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Abstract—Compressed indexes are adopted by a vast set
of bioinformatics applications that deal with extremely large
datasets, mainly due to the inherently high memory requirements
of uncompressed alternatives. However, the additional computa-
tional overhead that is imposed by the usage of such indexes
makes them harder to implement in embedded computational
platforms, such as biochips, with strict processing and power
restrictions. Furthermore, compressed indexes are often char-
acterized by a significant usage of bit-level operations, some of
which are not commonly available on General Purpose Processors
(GPPs). To circumvent this limitation, an Application-Specific
Instruction-set Processor (ASIP) architecture is proposed to
accelerate the processing of biological sequences (e.g., alignment,
mapping, etc.) using compressed full-text indexes based on the
Burrows-Wheeler Transform (BWT). The proposed processor
was built over a RISC micro-architecture and extends the Xilinx
MicroBlaze ISA with additional bit-level operations, especially
tailored for compressed indexes. When used to perform search
operations over the considered compressed index, the proposed
architecture provides a reduction of the number of required
instructions by about one half. Furthermore, when prototyped
on a Xilinx Virtex-7 FPGA, the ASIP proved to offer an overall
speedup between 3.1x and 4.5x for the execution of a single
threaded operation. To ensure a further processing scalability,
the proposed ASIP was designed in order to be easily used as
the basic processing unit of multi-core systems, especially tuned
for the parallel processing of massive datasets of biological reads.

Keywords—Application-Specific Instruction-Set Processor,
Compressed text indexes, DNA alignment, Heuristic algorithms

I. INTRODUCTION

In bioinformatics, most high performance sequence align-
ment tools make use of heuristic algorithms that rely on fast
exact string matching operations [1], [2]. These tools typically
implement the matching operation using full-text indexes that
present extremely high space requirements, which may even
be prohibitive if not adequately designed (20x the size of the
original text [3]). Such space amount not only poses difficult
challenges for accommodating it in persistent memory but it
also cannot be completely loaded into the main memory of a
typical embedded system, thus imposing a high penalty on the
index access time.

This work was partially supported by national funds through Fundação
para a Ciência e a Tecnologia (FCT) under project HELIX (Ref. PTDC/EEA-
ELC/113999/2009), project THREadS (Ref. PTDC/EEA-ELC/117329/2010)
and project PEst-OE/EEI/LA0021/2013.

To overcome these space limitations, the usage of compres-
sion techniques to store the index is an important requirement
when dealing with very large reference texts. One of such
compressed indexes, with particular interest in bioinformat-
ics [1], [2], [4], [5], is the FM-index [6], based on the
Burrows-Wheeler Transform (BWT), and which can make
use of several compression techniques, such as move-to-front
transform, run-length encoding, variable-length prefix coding
and wavelet trees. However, the added complexity that is
imposed by the adopted compression techniques often requires
some additional processing time to access the data in the
compressed format.

Most of the research efforts that have been devised to
optimize index based applications have focused on increas-
ing the performance of the compression phase, since it is
usually the most critical and time consuming phase in non-
bioinformatics applications. In this scope, [7] and [8] describe
completely custom hardware solutions to accelerate the widely
known BWT-based bzip compression utility. However, none of
these solutions can be used during the decompression, which
becomes critical when the number of searches is very large
and must be performed with a small execution time.

On the contrary, the decompression phase is widely used in
the scope of a vast number of bioinformatics applications. In
this particular domain, the very high computational workload
that is involved is mainly due to the massive datasets that are
commonly dealt in this field (e.g. when mapping an entire
genome, the amount of characters to be searched for in a
single mapping operation can be over 10 times the amount
of characters in the index). Therefore, efficient decompression
and search over the index structure should also be attained, as
the amount of search operations is extremely high.

In [9], a hardware implementation of the search operation
over the FM-index was proposed. Nevertheless, despite being
an extremely efficient implementation, it uses the FM-index in
an uncompressed format, thus not being targeted to applica-
tions that require the more space efficient versions of the index.
In fact, due to the extra processing cost to decompress the
data, many software tools implemented in common General
Purpose Processors (GPPs) [1], [2], [4], [5] are unable to
take advantage of a compressed index, commonly resorting
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to sampling of the index data, in order to reduce the space
cost. Nevertheless, this technique also leads to an increase of
the processing time as it becomes necessary to reconstitute the
index data at runtime.

