
Integrated Accelerator Architecture for DNA Sequences Alignment with Enhanced

Traceback Phase

Nuno Sebastião Tiago Dias Nuno Roma Paulo Flores

INESC-ID INESC-ID / IST INESC-ID INESC-ID

IST-TU Lisbon ISEL-PI Lisbon IST-TU Lisbon IST-TU Lisbon

Portugal Portugal Portugal Portugal

{Nuno.Sebastiao,Tiago.Dias,Nuno.Roma,Paulo.Flores}@inesc-id.pt

ABSTRACT

Dynamic programming algorithms are widely used to find

the optimal sequence alignment between any two DNA

sequences. This paper presents an innovative technique

to significantly reduce the computation time and memory

space requirements of the traceback phase of the Smith-

Waterman algorithm, together with a flexible and scalable

hardware architecture to accelerate the overall procedure.

The results obtained from an implementation using a Virtex-

4 FPGA showed that the proposed technique is feasible and

is able to provide a significant speedup. For the considered

test sequences, a speedup of about 6000 was obtained.

KEYWORDS: DNA, Local Sequence Alignment, Hard-

ware Accelerator, Traceback.

1. INTRODUCTION

With the most recent advances in sequencing technologies,

which allow the determination of the nucleotide sequence

of the Deoxyribonucleic Acid (DNA), biologists gained ac-

cess to enormous amounts of data. In particular, the Gen-

Bank [1] database has been doubling its size approximately

every 18 months and the version released on December

15th, 2009 had approximately 110 × 109 base pairs.

Sequence alignment is the method by which useful informa-

tion is extracted from the large amounts of sequenced DNA.

The alignments can be classified as either local or global.

In global alignments, the complete sequences are aligned

from one end to the other, whereas in local alignments only

the subsequences that present the highest similarity are con-

sidered. The local alignment is generally preferred when

searching for similarities between distantly related biologi-

cal sequences, since this type of alignment more closely fo-

cuses on the subsequences that were conserved during evo-

lution.

One of the most widely adopted algorithms to find the op-

timal local alignment between a pair of sequences is the

Smith-Waterman (S-W) algorithm [2]. This algorithm is

based on a Dynamic Programming (DP) method and is char-

acterized by the smallest runtime among the optimal local

alignment algorithms, with a time complexity of O(nm),
where n and m denote the sizes of the sequences being

aligned. The S-W algorithm obtains the alignment in two

phases: a DP matrix fill phase and a traceback phase. Al-

ternative sub-optimal heuristic algorithms, like BLAST [3],

have been proposed to reduce the runtime. However, such

speedup comes at the cost of missing the optimal align-

ments between the sequences. Therefore, the use of the

optimal alignment algorithms is usually preferred but not

always performed due to its significant runtime.

Several approaches have been proposed to accelerate the

execution of the S-W algorithm. These solutions range

from parallel implementations running in Graphics Process-

ing Units (GPUs) [4] to dedicated hardware architectures.

Among the last, the most common are based on systolic ar-

rays, such as the bidimensional structure presented in [5].

Nevertheless, unidimensional (linear) systolic arrays are

more commonly adopted [6, 7]. Besides these structures,

a commercial solution [8], developed by CLC bio and im-

plemented in an Field Programmable Gate Array (FPGA),

was also made available.

However, all of these solutions only focus on accelerating

the matrix fill phase of the S-W algorithm, disregarding

the traceback phase, which is typically performed using a

General Purpose Processor (GPP) in a post processing step.
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In [9] it was proposed a hardware architecture that also ac-

celerates the traceback phase. Nevertheless, only the global

alignment problem is addressed.

To overcome such limitation, this paper presents an innova-

tive and quite efficient technique that makes use of the infor-

mation gathered during the computation of the local align-

ment scores (in hardware), in order to significantly reduce

the time and memory requirements of the traceback phase,

later implemented using a GPP. To support such technique,

a new accelerator architecture was developed and integrated

with a GPP, to form a complete and quite efficient local

alignment system implemented in a FPGA. The presented

experimental results show that such new accelerating struc-

ture may provide speedups as high as 6000 for the imple-

mentation of the whole alignment procedure.

