
Insertion and Improvement of

Testability Mechanisms on a

Specialized Multimedia IP Core

Technical Report No. 32/2009

Authors: Nuno Sebastião

Nuno Roma

Paulo Flores

Lisbon

May 2009

Abstract

The set of custom validation mechanisms and test structures that were integrated in an

ASIC implementation of a specialized multimedia IP core are presented in this paper.

The dedicated test structures include a custom memory BIST controllers, which are

capable of providing the addresses of all the faulty memory positions, a set of two scan

chains and a JTAG compliant interface. Moreover, dedicated hardware structures were

also proposed and included in the original IP core design, in order to provide extra test

control points that significantly improve the controllability on specific locations of the

circuit. An AT91SAM9263-EK board was used as an ATE equipment which required the

development of dedicated software to support the STIL format for test vector generation.

The obtained results demonstrated that the original circuit test coverage may be increased

by a factor of 11.6, due to the use of scan chains and additional test control points

placed at specific locations within the IP core. Moreover, the corresponding test pattern

generation time was reduced by a factor of 1560 when these test structures were used.

Despite the complexity of the circuit, the obtained results also show that the entire ASIC

can be tested in less than 70ms (using a 100MHz clock).

Keywords:

• IP Core Test;

• Scan Chains;

• BIST;

• JTAG;

i

ii

Contents

1 Introduction 1

2 Motion estimator architecture 3

3 IP Core test structures 5

3.1 Scan chains and test pattern generation 6

3.2 Memory test . 7

3.3 Embedded JTAG controller . 10

4 Video coding and test platforms 11

5 Experimental results 15

6 Conclusions 19

References 21

iii

iv Contents

List of Figures

2.1 Architecture of the ASIP proposed in [2] with the included test control

points. 4

3.1 ASIC interface, including the test dedicated I/Os. 5

3.2 Architecture of the memory Built-In Self Test (BIST) controller. 9

4.1 Video encoding system. 11

4.2 Development board. 12

5.1 Implemented prototype of the ME ASIP in an ASIC based on the UMC

0.18µm CMOS process. 15

v

vi List of Figures

List of Tables

5.1 Implementation results of the motion estimator using the UMC 0.18µm

CMOS ASIC. 16

5.2 Test results of the implemented Application Specific Integrated Circuit

(ASIC). 16

vii

viii List of Tables

Chapter 1

Introduction

In the last few years there has been a growing trend to design very complex processing

systems by integrating pre-designed IP cores which implement, in a particularly efficient

way, certain specific and critical parts of the main system. These IP cores can either be

used to implement specific and dedicated processing structures that are integrated with

other larger scale modules in the form of co-processors, or used as autonomous processing

architectures, by following a System-on-Chip (SoC) approach.

One of such modules that has deserved a particular attention in the scope of digital

video coding is the motion estimator. The task of this block is often regarded as one of the

most important operations in video coding to exploit temporal redundancies in sequences

of images, and it usually involves most of the computational cost of these systems [1]. As

a consequence, real-time Motion Estimation (ME) is usually only achievable by adopting

specialized and highly optimized VLSI structures. One example of a particularly efficient

IP core that implements an Application Specific Instruction Set Processor (ASIP) for

data-adaptive ME has been recently proposed [2]. This core includes efficient units for

data processing and a set of embedded memories for local caching of the image pixels and

of the program code to be executed. For an effective validation of this IP core regarding

the performance, resource usage and power consumption, we have implemented it in an

ASIC. Note that this type of implementation is the most suitable to be integrated in

mass-production consumer products, such as mobile devices.

Nowadays, it is widely accepted that test structures need to be considered and in-

cluded in the design of most ASICs, in order to account for eventual defects and errors

that may occur during the fabrication. Due to the increased complexity of VLSI circuits,

it is often not possible to effectively test the circuit without dedicated hardware struc-

tures included in the chip, especially in circuits that include memories and complex state

machines. In the particular case of the considered ME processor, a subset of the test-

ing methodologies which are frequently adopted in synchronous sequential circuits was

1

2 Introduction

adopted and applied [3]. Such techniques make use of memory elements in the circuit to

build dedicated test structures that provide an improved ability to control and observe

the logic values at the circuit’s internal nodes. Moreover, additional dedicated hardware

for test had to be included in specific locations of the circuit which presented a reduced

controllability. This required the knowledge of the IP core architecture and a detailed

analysis of the fault coverage results.