Accessing information in compressed indexes typically
makes use of bit-level operations, for which common GPPs
are not adequately tuned, thus presenting a high processing
time. To circumvent this limitation, the usage of special-
ized structures that increase the execution efficiency of these
operations is highly recommended. Furthermore, the advent
of self-contained, portable and battery powered biological
analysis systems, with strict power and energy constraints,
requires the design of novel processing systems with both
reduced power consumption and a high energy efficiency.
These constraints may be met by using efficient structures
that range from completely custom and non-programmable
dedicated solutions with reduced flexibility [9], to specialized
but still highly programmable solutions, based on Application
Specific Instruction-set Processors (ASIPs).

In this context, an innovative ASIP architecture that is
capable of reducing the processing time of massive string
search operations based on compressed index structures is
proposed. This ASIP was specifically evaluated in the bioinfor-
matics application domain, which commonly deals with very
large datasets. To attain this objective, the proposed ASIP
makes use of a new instruction-set extension that includes
dedicated instructions for bit-level operations. Furthermore,
the proposed ASIP architecture is based on an efficient RISC
micro-architecture that includes a comprehensive set of highly
optimized functional units that were specifically developed to
implement the new instructions. Moreover, to ensure a high
degree of processing scalability, the design of the proposed
ASIP considered the possibility to use it as the basic process-
ing unit in a multi-core system, especially tuned for the parallel
processing of massive datasets of biological short reads.

II. COMPRESSED INDEXES

Among the several index structures that have been proposed,
a specific and prominent case-study will be particularly con-
sidered in this paper: the FM-index [6]. This index has been
recognized as one of the most efficient in the bioinformatics
domain and it has been used in several publicly available
software tools. Nevertheless, the proposed ASIP architecture
can equally be applied to accelerate the search based on
other commonly used structures that benefit from similar
compression methods, with entirely equivalent results.

The FM-index is based on the BWT [10] of the original
text and on a specific directory information (Occ(c, i)) that
allows searching a given pattern over the text in linear time.
The BWT alone can be used to reconstruct the original text
and to perform the search operations. However, this requires
a large computational effort, due to the last-to-first mapping
method [10] used to navigate through the BWT. To reduce this
computational complexity, the Occ table (part of the directory)

contains information that allows to easily jump to the next
position in the BWT. For each position i of the BWT, this table
holds integer values that represent the number of occurrences
of each alphabet symbol c in the substring BWT(S)[0..i]
(additional details can be found in [6]).

An example of the index data structure is presented in Fig. 1,
for the reference text string BWT(S) = “ACGGTTAT′′ (the
terminator ’$’ is concatenated to the end of the text). Fig. 1(a)
represents the BWT of this text (BWT(S)) while Fig. 1(b)
illustrates the Occ(c, i) table. Considering a Deoxyribonucleic
Acid (DNA) sequence with 4 alphabet symbols, if the Occ
table is stored in an uncompressed form, it may require as
much as 20 times more space than the BWT itself (assuming
that a character occupies 8 bits and an integer 32 bits).

To reduce the space occupied by the index data, especially
the Occ table, several methods can be employed. A tradeoff
between time and space complexity must always be considered
when choosing a compression method. Among the various
possibilities, a particularly interesting method that allows for
a medium level of compression uses bit vectors to directly
represent the data in the Occ table.

Accordingly, the bit-vectors of Occ(c, i) (BV Occ(c, 0..i))
represent the positions in the BWT[0..i] prefix where the
corresponding symbol c occurs. As an example, if the
BV Occ(c, j) bit is set, then symbol c occurs at BWT[j].
Hence, Occ(c, j) = Occ(c, j − 1) + 1. More generally,
Occ(c, j) is calculated by counting the number of set bits in
the bit-vector from that symbol up to position j. In terms
of computational requirements, the use of this compression
strategy requires the efficient calculation of the number of set
bits in a given vector.

Hence, if one considers the existence of an auxiliary
function, BitCount(b), that returns the number of bits that
are set in the input bit-vector b, it is possible to calculate
the occurrences of c in BWT[0..j] by simply computing
Occ(c, j) = BitCount(BV Occ(c, 0..j)). However, the appli-
cation of this BitCount function to compute BV Occ(c, 0..j)
may require accessing a large number of memory locations
(those covering the range from position 0 to position j of
the bit-vector). To circumvent this limitation, the BitCount
function should operate at a granularity corresponding to the
size of the processor word (e.g. 32 bits) and the used index
should also sample the values of Occ(c, i) at regular intervals

BWT(T ) = T$TACGATG
(a) BWT of the reference text S.

