximum value occurred. Within each PE, the
coordinates of the current cell are obtained by using the PE
index (i) and a symbol coordinate ( j) that comes alongside
with the symbol that is at the input of PEi.
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Figure 4: Architecture of PE with OEAI tracking.

3.4. Scalability and Reconfigurability

Whenever the query sequences (S1) to be aligned are
larger than the number of PEs that fit in a FPGA, it is nec-
essary to either reuse or expand the array. Both of these
capabilities are supported by the proposed architecture.

When the array is reused in order to perform the align-
ment with query sequences longer than the number of avail-
able PEs, an additional set of control hardware and memory
are included in the architecture. The added memory is used
to store all the information of a single row of the G ma-
trix (and of the Cb matrix, in case the OEAI tracking func-
tion is used). This enables to compute an entire horizontal
section of the G matrix, which corresponds to aligning a
segment of the query sequence with the entire reference se-
quence. Afterwards, a new segment of the query sequence
is loaded into the PEs and the next horizontal section of the
G matrix is computed. This process is repeated until the
query sequence has ended. With this implementation, the
array limits the size of the reference sequence (m), since
the complete data of a single row of matrix G (m + 1 ele-
ments) must fit in a memory block that is available in the
device (FPGA). Since the available memory blocks inside

this type of devices are usually not large, this capability
is only advised for alignments in which the reference se-
quence is not too long.

To cope with simultaneous long query and reference se-
quences, this architecture also allows to span the array of
PEs over more than one FPGA. This allows to increase the
number of PEs in the array, therefore providing the com-
putation of alignments with longer query sequences and
without constraining the size of the reference sequence to
the amount of available memory inside the FPGA. To im-
plement this capability, relatively small FIFO memories,
which store the outputs of the last PE, are used as buffers
for the communication between the FPGAs and high-speed
communication links are also used to enable a high-speed
connection between the devices (see Figure 5).

Moreover, by taking advantage of the reconfiguration
capabilities of the FPGA, it is possible to generate sys-
tolic array structures that have the number of PEs adapted
to the size of the query and reference sequences that will
be aligned. Therefore, the reconfiguration capability of the
FPGA allows to maximize the obtained performance for a
given set of query sequences.
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Table 5: Obtained results when using a single FPGA with simple PEs.

# PEs Symbol bit-width Score bit-width Occupied Slice
Registers

Occupied Slice
LUTs

Maximum
Frequency

[MHz]

Maximum
Throughput
[GCUPS]

16 2 8 928 (0.4%) 1656 (0.8%) 205 3.2
16 2 16 1456 (0.7%) 2997 (1.4%) 173 2.7

128 2 11 9088 (4.4%) 19653 (9.5%) 201 25.7
256 2 12 19200 (9.3%) 41919 (20.2%) 171 43.8
512 2 13 40448 (19.5%) 88246 (42.6%) 155 79.0

Table 6: Obtained results when using Origin and End Alignment Indexes tracking.

# PEs Score bit-width
Maximum
Reference

size

Maximum
Query size

Occupied Slice
Registers

Occupied Slice
LUTs

Maximum
Frequency

[MHz]

Maximum
Throughput
[GCUPS]

16 8 1024 (210) 16 2309 (1.1%) 2816 (1.4%) 216 3.45
16 16 8192 (213) 16 3156 (1.5%) 5187 (2.5%) 149 2.38

128 11 8192 (213) 16 23732 (11.4%) 39822 (19.2%) 161 20.62
128 11 131×103 (217) 128 28681 (13.8%) 46635 (22.5%) 162 20.72
256 12 134×106 (227) 256 76546 (36.9%) 100489 (48.5%) 147 37.55

���� ����

Figure 5: Array extension.

4. FPGA Results

The previously presented architecture was described us-
ing parameterizable VHDL code and synthesized for a Xil-
inx Virtex-5 FPGA (xc5vlx330t) using Xilinx ISE 9.2.04i.
Initially, only the simple PE architecture was used, in or-
der to evaluate the resource usage and performance of such
array. The obtained results are shown in Table 5

The symbol bit-width represents the number of bits of
the registers that hold the characters to be aligned. Since
the results were obtained with DNA sequences, which are
composed of only four different nucleotides, the charac-
ters can be encoded using only 2 bits. The score bit-width
represents the number of bits of the registers that hold the
score values of G. This resolution is determined accord-
ing to the specific needs of the system and should have a
value that guarantees that no overflows will occur during
the processing of matrix G.