2. PAIRWISE LOCAL SEQUENCE ALIGN-

MENT

Considering any two strings S1 and S2 of an alphabet Σ
with sizes n and m, respectively, a local alignment reveals

which pair of substrings of sequences S1 and S2 optimally

align, such that no other pairs of substrings have a higher

similarity score. A commonly used algorithm to determine

the local alignment is the S-W algorithm, with a O(nm)
time complexity [2]. This algorithm uses a DP method com-

posed of two main phases: the matrix computation and the

traceback.

2.1. Smith-Waterman Algorithm

Let G(i, j) represent the best alignment score between a

suffix of string S1[1..i] and a suffix of string S2[1..j]. The

S-W algorithm allows the computation of G(n, m) (the lo-

cal alignment between the two strings) by recursively cal-

culating G(i, j) (the local alignment between prefixes of S1

and S2).

The recursive relation to calculate the local alignment score

G(i, j) is given by Eq. 1, where Sbc(S1(i), S2(j)) denotes

the substitution score value obtained by aligning charac-

ter S1(i) against character S2(j) and α represents the gap

penalty cost (the cost of aligning a character to a space, also

known as gap insertion). An example of a substitution func-

tion is shown in Table 1.

G(i, j) = max

8

>

>

<

>

>

:

G(i − 1, j − 1) + Sbc(S1(i), S2(j)),
G(i − 1, j) − α,

G(i, j − 1) − α,

0

G(i, 0) = G(0, j) = 0

(1)

Table 1. Example of a Substitution Score Matrix

Sbc A C G T

A 3 -1 -1 -1

C -1 3 -1 -1

G -1 -1 3 -1

T -1 -1 -1 3

The alignment scores are usually positive for characters that

match, thus denoting a similarity between the two. Mis-

matching characters may have either positive or negative

scores, according to the type of alignment that is being per-

formed, which denotes the biological proximity between

the two. The gap penalty cost α is always a positive value.

Nevertheless, different substitution score matrices may be

used to reveal different types of alignments. In fact, the par-

ticular score values are usually determined by biologists,

according to evolutionary relations.

As soon as the entire matrix G is filled, the substrings of

S1 and S2 that best align can be found by first locating the

cell with the highest score in G. Then, all matrix cells that

lead to this highest score cell are sequentially determined

by performing a traceback procedure. This traceback phase

concludes when a cell with a zero score is reached, iden-

tifying the aligned substrings as well as the corresponding

alignment. The path taken at each cell is chosen based on

which of the three neighboring cells (left, top-left and top)

was used to calculate the current cell value using the recur-

rence Equation (Eq. 1).

Table 2 shows an example of the calculated score matrix

for aligning two sequences (S1 = CAGCCTCGCT and

S2 = AATGCCATTGAC) using the substitution score

matrix presented in Table 1 (a match has a score of 3 and

a mismatch a score of -1). The gap penalty has a value of

4. The shadowed cells represent the traceback path (starting

at cell (8, 10)) that was taken in order to determine the best

alignment, which is illustrated in Fig. 1.

Table 2. Example of an Alignment Score Matrix
0 1 2 3 4 5 6 7 8 9 10 11 12

G ø A A T G C C A T T G A C

0 ø 0 0 0 0 0 0 0 0 0 0 0 0 0

1 C 0 0 0 0 0 3 3 0 0 0 0 0 3

2 A 0 3 3 0 0 0 2 6 2 0 0 3 0

3 G 0 0 2 2 3 0 0 2 5 1 3 0 2

4 C 0 0 0 1 1 6 3 0 1 4 0 2 3

5 C 0 0 0 0 0 4 9 5 1 0 3 0 5

6 T 0 0 0 3 0 0 5 8 8 4 0 2 1

7 C 0 0 0 0 2 3 3 4 7 7 3 0 5

8 G 0 0 0 0 3 1 2 2 3 6 10 6 2

9 C 0 0 0 0 0 6 4 1 1 2 6 9 9

10 T 0 0 0 3 0 2 5 3 4 4 2 5 8

G C C A T T G

| | | | |
G C C T C G

Figure 1. Obtained Local Alignment for the Considered

Example Sequences
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3. TRACKING THE ALIGNMENT ORIGIN