To further improve the quality of the test and to provide the ability to test the circuit

outside its production environment, a dedicated Built-In Self Test (BIST) was designed

and implemented. This type of structures allow to test the circuit without special external

equipment and without the need to remove the circuit from the target system. Moreover,

the considered BIST was designed to allow the test of some critical parts of the circuit

at nominal clock speed, while some other test techniques often only allow the circuit to

be tested at lower clock frequencies.

Among the several elements that may exist in an circuit, embedded memories have the

most complex fault models [4]. Nevertheless, they can be efficiently tested by adopting a

BIST approach. As a consequence, a custom memory BIST controller architecture and

the respective march test were developed, not only to test the embedded SRAMs, but

also to allow the listing of all faulty addresses.

This report is organized as follows: In chapter 2, the architecture of the implemented

ME processor is presented. In chapter 3 it is presented the set of test structures that were

added to the core processor in order to improve its testability after fabrication. These

structures include a BIST controller, to test the embedded memories, a set of test control

points, a set of scan chains and a JTAG interface. Chapter 4 presents the testing platform

that was used to validate the fabricated circuit. In chapter 5, before the conclusions, the

experimental results of the implemented circuit are presented and an analysis, from a test

prespective, is performed.

Chapter 2

Motion estimator architecture

The programmable and specialized architecture for ME proposed in [2] was tailored to

efficiently program and implement a broad class of powerful, fast and/or adaptive ME

search algorithms. The offered flexibility is attained by adopting a simple and efficient

micro-architecture, illustrated in Fig. 2.1, whose modular structure is composed by opti-

mized units that support a minimum and specialized instruction set. This data-path is

also developed around a specialized arithmetic unit that efficiently computes the Sum of

Absolute Differences (SAD) similarity function. Furthermore, a quite simple and hard-

wired control unit is used to generate all the required control signals [2].

The Instruction Set Architecture (ISA) of the implemented ASIP was designed to

meet the requirements of most ME algorithms, including some recent approaches that

adopt irregular and random search patterns, such as the data-adaptive ones. Such ISA is

based on a register-register architecture and provides a quite reduced number of different

instructions (eight), that focus on the set of operations that are widely used in most

ME algorithms [2]. The instructions directly operate the values stored in a register file

composed by 24 General Purpose Registers (GPRs) and 8 Special Purpose Registers

(SPRs), capable of storing one 16-bit word each.

The processor data-path, depicted in Fig. 2.1, includes two specialized units to in-

crease the efficiency of the most complex and specific operations: an Address Generation

Unit (AGU) and a SAD Unit (SADU). The LD operation is efficiently executed by the

AGU, which is capable of fetching all the pixels of either the reference macroblock (MB)

or of the corresponding search area (SA). The SAD16 graphics instruction is efficiently

implemented by the SADU. The processor includes two local scratch-pad SRAM memo-

ries for caching the pixels that are used during the computation of the Sum of Absolute

Differences (the SA and the MB pixels). Both memories are dual-port 8-bit word SRAMs

but with different capacities: 2048 words for the SA memory and 512 words for the MB

memory. The processor also includes a program memory that holds the code to be ex-

3

4 Motion estimator architecture

MB
RAM

SA
RAM

AGU

RAM
(Firmware)

IF

SADU

ID

FLAGS Register File

ALU

D
Q

D
Q

D
Q

(TP1)

(TP3)(TP2)

Figure 2.1: Architecture of the ASIP proposed in [2] with the included test control
points.

ecuted (firmware). This memory is a single-port SRAM with 1024 16-bit byte-writable

words. More detailed information about this processor architecture, including the de-

scription of its functional interface, can be found in [2].