BWT(T ) T $ T A C G A T G
Occ(c, i) 0 1 2 3 4 5 6 7 8

$ 0 1 1 1 1 1 1 1 1
A 0 0 0 1 1 1 2 2 2
C 0 0 0 0 1 1 1 1 1
G 0 0 0 0 0 1 1 1 2
T 1 1 2 2 2 2 2 3 3

(b) Table Occ(c, i).
Figure 1. Example of a FM-index data structure (BWT and directory) for
the reference text S=“ACGGTTAT”.
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BV Occ(c, i) T $ T A C G A T G
$ 0 1 0 0 0 0 0 0 0
A 0 0 0 1 0 0 1 0 0
C 0 0 0 0 1 0 0 0 0
G 0 0 0 0 0 1 0 0 1
T 1 0 1 0 0 0 0 1 0

Occ(c, k ∗ l)
$ 0 1 1
A 0 1 2
C 0 1 1
G 0 0 2
T 1 2 3

Figure 2. Example of the used FM-index compression (BWT and directory)
for the text S=“ACGGTTAT” using a subsampling interval of 4 positions for
the Occ (note that BV Occ is represented at the bit level).

101001011

0010 11010

01

T$TACGATG

{$,A,C} {G,T}

{$,A} {C} {G} {T}

Figure 3. Wavelet tree representation of the BWT(T )=T$TACGATG.

of size k. Therefore, the desired computation simply becomes
Occ(c, j) = Occ(c, j/k)+BitCount(BV Occ(c, j/k+1..j)).
Fig. 2 illustrates this data structure on a compressed index
using the described strategy.

Another efficient compression method makes use of wavelet
trees to represent the data of the BWT. A wavelet tree is a
specialized data structure that to represent strings, by recur-
sively partitioning the alphabet and storing, at each node, the
locations where each character of the alphabet subset occurs.
Just like the previously described Occ directory, bit vectors
are also widely used in this data structure. An example of this
tree is given in Fig. 3 for the BWT string “T$TACGATG”. At
each node of this tree, the alphabet is divided into the right
and left subsets and the bitvector at the corresponding node
represents which characters belong to the right or left subsets.
The information that is stored only pertains the bitvectors (the
remaining data that is shown in Fig. 3 is only for illustrative
purposes). The data in this structure presents some similarities
with the data stored in the Occ table, thus allowing to calculate
the Occ values. In this case, determining Occ(c, i) requires
to navigate the tree to the lowest node that represents the
character c and count the number of bits in such bitvector
that correspond to character c (0’s or 1’s). However, to reach
such node it is also necessary to previously count the number
of bits in the intermediate levels of the tree. Therefore, to
obtain any Occ(c, i) value it is necessary to perform logσ
bit count operations, with σ representing the alphabet size.
With this data structure, not only is the data of the Occ table
compressed, but also the BWT text itself, resulting in a much
higher compression ratio. To extract the information from this
representation, it is also required to make an extensive use of
bit counting operations (such as the BitCount(b) function) to
navigate the tree and obtain the data, whether it is the BWT
string itself or the Occ(c, i) data.

Symbol encoding table
$ 11110
A 110
C 1110
G 10
T 0

BWT(T ) = $TACGATG

Encoded BWT(T )
0111100110111010110010

Figure 4. Example of a variable-length prefix encoding of the BWT(T )
string.

Besides the previously described methods, it is also possible
to use variable-length prefix codes to store the data of an index
in a compressed form. This type of code allows to represent
symbols with a reduced and variable bit-length without re-
quiring a special marker that signals the separation between
consecutive symbols in the bit-stream. This is achieved by
guaranteeing that any given symbol code is not a prefix of any
other symbol. An example of a variable-length prefix encoded
string is given in Fig. 4, for the example BWT sequence.

To decode a variable-length prefix encoded sequence, it is
usually sufficient to count the number of consecutive bits (e.g.
recursively count the number of 1’s in the encoded bit-stream).
With a set of logical shift and bit counting operations it is
possible to easily decode such sequences.