AND END INDEXES

As it was previously referred, whenever a sequence pair

alignment is required, it is necessary to implement the trace-

back phase of the S-W algorithm. Most sequence align-

ment accelerators that have been proposed up until now [5–

7] only implement the score matrix computation (without

performing the traceback phase). Therefore, only the align-

ment score is calculated by the accelerator. Afterwards,

whenever the alignment score is greater than a given user-

defined threshold, the whole G matrix must be recalculated

(usually by using a GPP), maintaining enough intermediate

data that is required to perform the traceback and retrieve

the corresponding alignment. This re-computation does not

re-use any data from the previous calculation performed by

the accelerator. Such situation can be even aggravated by

the fact that typical alignments consider sequences with a

quite dissimilar size (m ≫ n). Therefore, the size of the

subsequences that participate in the alignment is always in

the order of n, meaning that a large part of matrix G that

must be completely recomputed in the GPP is not even re-

quired to obtain the alignment.

Hence, an innovative technique is now proposed to signif-

icantly reduce the time and memory space that is required

to find the local alignment in the traceback phase of this

algorithm. In fact, assuming that it is possible to know

that the local alignment of a given sequence pair S1 and

S2 starts at position S1(p) and S2(q), denoted as (p, q), and

ends at position S1(u) and S1(v), denoted as (u, v), then

the local alignment can be obtained by just considering the

score matrix corresponding to substrings Sa = S1[p..u] and

Sb = S2[q..v].

To determine the character position where the alignment

starts, an auxiliary matrix Cb is proposed. Let Cb(i, j) rep-

resent the coordinates of the matrix cell where the align-

ment of strings S1[1..i] and S2[1..j] starts. Using the same

DP method that is used to calculate matrix G(i, j), it is pos-

sible to simultaneously build a matrix Cb, with the same

size as G, that maintains a track of the cell that originated

the score that reached cell G(i, j) (the start of the align-

ment ending at cell (i, j)). The recursive relations to cal-

culate matrix Cb are given by Eq. 2, with initial conditions

Cb(i, 0) = Cb(0, j) = (0, 0)