Chapter 3

IP Core test structures

Although dedicated test structures are usually necessary in most of todays VLSI circuits,

the added cost of using them must always be considered, since they increase the circuit

area, may introduce a negative impact in the circuit’s timing and require additional

circuit pins. As a consequence, the specific test structures and mechanisms that were

adopted in the circuit had to be carefully selected, by taking into account the particular

characteristics of the considered ME processor, in particular, the circuit’s datapath and

the several memory devices that are tightly coupled with the processor structure.

The following sections describe the methodologies that were used to improve the

processor’s testability, namely the implementation of the scan chains and the generation

of the respective test patterns, the design of the custom memory BIST controller and of

Motion Estimation
Co-processor

data

addr

#oe_we

8

20

done / bistend

req / bistrslt

gnt / bistgo

clk

en

rst

tck trst tms tdi tdo

test_mode

test_se1

test_se2 test_so1

test_so2test_si

TAP

Figure 3.1: ASIC interface, including the test dedicated I/Os.

5

6 IP Core test structures

the JTAG controller. In Fig. 3.1 it is represented the external interface of the implemented

multimedia IP core, which includes the dedicated I/O ports that were introduced for

testing purposes (represented in italic). The set of adopted methodologies that were

applied to improve the testability of this ASIC, namely, the implementation of the scan

chains and the generation of the respective test patterns, the design of the custom memory

BIST controller and of the JTAG controller are presented in the following subsections.

3.1 Scan chains and test pattern generation

It is widely known that the effort to control and observe an internal circuit node in a

sequential circuit is significantly greater than in pure combinational circuits, due to the

presence of memory elements. One common strategy to simplify the delivery of the test

patterns is to rearrange, at test time, the connection between these memory elements in

order to obtain a scan chain. To implement it, the ordinary flip-flops that were used in

the design have to be replaced by scan-type flip-flops, which provide additional inputs

that enable them to either function in normal mode or in test mode [3].

The addition of these scan chains and of the corresponding scan flip-flops increases the

circuit area, the power consumption and may still have impact on circuit timing, due to

the additional logic elements. As a consequence, different scan styles may be adopted [3],

differing in the cost of the penalty incurred in each of these factors and in the complexity

of generating the corresponding test control signals. The selection of the particular scan

style adopted in the implemented circuit was not only dependent on previously mentioned

constraints [3], but was also limited by the availability of the required scan flip-flops in

the adopted standard cell library [5]. Since only multiplexed scan flip-flops are available,

the multiplexed flip-flop scan style was the only alternative to implement the scan chains

in this circuit.

Moreover, due to the presence of unregistered outputs in the memory blocks, the orig-

inal circuit had to be modified in order to improve its fault coverage. Such modifications

considered the inclusion of additional hardware (flip-flops and multiplexers) in order to

provide a direct control of the memory output signals (TP1, TP2 and TP3 in Fig. 2.1). By

including these internal test control points, the controllability of these signals, which are

directly connected to combinational logic (e.g. instruction decoder), is greatly increased,

therefore achieving a higher fault coverage.

The implemented circuit considered the inclusion of two distinct scan chains. One

scan chain allows the extraction of the faulty addresses from the memory BIST controllers

(described in section 3.2). It includes the address registers of the three memory BIST

3.2 Memory test 7

controllers and is composed of 30 flip-flops. The other scan chain includes the remaining

flip-flops in the design (752 flip-flops) and the test dedicated flip-flops, used to control the

memory output signals (64 flip-flops). These two chains are controlled with the following

signals: the test mode signal, which drives the control inputs of the flip-flops (set and

reset) into a non-active state and that must be set high during the entire test procedure;

the test se1 and test se2 signals, that control how the circuit’s flip-flops of the first and

second scan chains, respectively, are connected; the test si signal, that is used to input

data to both scan chains; and the test so1 and test so2 signals, the outputs of the first

and of the second scan chains, respectively.

The generation of the test patterns was carried out by an Automatic Test Pattern

Generation (ATPG) tool considering the Single Stuck-at Fault (SSF) model. The adop-

tion of the SSF model on the considered ME circuit arised from its wide range of appli-

cability, its technology independence and the wide support among the industry. In the

considered case, the used ATPG tool was the Synopsys TetraMAX.