Hence, independently of the adopted compression strategies,
the implementation of compressed index search procedures
make an extensive use of bit-level operations. Therefore,
it is widely advantageous to provide the targeted processor
architecture with a native support for this type of instructions.

III. PROPOSED INSTRUCTION-SET EXTENSION

Due to their inherently higher execution times, the higher
space efficiency that is offered by compressed indexes is
not always exploited in bioinformatics. This major constraint
results not only from the higher algorithmic complexity and
irregularity but also from the consequent reduced efficiency of
the corresponding execution unit.

As previously referred, when searching for a given sequence
pattern on compressed index data structures, a high number of
bit-level operations is required, as the information within the
index is coded at the bit-level. As a result, the offer of a broad
set of new instructions that more efficiently deal with bit-level
operations, as opposed to the usual word-level operations of
common GPPs, is regarded as a potential means to improve
the efficiency of these search procedures. Furthermore, when
coupled with the implementation of rather efficient execution
units, it is possible to envisage a processing platform with
particularly high processing throughputs for this class of
prominent, but rather demanding, data structures.

Besides the common or/and bitwise logical operations
(mainly used for bit masking) and the shift right/left operations
(used for bit-level manipulations), the decode and search
procedures over a compressed FM-index may be significantly
accelerated by offering the programmer with a comprehensive
set of operations to accelerate bit-level counting functions.
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TABLE I
PROPOSED INSTRUCTION-SET EXTENSION.

Mnemonic Operands Semantics

popcnth Rd Ra Rb Rd = #bits 1 (Ra&((0x1 � Rb) -1) )
popcntl Rd Ra Rb Rd = #bits 0 (Ra&((0x1 � Rb) -1))
msbh Rd Ra Rb Rd = orderMSb1 (Ra&((0x1 � Rb) -1))+1
msbl Rd Ra Rb Rd = orderMSb0 (Ra&((0x1 � Rb) -1))+1
leadh Rd Ra Rb Rd = #leading 1s (Ra&((0x1 � Rb) -1))
leadl Rd Ra Rb Rd = #leading 0s (Ra&((0x1 � Rb) -1))

lbt Rd Ra Rb Addr = Ra+Rb
Rd=(*Addr=TT.TAG[0..3] ? TT.DATA[] : *Addr)

lbti Rd Ra IMM
Addr = Ra+Imm
Rd=(*Addr=TT.TAG[0..3] ? TT.DATA[] : *Addr)

swt Rd TT.TAG[0]=Rd[15..8]; TT.DATA[0]=Rd[7..0]

These specific operations are not usually available on com-
mon GPPs, leading to a significant processing overhead in
these devices. Furthermore, other forms of compression (like
variable length prefix coding) also benefit from the availability
of other specialized bit-level instructions (e.g. the order of the
most significant bit and the number of leading bits).

Another important aspect concerning the usage of com-
pressed text indexes is observed when searching for a given
symbol in the index: the value of the character representing
such symbol usually cannot be directly used to address the
index structure (e.g. the ASCII value of ’A’ cannot be typically
used to directly address the directory data structure). As
a result, when the index is consulted, the character being
searched for must be translated to its corresponding numerical
representation in the index (e.g. ’A’ = 0, ’C’ = 1, etc.), which
requires accessing a translation table normally stored in the
main memory.

Accordingly, to efficiently address these important limita-
tions in the execution of search operations over a compressed
index, it is advantageous to complement the commonly avail-
able bit-level logical and shift instructions, usually present in
most GPPs, with a set of specialized instructions that i) count
the number of bits in a word; ii) determine the order of most
the significant bit; iii) count the number of leading bits; and
iv) transparently translate the value of a given character to
the corresponding index addressing value. Such instruction-
set extension potentially provides a significant reduction of
the number of instructions that are executed along the search
procedure, with a consequent improvement of the resulting
performance.

Table I presents the complete set of instructions that com-
prises the proposed instruction-set extension. The new bit level
instructions implement the count of the number of set (1) or
unset (0) bits in a given word (popcnth and popcntl), the count
of the number of leading high or low bits (leadh and leadl)
and the order of the most significant high or low bit in a word
(msbh and msbl). To implement automatic and transparent
symbol translations, the lbt and lbti instructions perform a
memory load of a byte followed by an automatic translation
of its value. Finally, the swt instruction stores the translation
values in the translation table.