As it would be expected, the results show that the
throughput increases with the number of PEs, despite the
fact that the maximum operating frequency decreases when
the device occupancy increases. The maximum obtained
throughput is 79× 109 CUPS (Cell Updates per Second)
for a configuration with 512 PEs.

4.1. Tracking of the Origin and End Alignment
Indexes

When using the OEAI tracking functionality, the hard-
ware resources spent on each PE are increased, as it can
be seen in Table 6. Therefore, for the same FPGA device,
the maximum number of PEs that may be implemented in
the device is reduced by a factor of 2, which may affect the
throughput when large number of PEs are needed. On the
other hand, when comparing arrays with the same number
of PEs, the array that uses the PEs with the OEAI tracking
functionality has a decrease in performance due to a slight
reduction of the maximum operating frequency (e.g 14%
decrease in maximum throughput for the array with 256 el-
ements). Even so, in application environments where the
FPGA resources are not a constraint, this decrease in peak
performance may be largely compensated by the fact that
the traceback phase of the Smith-Waterman algorithm will
take significantly less time and the memory space require-
ments will be significantly reduced.

As an example, when aligning a query sequence with
200 characters against a reference sequence with 100×103

characters, matrix G will have a dimension of about 20×
106 cells. By considering the scores given in Section 2.1
(a match has a score of 3 and a gap a score of −4), the
maximum alignment size (including gaps) will be approx-
imately 350 characters long (a maximum of 3 gaps can be
inserted between a 4 character set of S1 or S2, thus expand-
ing the size of the alignment by a maximum of 3/4). There-
fore, with the OEAI tracking functionality the maximum
size of the alignment matrix G that needs to be recomputed
during the traceback stage to find the best alignment has a
size of [(200+(3/4)∗200/2)]2 = 76×103 cells, when the
gaps are evenly distributed among the two sequences. This
leads to a 1/264 reduction in the size of the recalculated
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Table 7: FIFO sizes required for array reuse using OEAI
tracking.

Score
bit-width

Maximum
Reference

size

Maximum
Query size

Total FIFO size
(Bytes)

8 1024 16 9,5×103

16 8192 16 104×103

11 8192 16 94×103

11 131×103 128 2.0×106

12 134×106 256 2.8×109

matrix leading to a quite significant decrease of the pro-
cessing time and the involved memory requirements, which
largely compensates the individual PE performance degra-
dation described above.

When using the OEAI functionality, the Maximum Ref-
erence Sequence Size is imposed by the bit-width of the
registers that hold the coordinates for the reference se-
quence. In contrast, the Maximum Query Size is imposed
by the maximum number of PEs that can be accommo-
dated.

4.2. Array reuse

When the reuse of the PEs array is considered to com-
pute alignments with query sequences larger than the num-
ber of PEs, the main concern relates to the amount of mem-
ory required to store all the partial values of an entire row
of the G matrix. Table 7 depicts the amount of memory that
is required for several configurations.

As it can be seen, the memory requirements for align-
ing a query sequence against a reference sequence that has
131× 103 characters requires about 2MB of memory to
hold the values of a single row of G. For even larger refer-
ence sequences, the required amount of memory is so large
that it will not be possible to reuse the array to perform
alignments with query sequences larger than the number of
PEs.

In such situations, it is preferable to use the expansion
method (connecting another FPGA as shown in Figure 5) to
enable fast and unconstrained alignments with large query
sequences.

5. Conclusions

This paper presented a flexible architecture for accel-
erating the SW local sequence alignment algorithm using
FPGAs. It also proposed an innovative method that pro-

vides a significant reduction of the computation time and
memory space requirements of the traceback phase of the
alignment procedure. The results obtained from an im-
plementation of the proposed architecture using a Virtex-
5 FPGA showed that such method is highly feasible in
order to provide significant gains in terms of the overall
performance of the whole alignment procedure. Further-
more, with long reference sequences and when the query
sequences are longer than the number of PEs that can be
accommodated in a device, it was shown that it is prefer-
able to span the array of PEs across multiple FPGA devices
instead of reusing the array. This is mainly a constraint im-
posed due to the limited amount of memory space available
in current FPGAs.
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