3.2 Memory test

To test the fabrication of the three processor memories, the following march test was

defined.
{

⇑(w55h);⇑(r55h,wAAh);⇑(rAAh,w55h);⇓(r55h,wAAh);⇓(rAAh;w55h);

⇑(r55h); ⇑(w00h);⇑(r00h,wFFh);⇓(rFFh;w00h);⇑(r00h)
}

Each ascending (⇑) or descending(⇓) march element comprises a finite sequence of read(r)

or write(w) operations, that are repeated in each memory cell in the corresponding as-

cending or descending address order. The faults that may exist are detected in the read

operations, when the obtained values are compared against the values defined in the

march element. Since the memory devices included in the considered processor are byte

oriented, the values to be read or written are represented as bytes in hexadecimal base.

As an example, the ⇑(r55h,wAAh) march element means: in ascending address order,

read from the addressed memory position the byte value 0x55 and write, to the same

memory position, the 0xAA value. When the memory positions are larger than a byte,

the pattern is simply replicated to the other bytes.

The selection of this particular march test arises from its ability to detect all transition

faults, all stuck-at faults and all address decoding faults. Additionaly, this test is also

capable of detecting some coupling faults and state coupling faults [6, 7].

To guarantee that the implemented march test allows at-speed memory testing and

also that it provides more information from the test procedure than a simple good/defect

response, a custom dedicated memory BIST controller was designed. The test that is

8 IP Core test structures

implemented by this controller is conducted by comparing the values that are read from

the memory with those expected to be stored at the various memory cells. In case of a

mismatch, the BIST controller will signal the detection of a fault and will stop its oper-

ation. Then, by using a proper shift register, the controller has the capability to serially

shift out the address of the failing cell. Furthermore, the controller also has the capability

to resume the test sequence (from the failed address), in order to complete the remain-

ing test procedure. In prototyping environments, this feature provides the advantage of

returning more information than a mere good/defect test result. The designer can then

use this information to circumvent such fault and still allow the operation of a partially

defective circuit. As an example, if a program memory cell is defective, the designer may

write an assembly code that avoids that particular address, thus making it possible to

use the remaining circuit.

Since the program memory of the implemented ASIC provides a byte-write capability

(individual write to each byte of the 16 bit words), the developed BIST controller also

provides support to test this feature. Furthermore, it also provides the capability to test

the address decoding logic of both ports of the SA and MB memories (dual-port SRAMs).

The architecture of the implemented memory BIST controller is shown in Fig. 3.2.

This controller is composed by one comparator for error detection (with one of its inputs

registered), an up/down counter for sequential address generation and a shift register for

byte-write enable signal generation. The controller’s state machine comprises 31 states

and is responsible for implementing the defined march test. The controller interface to

the outer circuitry includes three input control signals and two output result signals.

The set of input control signals include the enable (bisten), the reset (bistrst) and the

start/resume test sequence (bistgo). The set of output result signals indicate a detected

fault (bistrslt) and the end-of-test sequence (bistend).

While the test procedure is being performed, the controller’s enable signal (bisten) is

high. Nevertheless, to actually start the test sequence, the bistgo signal must be asserted

high during one clock cycle. The bistrslt signal indicates the test result (logic value 0 if

no error was detected; logic value 1 if an error was detected), while the bistend signal

indicates the end of the test sequence. If no error is detected, the bistend signal is set

high and the bistrslt signal will remain low. In the event of an error is detected during

the test sequence, the bistrslt signal will be set to high, while the bistend signal remains

low, and the controller will enter into a pause state. At this state, the controller will

wait for the activation of the bistgo signal, indicating that the result has been read and

the memory address has been shifted out (if desired by the user) through the previously

described scan chain. The test sequence may then be resumed. The controller also

3.2 Memory test 9

State Machine
bisten
bistrst

N
2

M

DIR

RST
EN

Comparator

Register
EN

N

bistctr_dout

bistctr_din
N

N

bistwen

bistend bistrslt

bistbwen bistaddrto memory
to memory

from memory

bistgo

EN

RST

bisten

DIN

Up/Down Counter

Shift Register

Figure 3.2: Architecture of the memory BIST controller.

includes additional output signals to address the memory (bistaddr), to set the memory

data inputs (bistctr dout) and to control the memory write enable signals (bistbwen and

bistwen). The bistctr din input of the BIST controller is driven by the memory data

output.