With exception of the swt initialization instruction, the
proposed instructions follow a 3 operand format, consisting
of a destination register (Rd) and two source values (Ra and
Rb or an Immediate value). For the bit level instructions, the
Rb register is also used to mask the value of the Ra register,
thus allowing for a greater flexibility. For the translation,
two load instructions are provided: one using only register-
based addressing; and another that uses an immediate value to
determine the address. The translation store instruction (swt)
has one single operand, corresponding to the value that should
be stored in the translation table.

The proposed set of instructions were implemented as an ex-
tension to the Xilinx MicroBlaze instruction-set. Besides being
a GPP commonly used in embedded applications, this base
Instruction Set Architecture (ISA) was chosen due to its low
complexity, to the availability of free hardware descriptions of
the underlying micro-architecture and to the existing support
in the GNU GCC compiler collection.

A. Compiler support

To provide effective support to the programmer, a ded-
icated back-end for the well known GCC compiler suite
was designed, thus allowing for an easier programability of
the proposed ASIP. This backend is based on the already
available backend for the MicroBlaze processor and supports
the complete set of new instructions.

Furthermore, it is worth noting that the GCC compiler
suite provides a set of high level functions to address some
of the operations (e.g. builtin popcount). These functions
are either mapped to a single instruction available on the
target architecture or calculated using an optimized library
that achieves the same result using the available instructions
(typical solution for common GPPs, such as Intel, AMD and
ARM). Some of the now proposed instructions can be directly
mapped to the corresponding GCC built-in function, as is the
case of the popcnth instruction, which maps directly to the

builtin popcount function and the leadl instruction, which
maps to the builtin clz function, thus providing an even
higher integration of the proposed ASIP with a full-featured
programming toolchain.

IV. IMPLEMENTED ASIP ARCHITECTURE

The proposed ASIP was developed by using the MB-
Lite [11] RISC micro-architecture as its base processing struc-
ture, to implement the proposed instruction-set extension. This
decision was mainly supported by the lightweight and freely
available nature of this processor core, completely described in
VHDL and implementing the basic ISA of the Xilinx MicroB-
laze GPP. Furthermore, the modular design of this core makes
it fully customizable and easily adaptable to the requirements
of the now proposed instruction-set extension. Its a 32-bit
Harvard Reduced Instruction Set Computer (RISC) micro-
architecture is composed by a 5-stage pipeline, implementing
an in-order processing scheme.
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Figure 5. Processor datapath: the shaded blocks represent the newly
introduced units in the base micro-architecture.

A. Processor Datapath

The developed ASIP adopts a simple and efficient datapath
to implement the proposed instruction-set extension. However,
contrasting to the original 5-stage MB-Lite processing struc-
ture, the pipeline of the proposed ASIP is composed by 6
stages, as a result of splitting the execution stage into two
distinct stages, to improve the performance of the processor
and allow for the inclusion of pipelined functional units. In
this particular arrangement, the ALU was moved to the second
execution stage, while a large amount of the data multiplexing
and forwarding was maintained on the first stage. Additionally,
convenient forwarding logic was also added to the second
stage, although with a reduced complexity due to the fact that
it only considers forwarding from the next pipeline stage. This
strategy allows to maintain the processor operating frequency,
despite the inclusion of more complex functional units (e.g.
the barrel shifter).

To address the execution of the two new groups of in-
structions of the proposed instruction-set extension, two new
functional units (see shaded blocks in Fig. 5) were included:
the Bit Count unit, which implements the bit-level instructions,
and the Translation unit, which implements the translation
instructions. The Bit Count unit is implemented as a two-
stage pipeline and was split in the two execution stages, while
the Translation Unit was introduced in the Write-Back stage.
The location of the translation unit provides the means for
an immediate translation of the loaded value from memory,
without requiring the issue of an additional instruction.

Besides these specialized functional units, the computational
requirements of the search operation over a compressed index
also demands for the inclusion of a barrel shifter (for effi-
cient masking and array indexing operations). Although the
base MB-Lite micro-architecture already includes a barrel-
shifter, it is integrated in the Execution stage of the 5-stage
processor pipeline, which significantly limits the processor’s
maximum operating frequency due to the higher delay that
this unit imposes. To overcome this issue, the adopted 6-stage
pipelined datapath includes a two-stage pipelined barrel-shifter
as presented in Fig. 5. This configuration enables the processor
to more efficiently execute the barrel-shift operations without
limiting the overall maximum operating frequency and thus
improving the overall performance.