Hence, with the use of the Alignment Origin and End

Indexes (AOEI) tracking technique and by knowing the cell

where the maximum score occurred, G(u, v), it is possible

to determine from Cb(u, v) = (p, q) the coordinates of the

cell where the alignment began. Consequently, to obtain the

desired alignment, the traceback phase only has to rebuild

the score matrix for the subsequences S1[p..u] and S2[q..v],

Table 3. Example of an Alignment Origin and End

Indexes Tracking Matrix
0 1 2 3 4 5 6 7 8 9 10 11 12

Cb ø A A T G C C A T T G A C

0 ø (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

1 C (0,0) (0,0) (0,0) (0,0) (0,0) (1,5) (1,6) (0,0) (0,0) (0,0) (0,0) (0,0) (1,12)

2 A (0,0) (2,1) (2,2) (0,0) (0,0) (0,0) (1,5) (1,6) (1,6) (0,0) (0,0) (2,11) (0,0)

3 G (0,0) (0,0) (2,1) (2,2) (3,4) (0,0) (0,0) (1,6) (1,6) (1,6) (3,10) (0,0) (2,11)

4 C (0,0) (0,0) (0,0) (2,1) (2,2) (3,4) (4,6) (0,0) (1,6) (1,6) (0,0) (3,10) (4,12)

5 C (0,0) (0,0) (0,0) (0,0) (0,0) (2,2) (3,4) (3,4) (3,4) (0,0) (1,6) (0,0) (3,10)

6 T (0,0) (0,0) (0,0) (6,3) (0,0) (0,0) (3,4) (3,4) (3,4) (3,4) (0,0) (1,6) (3,10)

7 C (0,0) (0,0) (0,0) (0,0) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4) (0,0) (1,6)

8 G (0,0) (0,0) (0,0) (0,0) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4) (3,4)

9 C (0,0) (0,0) (0,0) (0,0) (0,0) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4) (3,4)

10 T (0,0) (0,0) (0,0) (10,3) (0,0) (8,4) (8,4) (6,3) (7,5) (7,6) (3,4) (3,4) (3,4)

Table 4. Reduced Alignment Score Matrix

G ø G C C A T T G

ø 0 0 0 0 0 0 0 0

G 0 3 0 0 0 0 0 3

C 0 0 6 3 0 0 0 0

C 0 0 3 9 5 1 0 0

T 0 0 0 5 8 8 4 0

C 0 0 3 3 4 7 7 3

G 0 3 0 2 2 3 6 10

which are usually considerably smaller than the entire S1

and S2 sequences.

The obtained matrix Cb for the alignment example of se-

quences S1 and S2, whose G matrix was presented in Ta-

ble 2, is shown in Table 3. In this example, by knowing from

the G matrix that the maximum score occurs at cell (8, 10),
it is possible to retrieve the coordinates of the beginning of

the alignment in cell Cb(8, 10) = (3, 4). With this infor-

mation, the optimal local alignment between S1 and S2 can

be found by only processing substrings Sa = S1[3..8] =
GCCTCG and Sb = S2[4..10] = GCCATTG. Such

alignment (between Sa and Sb) can now be determined by

computing a much smaller G matrix in the traceback phase,

as shown in Table 4.

Hence, the major advantage of this technique outcomes

from the fact that the time and memory space required to re-

compute the G matrix for the subsequences that participate

in the alignment is significantly reduced when compared to

the entire sequences. As a consequence, this technique also

provides a great reduction of the computational effort (time

and space) of the whole alignment algorithm.

4. ALIGNMENT CORE ARCHITECTURE

The local alignment algorithm described in Section 2 is usu-

ally applied to biological sequences in which m ≫ n (e.g.

m ≈ 106 and n ≈ 102). The matrix fill phase of this al-

gorithm is the most computationally intensive part and is

therefore a good candidate for parallelization. However, the

data dependencies that exist to calculate each matrix cell

highly restrict the parallelization model to the simultaneous
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Cb(i, j) =























(i, j), if G(i, j) = G(i − 1, j − 1) + Sbc(S1(i), S2(j)) and Cb(i − 1, j − 1) = (0, 0)
Cb(i − 1, j − 1), if G(i, j) = G(i − 1, j − 1) + Sbc(S1(i), S2(j)) and Cb(i − 1, j − 1) 6= (0, 0)

Cb(i − 1, j), if G(i, j) = G(i − 1, j) − α,

Cb(i, j − 1), if G(i, j) = G(i, j − 1) − α,

(0, 0), if G(i, j) = 0

(2)

computation of the values along the matrix anti-diagonal

direction (to calculate the value for cell G(i, j) it is neces-

sary to know the values of G(i − 1, j − 1), G(i, j − 1) and

G(i − 1, j)).

Specialized parallel hardware that is capable of perform-

ing a great number of simultaneous arithmetic operations is

especially suited for this task. Linear systolic arrays with

several identical Processing Elements (PEs), as shown in

Fig. 2, have proved to be efficient structures to implement

this type of computation, by simultaneously computing the

values of the G matrix that are located in a given anti-

diagonal [6].

4.1. Processing Element

The PE’s architecture described in this paper is based on

the PE structure described in [6]. This base PE only im-

plements the basic score matrix calculation and is shown in

Fig. 3. It has a two stage pipelined datapath to calculate a

score matrix cell value (output in G(i, j)). The throughput

of each element is one score value per clock cycle. Since

the S-W algorithm requires the evaluation of the maximum

score value throughout the entire matrix, it is necessary to

have an additional datapath that selects the maximum score

that has been calculated in the array (output Max(i, j)).
Hence, PEi selects and stores the maximum score that was

computed by PEs 1 through i.