Considering that the three memory blocks that are embedded in the processor ar-

chitecture have distinct configurations, it was decided to implement a dedicated BIST

controller for each block. Such approach was adopted not only because there was enough

space available in the die, but also because it allowed to reduce the timing penalty, the

routing congestion and the individual complexity of each BIST controller.

To reduce the number of required pins to operate the test structures, several control

inputs (except for the enable signal) and outputs of the three BIST controllers were

multiplexed. Moreover, since the memory test is only triggered on-demand and with the

rest of the circuit inactive, the control inputs for the memory BIST controllers were also

multiplexed with the circuit’s functional inputs. This is the case of the bistgo, bistrslt

and bistend signals, which share the I/O pin with the processor’s GNT, REQ and DONE

signals, respectively. The bisten signal of each BIST controller is asserted using the Joint

Test Action Group (JTAG) compatible interface, described in section 3.3. This strategy

reduces the number of required pins, from 15 (if each of the controllers had independent

control pins) to none (when using pin sharing and the JTAG interface), and simplifies

the operation of the memory BIST controllers.

10 IP Core test structures

3.3 Embedded JTAG controller

To provide the processor with a standard test interface, as well as to allow the test of

the implemented processor’s interconnections at board level, an IEEE 1149.1 [8] (JTAG)

compliant interface was included. This interface comprises a Test Access Port (TAP)

controller and a boundary scan register.

As described in the IEEE 1149.1 standard [8], the TAP includes the following con-

nections: Test Clock Input (tck), Test Mode Select (tms), Test Data Input (tdi) and Test

Data Output (tdo). Since a power-up reset of the test logic structures is not performed in-

side the chip, a Test Reset (trst) connection is also made available. A detailed description

of the TAP module and of its inputs and outputs can be found in [8].

In the considered ME processor, the TAP controller was implemented using a 4 bit

width instruction register, thus providing the possibility to encode up to 16 instructions.

According to the IEEE standard [8], the implementation of the BYPASS, EXTEST and

SAMPLE/PRELOAD instructions is mandatory. Additionally, this standard only speci-

fies the encoding of the BYPASS instruction (0xF for the defined instruction width) while

all of the remaining instructions have implementation-specific encoding. Other optional

instructions, defined in the standard, were also implemented, such as the HIGHZ and

the IDCODE. The HIGHZ instruction is quite useful in the scope of the implemented

ASIC, since this processor has a three-state bidirectional bus that may be connected to a

shared system bus. Therefore, this instruction allows the output drivers of the circuit to

be placed at high impedance, allowing the testing of other devices also connected to the

same system bus. The IDCODE instruction allows the device to be identified in a larger

system and to check the current version of the circuit. Besides these pre-defined instruc-

tions, the presented design also implements three additional user-specified instructions

that enable the memory BIST controllers. These instructions are the SELECTSAMEM,

the SELECTMBMEM, and the SELECTINSTMEM, which assert the signals that are

required to enable the memory BIST controllers for the search area, the macroblock and

the program memories, respectively. Therefore, with these instructions it is possible to

activate the memory test without the need for additional package pins, as it was described

in section 3.2.

Chapter 4

Video coding and test platforms

To validate the manufactured processor after fabrication, the implemented ASIP was

included in a prototyping platform which implements a complete H.264 video encoding

system, as shown in Fig. 4.1. This same platform was also used to implement the testing

system.

Motion Estimation
Co-processor

(ASIC)

data

addr

#oe_we

data

addr

reqgnt
gntreq

done

Memory
Controller

General
Purpose

Processor

(ARM926EJ-S)

Frame
Memory

enrst

8

20

Figure 4.1: Video encoding system.