The several changes to the datapath design required the

control unit of the processor to be conveniently adapted, in
order to detect the additional data hazards that arise from this
new construction. Furthermore, the processor forwarding lines,
which help in the reduction of the number of data hazards,
were also adapted to support the 2-stage pipelined barrel-
shifter.

B. Specialized Functional Units

A special attention was considered in the design of the two
functional units that were included in the processor datapath,
in order to avoid any significant constraint in the maximum
operating frequency. Furthermore, these units ensure the exe-
cution of all the proposed instructions with a latency of one
single clock cycle, in accordance with the remaining data
processing instructions of the base micro-architecture.

1) Bit Count Unit

The Bit Count functional unit, whose block diagram is
presented in Fig. 6, is responsible for executing all the bit
level instructions of the proposed instruction-set extension. It
is composed of four stages: i) an initial stage that performs
a bitwise masking function; ii) a propagate unit, used in the
evaluation of the order of the most significant bit, as well as
the number of leading bits in a word; iii) a controlled bitwise
inverter, to define whether set or unset bits will be evaluated
in the following stage; and iv) the set bit count unit, capable
of counting the number of set bits in a word. Both the A and
B input operands are 32-bit words.

The set of operations that are implemented by this unit
is controlled by using several control signals, which are
generated by the decoding logic of the processor. The table
presented in Fig. 6 shows the several combinations that control
which operation is executed by the Bit Count functional unit.

The first stage of this functional unit provides the hardware
support for a bitwise masking operation coupled with the
mask’s generation. This preliminary stage is offered as an op-
tional pre-processing step in all the newly proposed operations,
providing an extra reduction of the amount of instructions
that otherwise would be required to obtain the masked value,

Op A ~Op A

Bitwise Masking Unit

Op B ~Op B

n

log(n)

Propagate Unit En

n

Bitwise Inverter Unit En

n

Set Bit Count Unit

n

log₂ (n+1)

popcnth 0

popcntl 1

msbh 0

msbl 1

Sel

PUE

INVE

leadh 1

leadl 0

Sel

0

0

1

1

1

1

PUE

0

0

0

0

1

1

INVE

0 1

Mask Gen
n

Figure 6. Bit Count Functional Unit.

531



EN en

en

Inp (27-24)
4

4

PREV

EN

INPUT

PROP
en

GROUP 6

Inp (31-28)
4

4

PREV

EN

INPUT

PROP

GROUP 7

en

Inp (31-28)
4

4

PREV

EN

INPUT

PROP

GROUP 5

en

Inp (3-0)
4

4

PREV

EN

INPUT

PROP

GROUP 0GROUP 4 GROUP 1

4 4

32

INPUT Inp
32

Figure 7. Block diagram of the set bit propagate unit.

en

Inp(3)

en

Inp(2)

en

Inp(1)

en

Inp(0)EN en

INPUT Inp
4

PREV

PROP

4

Figure 8. Detail of a propagate group.

thus contributing to the reduction of the whole application
execution time. The generation of the mask is performed by
setting to high the n + 1 least significant bits of the word,
where n is the value of the B input operand.

To support the execution of the msbh/l and the leadh/l
instructions, a propagate unit was implemented and included
in the second stage of this functional unit. This unit, whose
architecture is presented in Fig.s 7 and 8, propagates the most
significant set bit of the input operand to all of the lower order
bits of the output. The operation of this unit is controlled by its
enable signal: when deasserted, the input operand is forwarded
directly to the output. When used in combination with the
other stages, this unit gives support to the implementation of
instructions that determine the order of a given bit (e.g the
most significant bit).

In order to reduce the critical path, this propagate unit is
composed of several groups that perform a look-ahead of the
output value. Within each propagate group, a given output bit
can be seen as the result of the logical or of the corresponding
input bit with all of the leading (higher order) input bit values
(see Fig. 8).

At this respect, it is worth noting that the developed
hardware description of this propagate unit allows for a cus-
tomizable architecture with a varying number of groups and,
consequently, a shorter or longer critical path. For example,
when considering a propagate group of 4 bits to process a 32-
bits word, the length of critical path can be reduced from the
original 64 levels to only 13 logic levels.