The array evolves along the time, by shifting the reference

sequence characters through the PEs. In this array, charac-

ter S1(i) is allocated to the ith PE and this PE performs, at

every clock cycle, the computations required to determine

the score value of a certain matrix cell. This computation

requires, among other operations, the selection of the sub-

stitution score between the two characters, i.e. the value of

Sbc(S1(i), S2(j)). Since each PE performs the operations

only over one single character of S1, it only needs to store

PE
1

PE
2

PE
i

PE
N

S
1
(1) S

1
(2) S

1
(i) S

1
(N)

S
2
(1)S

2
(2)S

2
(M) ...

Query Sequence

Reference Sequence

Figure 2. Systolic Array Structure for DNA Algorithms
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1
(i),S

2
(j))

+

-α

G(i,j)

Max(i,j)

Max(i-1,j)
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Figure 3. Base PE Architecture

the column of the substitution cost matrix that represents the

costs of aligning character S1(i) to the entire alphabet. The

computation of the matrix cell value G(i, j) also requires

the evaluation of the maximum value among the results of

the three distinct possibilities presented in Eq. 1. The zero

condition of the S-W algorithm is implemented by control-

ling the reset signal of the registers that store the G(i, j)
value. Such reset makes use of the sign bit of the score

value, i.e., if the maximum value among the three partial

scores is negative, then the registers that hold that score

are cleared. After all the reference sequence (S2) charac-

ters have passed through all the PEs, the alignment score is

available at the Max(i, j) output of the last PE.

The PE architecture that is now proposed implements the

AOEI accelerator technique that was proposed in Section 3.

This technique avoids the re-computation of the entire G

matrix by propagating, through the PEs, not only the partial

maximum scores (as in the base PE), but also the coordi-

nates of their origin (the beginning of the alignment), to-

gether with the coordinates where the maximum score oc-

curred. As it was shown in Section 3, this greatly simplifies

the re-computation phase of matrix G, by only focusing on

the substrings that are actually involved in the alignment

and avoiding the re-computation of the whole matrix G.

Each of the enhanced PEs that form the array, whose ar-

chitecture is presented in Fig. 4, features a datapath that

implements both the calculations of Eq. 1 and 2. The ad-

ditional hardware required to implement Eq. 2 (the AOEI
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Figure 4. Enhanced PE Architecture

technique) is mainly composed of multiplexers and regis-

ters. The signals that control the new multiplexers required

by the AOEI technique are generated by the magnitude

comparators that are integrated in the Max units and that

were already present in the base PE architecture. Regard-

ing the input data signals, the origin coordinates that corre-

spond to the score at input G(i − 1, j) are present at input

Cb(i − 1, j). Likewise, the origin coordinates correspond-

ing to the score at output G(i, j) are present at Cb(i, j).
Moreover, the coordinates of the highest score, present at

Max(i, j), are output at MaxCb(i, j). The coordinates

of the currently processed cell are obtained by using the

hardwired PE index (i) and the symbol coordinate (j) that

comes alongside with the sequence character present at in-

put S2(j).

4.2. Array Programming

Since each PE only performs comparisons to a given query

sequence character, it will just access the values present at

the corresponding substitution matrix column. Therefore,

each PE will only receive the substitution score matrix col-

umn that corresponds to the query sequence character allo-

cated to that PE.

Such data is stored within each PE using dedicated regis-

ters since this allows for a fast reprogramming of the PEs

for a new query sequence. In the event of a PE not being

used (because the query sequence has a smaller size than

the number of PEs (N )), the substitution score data that is

stored in such PE corresponds to a substitution matrix col-

umn in which every value is zero.