To implement this prototyping video encoder and test platform, an AT91SAM9263-

EK evaluation kit [9], from ATMEL, was adopted. This development board includes

an AT91SAM9263 micro-controller, based on the ARM926EJ-S processor, capable of

running up to 240MHz. This board has also an extensive set of peripherals for control,

communication and data storage purposes. Figure 4.2 shows the development board with

the fabricated ASIC (on the center of the picture) connected in an interface board.

When used as a video encoding platform, the ARM926EJ-S processor executes all the

11

12 Video coding and test platforms

Figure 4.2: Development board.

video encoder operations, except for the ones concerning the ME task. The ME operations

are executed by the manufactured ASIC, acting as a specialized co-processor of the main

processing unit of the video encoder. This ME co-processor computes, in parallel with

the other video coding operations, the several motion vectors that are required by the

encoder to implement the video temporal prediction mechanism.

On the other hand, when used as a testing platform, the ARM926EJ-S processor

executes the procedures of an Automatic Test Equipment (ATE). It implements the

several test sequences, by driving the circuit inputs and by validating its responses. The

AT91SAM9263 microcontroller is also able to drive the JTAG interface of the imple-

mented processor, making it possible to validate the correct implementation of the TAP

controller and to allow the access to the memory BIST functions.

Since the patterns generated by the ATPG tool (Synopsys TetraMAX) were exported

in the Standard Test Interface Language (STIL) format, a custom interpreter was also

developed in order to adapt the STIL format and to generate the appropriate code to be

used by the implemented test platform.

In fact, the STIL format test vector data is represented in such a way that the file size

is minimized. However, the interpretation of this format at runtime imposes a significant

computational overhead on the ARM processor. Therefore, the test vector data provided

by the STIL file is pre-processed and converted, by the interpreter, to another format

13

that requires a reduced computational overhead, at runtime, thus minimizing the time

required to apply the test vectors.

This STIL format interpreter was developed using the PERL language and generates

two files to be used by the test platform: a file containing the C source code to be executed

by the ARM processor, including the timing information present in the STIL file; and a

data file, to be loaded by the program, that contains the test vector data including the

inputs of the circuit and the expected output values.

14 Video coding and test platforms

Chapter 5

Experimental results

The implemented ME ASIC, whose final layout is presented in Fig. 5.1, was manufac-

tured under the mini@SIC program from EUROPRACTICE, using a StdCell library

from Faraday Technology, based on a 0.18µm CMOS process from UMC, with 1 poly and

6 metal layers (UMC L180 1P6M MM/RFCMOS) [5]. Table 5.1 presents the obtained

implementation results. These results show that the processor IP core implementation

(including the test structures but excluding the program and the two pixel local mem-

ories) requires 42k equivalent logic gates (but 112k equivalent logic gates are required

to implement the whole processor) and may be operated at a maximum frequency of

140MHz. This allows the computation of motion vectors in real-time, for most current

video coding applications.

The results related to the test structures in the implemented ASIC are summarized

in Table 5.2. It can be seen that the fault coverage that would be obtained if no test

Figure 5.1: Implemented prototype of the ME ASIP in an ASIC based on the UMC
0.18µm CMOS process.

15

16 Experimental results

Table 5.1: Implementation results of the motion estimator using the UMC 0.18µm
CMOS ASIC.

Silicon Area / Equivalent Logic Gates

IP Core 0.25 mm2 / 26 kGates

Memory Test Controllers 0.007 mm2 / 0.7 kGates

Scan Chains Overhead 0.003 mm2 / 0.3 kGates

Test Control Points 0.012 mm2 / 1.2 kGates

JTAG TAP Controller 0.14 mm2 / 14 kGates

Memories 0.68 mm2 / 70 kGates

structures were included in the design is of only 8% for the core logic (not including the

memories nor the TAP controller). Moreover, it is interesting to note that by applying a

simple naive approach, that merely replaces the original IP core flip-flops with scan flip-

flops, the ATPG tool achieved a fault coverage of 82% and generated 912 test patterns.