The third stage of the proposed functional unit is a con-
trolled bitwise inverter, implemented as an array of XOR
gates. Finally, the forth and last stage of this functional unit is
composed of a set bit counter, responsible for determining the
number of bits that are set to high within a processor word.
This bit count unit was implemented with an adder tree of
full adders. In Fig. 9 it is illustrated an example configuration

0123456789101112131415

FA

FA

FA

FA

FA

FA

FA

FA
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Figure 9. Adder tree for a 16-bit set bit count unit.

that processes a 16 bit word. Naturally, the implemented adder
tree corresponds to a straightforward extension for a full 32-bit
word in order to comply with the MB-Lite word size. This set
bit counter unit provides the basis for the implementation of
the several variations of bit-level instructions that rely on an
efficient counting operation of asserted bits in the input word.

2) Translation Unit

To assist the index search operations over the compressed
index, a translation table was included in the ASIP micro-
architecture, in order to reduce the number of memory ac-
cesses and clock cycles that are required to translate a given
symbol to the representation used within the index directory
information. Furthermore, this translation unit can also be used
to assist in the search of the two strands of the considered
DNA sequence, in which the complementary sequence has
to be determined. This particular search operation is usually
performed in two steps: i) determination of the complementary
sequence; and ii) search for this sequence in the index (re-
quiring a translation step to access the index symbols). With
this unit, it is possible to simultaneously perform these two
operations with a single instruction, by coding it with the
adequate values.

The developed translation unit, shown in Fig. 10, is re-
sponsible for translating a given 8-bit value (the usual size
of an ASCII character representation) to another value, based
on a smaller based on a smaller representation (commonly
less than 8 bits). This unit operates similarly to a fully asso-
ciative cache memory, by outputting the stored DATA value
whenever the input value matches any of the TAGs. Naturally,
considering the number of binary comparators that are required
to implement this unit (one for each TAG), the number of
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Figure 10. Translation unit.

positions in this unit should be kept to a minimum, although
the developed structure allows for an arbitrary number of
positions. At this respect, it should be noted that the number of
required positions is typically small for the considered usage
scenario of DNA sequence assembly and mapping, in which
only four distinct symbols (A,C,G and T) are used to represent
the DNA sequence, thus requiring only four positions. If
protein sequences are considered, 22 positions will have to
be implemented in order to accommodate the representation
of each amino-acid.

This translation memory is pre-initialized by means of a
dedicated instruction that stores a 16-bit word to this table:
the most significant 8-bits represent the TAG, while the least-
significant 8-bits represent the DATA to be returned (translated
value). The write operation to this unit functions as a FIFO:
the oldest tag-data pair is discarded when a new pair is written.

V. EXPERIMENTAL RESULTS

To evaluate the proposed ASIP architecture, a thorough
analysis focusing both the hardware resources and the obtained
performance was conducted. In this section, the additional
hardware resources that are required by the introduced func-
tional units and by the changes to the micro-architecture are
analyzed, as well as the resulting impact on the maximum
operating frequency. Afterwards, the proposed instruction-set
extension is firstly evaluated in terms of its efficiency to reduce
the number of required instructions to execute the three com-
pression methods presented in Section II. Finally, a thorough
performance assessment of the developed ASIP is presented,
highlighting the benefits of the proposed instruction-set exten-
sion and of the optimized micro-architecture in the execution
of the search operation over the compressed indexes by using
both the base GPP and the proposed ASIP. The developed
ASIP architecture was prototyped using a Xilinx Virtex7
FPGA (XC7VX485T), embedded in the VC707 Evaluation
Kit by using the Xilinx ISE 13.1 and the Modelsim SE 10.0b
development tools.

In Table II, the proposed ASIP is compared with the
original MB-Lite in terms of the occupied hardware resources.
The presented resource values of the MB-Lite architecture
correspond to a configuration that includes the barrel-shifter.
As it can be observed, these results demonstrate that the new
specialized functional units increase the used amount of hard-
ware resources (LUTs) by 34% when compared to the base
architecture. In terms of the operating frequency, it is possible
to observe that the proposed ASIP micro-architecture, with its

TABLE II
RESOURCE USAGE OF THE PROPOSED ASIP.

LUTs Registers RAMB18 Max. Freq.
MB-Lite 878 333 3 137 MHz

Proposed ASIP 1177 498 3 247 MHz

custom 6-stage pipeline, is capable of achieving a significantly
higher maximum operating frequency (247 MHz vs 137 MHz),
which allows an increased processing throughput.