To program the query sequence (S1) score values, an aux-

iliary structure was included in the array. This structure is

composed by a n bit-width shift register that allows to shift

the values of a substitution matrix column through the sev-

eral PEs. This approach provides the load of a new query

sequence into this temporary storage shift register, by seri-

ally shifting the substitution matrix column data while the

array is still processing the data regarding the current query

sequence. As soon as the array has finished processing the

data regarding the current query sequence, the new query

sequence data, which is stored in the auxiliary shift register,

is parallel loaded (in just one clock cycle) into the respective

PEs. This allows to mask the time that would be required to

shift the new query sequence data into the array and there-

fore significantly reduces the amount of time required for

programming the array with the new query sequence. Fur-

thermore, the use of this shift register provides a scalable

method to program the processor array, as it avoids the use

of a common bus to program the several PEs.

4.3. Interface

In order to integrate the proposed accelerator with the GPP

that will implement the remaining alignment procedure (i.e.

the traceback), the systolic array includes an embedded con-

troller that is responsible for decoding 7 instructions (re-

quired to properly control the array), as well as to receive

the data to be processed. The developed interface, shown

in Fig. 5, is composed of two input FIFOs (one for the ref-

erence sequence and the other for commands and query se-

quence), one output FIFO (to return the processed values)

and one status register. The two input FIFOs allow the next

query sequence to be loaded into the array in parallel with

the processing of the current alignment, without increasing

the complexity of the control that would arise from having

all of the data (query and reference sequences data) input

through the same FIFO.

Each of these FIFOs has a depth of 64 words and is 32-

bits wide to match the typical bus-width. The status reg-

ister contains information about the available positions in

each input FIFOs, which provide for the implementation of

a flow control mechanism. Furthermore, this status register

also contains information regarding the availability of data

in the output FIFO, indicating when the accelerator has con-

cluded the alignment.
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Figure 5. Accelerator Interface

5. PROTOTYPING PLATFORM

To validate the functionality and to assess the performance

of the proposed hardware accelerator in a practical realiza-

tion, a complete local alignment system based on the S-W

algorithm was developed and implemented. The base con-

figuration of this system consists of a Leon3 processor [10]

that executes all operations of the S-W algorithm, except

for the ones concerning the score matrix computation phase.

Such phase is executed by the proposed hardware accelera-

tor, acting as a specialized functional unit of the GPP.

The implemented local alignment system consists of a soft-

ware implementation of the S-W algorithm, specially de-

veloped in the scope of this research work. Such algorithm

implementation includes some optimizations, in order to

achieve more efficient applications in embedded systems.

In particular, memory accesses were optimized by using a

static memory allocation mechanism. Special attention was

also devoted to the data transfers of both the reference and

query sequences from the Leon3 processor to the proposed

hardware accelerator, so that a high level of efficiency is

achieved.

5.1. Leon3 Processor

The Leon3 processor [10] is one of the most used free pro-

cessor cores available today. It has been specifically de-

signed for embedded applications by the European Space

Agency, although nowadays it is maintained by Gaisler Re-

search. It consists of a highly configurable and fully syn-

thesizable core, written in VHDL, implementing a RISC ar-

chitecture conforming to the SPARC v8 definition.

The Leon3 32-bit core is based on a 7-stage instruction

pipeline Harvard micro-architecture with 32-bit internal

registers. The core functionality can be easily extended by

means of the AMBA-2.0 AHB/APB on-chip buses. The

AMBA-2.0 AHB bus is used to connect the Leon3 pro-

cessor with high-speed controllers, e.g. the cache and the

memory controller. On the other hand, the AMBA-2.0 APB

is used to access most on-chip peripherals and is connected

to the Leon3 processor via the AHB/APB Bridge. Finally,

external memory access and memory mapped I/O operation

are provided by a programmable memory controller with

interfaces to PROM, SRAM and SDRAM chips.

5.2. DNA Alignment Peripheral

Based on the proposed hardware accelerator for DNA align-

ment, a new peripheral was developed and embedded in the

Leon3 processor. This alignment peripheral was connected

to the AMBA-2.0 APB bus as a slave device. This bus was

selected because not only it has enough bandwidth for all

of the sequence data transfers, but also because it offers a

simple interface and low-power consumption.