In constrast, by considering the inclusion of the additional test control points (TP1, TP2

and TP3 as described in section 3.1 and illustrated in Fig. 2.1) in order to provide a

direct control of the memories output signals, the ATPG tool increased the number of

test patterns to 1286, leading to a significantly more satisfactory fault coverage of 93%.

Furthermore, the time required by TetraMAX to generate the test patterns was just 10

minutes when the scan chains with the proposed test control points were included. This

represents a significant improvement over the 18 hours required to generate them when

these test control points were not used. If no test structures were included, it would take

260 hours to generate the test patterns.

The generated 1286 test patterns require approximately 6 million ATE clock cycles

to be delivered to the processor. This represents a total testing time of about 60ms for

the core logic, when using an ATE clock period of 10ns. The memory BIST controllers

Table 5.2: Test results of the implemented ASIC.

w/o test
structs

w/ test structs
w/o test points

w/ test structs w/
test points

test patterns - 912 1286

Test coverage 8% 82% 93%

Test pattern
260 hours 18 hours 10 minutes

generation time

17

require approximately 645µs to test the three memory blocks using the same clock period

(about 85µs for the MB memory, 330µs for the SA memory and 230µs for the program

memory).

The implementation areas, presented in Table 5.1, also show that the additional logic

required by the scan chains (1.2% area increase) and by the memory BIST controllers

(2.8% area increase) has a relatively small cost in terms of hardware resources. When con-

sidering the JTAG controller, the area increase is quite significant, although the relative

impact may be mitigated in larger designs. Nevertheless, the JTAG TAP controller was

still considered for implementation in this circuit, allowing the board level interconnec-

tion test procedure when included in the final system. Moreover, the implementation of

this controller avoided the usage of dedicated circuit pins to control the internal memory

BIST controllers, which also reduced the circuit implementation cost.

18 Experimental results

Chapter 6

Conclusions

This report presented a set of custom validation mechanisms and test structures that

were integrated in the ASIC implementation of a specialized IP core for adaptive motion

estimation. Some required changes to the original IP core design were also presented in

order to significantly increase its testability. To provide the processor with a standard test

interface, which allows the test at board level, a JTAG controller was also included. The

circuit with the proposed test structures was implemented using a StdCell library based

on a 0.18µm CMOS process. According to the obtained results, the inclusion of scan

chains and of additional test control points at specific locations on this specialized circuit

increased the test coverage of the ASIC by a factor of 11.6 and reduced the corresponding

time to generate the test patterns by a factor of 1560, without significantly increasing

the required silicon area. As a consequence, the improvements that were obtained by

considering the described test structures entirely justify their inclusion on this ASIC.

Moreover, they also allowed to conduct the test of the circuit and its validation using the

development platform as an automatic test equipment.

19

20 Conclusions

References 21

References

[1] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Al-

gorithms and Architectures, 2nd ed. Kluwer Acad. Publish., Jun. 1997.

[2] T. Dias, S. Momcilovic, N. Roma, and L. Sousa, “Adaptive motion estimator for

autonomous video devices,” EURASIP J. on Embedded Systems, 2007.

[3] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and

Testable Design. COMPUTER SCIENCE PRESS, 1990.

[4] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing for Digital, Mem-

ory, and Mixed-Signal VLSI Circuits. Kluwer Academic Publishers, 2000.

[5] Faraday ASIC Cell Library FSA0A C 0.18µm Standard Cell (v1.0), Faraday Techn.

Corp., August 2004.

[6] A. J. van de Goor and I. B. S. Tlili, “March tests for word-oriented memories,” in

DATE ’98: Proceedings of the conference on Design, automation and test in Europe.

Washington, DC, USA: IEEE Computer Society, 1998, pp. 501–509.

[7] A. van de Goor and S. Hamdioui, “Fault models and tests for two-port memories,”

VLSI Test Symposium, 1998. Proceedings. 16th IEEE, pp. 401–410, Apr 1998.

[8] IEEE 1149.1-2001 - Standard Test Access Port and Boundary-Scan Architecture,

IEEE, June 2001.

[9] AT91SAM9263-EK Evaluation Board - User Guide, ATMEL Corporation, March

2007.