To evaluate the proposed instruction-set extension, an in-
dexed search procedure was programmed and executed both
on the proposed ASIP and on the original MB-Lite micro-
architecture, for comparison purposes. The used dataset in-
cludes fragments from the E.coli genome (U00096.3), with
approximately 10× 103 characters, as the reference sequence
(text) and a set of 100 short read sequences, with 35 characters
each, originated from the same genome.

When compared in terms of the required number of instruc-
tions, the original MicroBlaze instruction-set requires about
18 instructions to perform the same operation as the popcnth/l
instruction, an average of 14 instructions to perform the msbh/l
operation and an average of 20 instructions to perform the
leadh/l instruction. From this comparison, it can be observed
that the number of instructions can be reduced by a factor as
high as 20x, as is the case of the leadh/l operations.

The chart presented in Fig. 11 depicts the obtained speedup
considering the required number of clock cycles to calculate
the values of the Occ(c, i) matrix, for the FM-Index and
Wavelet tree, and to decompress a string, for the variable-
length prefix code. For each of the considered compression
strategies, two different evaluations of the speedup are shown:
i) for the procedure code segment that directly deals with the
bit-vectors, with values ranging from 4 to 6.8, and ii) for the
complete procedure that implements the Occ(c, i) computation
(FM-Index and Wavelet trees) and the decoding (variable-
length prefix code). These results take into consideration the
attained reduction in terms of executed instructions and the
few stalls that are introduced during processing (due to data
hazards arisen by the new pipeline arrangement). As expected,
the speedup values of the code segments that directly manip-
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Figure 11. Performance comparison, in clock cycles, of the proposed ASIP
executing the operations on the three compressed data structures (FM-index,
Wavelet trees and Variable-Length Prefix Code).
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Figure 12. Performance comparison, in execution time, of the proposed ASIP
executing the operations on the three compressed data structures

ulate the bit-vectors are higher than those that relate to the
complete procedure, in which other instructions are executed
(Ahmdahl’s law). Nevertheless, even when considering the
complete procedure, the proposed instruction-set extension
allows for a significant speedup, which ranges from 1.6 to
2.4, according to the used data structure.

Regarding the actual execution throughput, which takes into
consideration the actual operating frequency of the ASIP and
the attained reduction in terms of clock cycles to execute the
operations, it is possible to observe from Fig. 12 that the
speedup of the proposed ASIP may be as high as 12.3, when
considering the bit-manipulation segment of the procedure’s
code. When considering the complete procedure, the speedup
ranges from 3.1 to 4.5.

Besides the execution throughput, the conducted analysis
also considered the energy consumption of the proposed
ASIP, by using the Xilinx power estimation tool considering
the maximum clock frequency for each architecture. Fig. 13
depicts the obtained energy values of the proposed ASIP as
well as those of the MB-Lite. From these results, it is possible
to observe that the proposed ASIP requires a significantly
smaller amount of energy to execute the complete procedure,
mainly due to the smaller run time it needs to execute the
operations. This reduction is even more significant if only
considering the bit-manipulation segment of the code. Hence,
the presented results demonstrated that the proposed ASIP
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Figure 13. Comparison of the consumed energy.

provides advantages both in terms of the throughput and the
energy efficiency, making it an adequate core to be included
in a multi-core platform targeted at the high-performance
processing of biological sequences. Such multi-core structure
would adopt a shared-memory model (to allow a transparent
access to the shared index data) and a processing model based
on data-level parallelism, in which each core processes a sub-
set of the typically vast query sequence set.

VI. CONCLUSIONS

This paper proposed a new ASIP architecture especially
designed to accelerate the processing of biological sequences
using compressed full-text indexes based on the BWT. The
proposed processor was built over a RISC micro-architecture
and extends the Xilinx MicroBlaze ISA with additional bit-
level operations, especially tailored for compressed indexes.
The obtained results show that the proposed instruction-set
extension clearly reduces the number of required clock cycles
to about one half when executing several operations on com-
pressed data structures. In terms of execution time, the espe-
cially designed datapath of the underlying micro-architecture
allows to reach speedups that range from 3.1 to 4.5. When
evaluated in terms of energy, the proposed ASIP is capable
of performing the same operations using a substantially lower
energy, thus improving both the performance and the energy
efficiency.
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