The developed alignment peripheral consists of the pro-

posed hardware accelerator, as shown in Fig. 5, and of

some additional circuitry responsible for its adaptation to

the AMBA-2.0 APB bus. The extra circuitry required to

implement the AMBA-2.0 APB wrapper consists mostly of

some multiplexers, decoders and a simple control unit that

implements the bus protocol. The I/O FIFOs and the sta-

tus register of the alignment core are mapped in the Leon3

memory address space. Using such interface, the write and

read operations over this peripheral can be easily imple-

mented using plain load and store operations.

5.3. FPGA Implementation

The implementation of the proposed local alignment sys-

tem was realized in an FPGA device by using a GR-CPCI-

XC4V development board from Pender Electronic Design.

Such development system includes a Virtex4 XC4VLX100

FPGA device from Xilinx, a 133 MHz 256 MB SRAM

memory bank, and several peripherals for control, commu-

nication and storage purposes.

The adopted Leon3 processor is based on version gpl-

1.0.20-b3403 of GRLIB. Such core was configured to in-

corporate a hardware divide and multiply unit, an interrupt

controller, separate data and instruction cache controllers

and an SRAM memory controller, all with AMBA-2.0 AHB

bus interface. Moreover, the core also encompasses two 32-

bit timers, the Debug Support Unit (DSU) controller and the

proposed DNA Alignment peripheral, which were all con-

nected to the system AMBA-2.0 APB bus.

6. RESULTS

The previously presented architecture, described using pa-

rameterizable VHDL code, was synthesized using the Xil-

inx ISE 10.1 with SP3 software and implemented in the pre-

viously described FPGA. This system is composed by the

Leon3 GPP and the alignment accelerator core with an array
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composed of 128 PEs. The maximum operating frequency

of the entire system is 60MHz. This frequency is a limita-

tion imposed by the Leon3 core. The maximum operating

frequency of the accelerator core itself is 120MHz.

The obtained resource usage results of the various consid-

ered configurations are presented in Table 5. The resources

occupied by the Leon3 processor are presented (Leon3

only) for reference. These results show that the Leon3

processor alone occupies 18.1% of the available logic re-

sources. In what concerns the resource usage of the systolic

array using the enhanced PEs, it is possible to determine

that it is 77% larger in relation to the base configuration

without the index tracking functionality. The exact increase

of the amount of used resources depends on the conditions

that will be selected according to the required operating en-

vironment, namely, the size of the sequences to be aligned

(which determines the bit-width of the coordinate represen-

tation) and the adopted scoring scheme (which influences

the bit-width of the score calculations).

To test the proposed system, a set of real DNA sequences

were used as the reference sequence. The size of these se-

quences range from about 17×103 to 2.6×106 nucleotides.

The maximum query sequence size is limited by the num-

ber of available PEs in the array. Consequently, in the case

of the implemented system, it must be less than or equal

to 128 nucleotides long (a size compatible with the latest

Next-Generation Sequencing technologies [11]). The cho-

sen query sequence is 128 nucleotides long. If larger query

sequences are required, the number of PEs in the array can

be increased and, if necessary, the array can be expanded by

connecting another FPGA.

The overall performance of the proposed AOEI technique,

together with the developed accelerator, was assessed using

the previously selected sequences which were aligned us-

ing two different methods: i) the alignment between each

sequence pair is obtained using a pure and straight-forward

implementation of the S-W algorithm running exclusively

on the Leon3 processor, which keeps the entire score ma-

trix in memory, and ii) the alignment is obtained using the

developed accelerator and the Leon3 processor. The ob-

tained execution time results for both of these methods are

presented in Table 6. The results presented for the proposed

Table 5. FPGA Resource Usage

PE Score

width
Maximum Size Resource Usage

Type # Reference Query Registers LUTs

Leon3 0 - - - 6246 17788

Base 16 7 - 16 7441 19818

Base 128 10 - 128 16031 34130

Enh. 16 7 2
16 16 9499 22168

Enh. 128 10 2
22 128 40024 56541

accelerator include the communication overhead of the data

and code between the GPP and the accelerator. The ob-

tained speedup was determined by comparing the time re-

quired to obtain a whole alignment using the software only

implementation of the S-W algorithm and the time required

to obtain the whole alignment with the aid of the proposed

technique together with the corresponding accelerator ar-

chitecture.

When the proposed acceleration is applied, the matrix fill

phase of the S-W algorithm is performed using the imple-

mented systolic array. This array returns not only the max-

imum score but also the coordinates of the cell where it

occurred as well as the coordinates of the cell where the

alignment begins. Afterwards, a pure and straight-forward

implementation of the S-W algorithm is executed in the

Leon3 to obtain the alignment between the subsequences

that participate in the local alignment (Reduced matrix fill

and Reduced traceback), which were determined by the co-

ordinate information returned from the accelerator. With

this new strategy, the matrix fill phase that is executed in

the Leon3 processor (required to extract the alignment) is

significantly reduced, due to the quite smaller sequences in-

volved. Therefore, the computational requirements, both in

terms of memory and time, are substantially reduced.

The obtained results show that the attained speedup may

be as high as 6042. These achieved speedups are the con-

sequence of a two-fold contribution: on the one hand, the

parallelization of the whole matrix fill phase by the systolic

array; on the other hand, the reduction of the processing

time required to perform the traceback in the GPP, due to

the reduction of the size of the G matrix that must be recom-

puted in this phase. Regarding to the G matrix fill phase, it

is worth noting that its time complexity when executed in

the Leon3 processor is O(nm), while the time complexity

when executed in the accelerator is reduced to O(m), due

to the parallel processing in the n PEs. Therefore, a signifi-

cant speedup is attained in determining the local alignment

score.

In what concerns the traceback phase, the time complexity

is the same on both cases (O(n + m)). However, in order

for it to be performed, it is necessary to recompute the G

matrix in the GPP. The computation time involved in this

re-computation is significantly reduced when the proposed

AOEI technique is adopted. As an example, and consider-

ing the alignment of the 128 nucleotide query sequence with

the 1311701 reference sequence, the obtained local align-

ment spans over a 124 nucleotide long subsequence of the

reference sequence and over a 123 nucleotide subsequence

of the query sequence. The size of the entire G matrix that

would have to be recomputed to obtain the alignment has

approximately 168×106 cells. However, with the proposed
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Table 6. Alignment Results for the System when using an Array with 128 PEs and a Query of 128 nucleotides

Reference size

(nucleotides)

Processing time using only the Leon3

processor (ms)

Processing time using the Leon3 processor and the

proposed accelerator (ms) Speedup

Matrix fill Traceback Total

Score and

coordinate

(accelerator)

Reduced

matrix fill

(Leon3)

Reduced

traceback

(Leon3)

Total

17878 7493.6 0.9 7494.5 0.7 45.7 0.9 46.6 161

83648 35049.2 0.9 35050.1 3.2 54.4 1.0 55.4 633

136980 57390.4 1.0 57391.4 5.2 54.4 1.0 55.4 1036

295301 123757.5 0.9 123758.4 11.1 49.5 1.0 50.5 2451

566490 237377.8 0.9 237378.8 21.3 49.5 0.9 50.5 4701

745211 312359.1 1.0 312360.0 28.0 50.7 1.0 51.7 6042

1311701 - - - 49.3 50.9 1.0 51.9 -

2623402 - - - 98.5 50.8 1.0 51.8 -

AOEI technique, the size of the G matrix that needs to be

recomputed in the GPP is reduced to 124×123 ≈ 16×103.

For larger sequences, the speedup would be even higher,

since the reduction in size of the recomputed G matrix

would be even more significant. Furthermore, the proposed

technique not only allows to significantly reduce the time

required to obtain the alignment but it is also capable of

processing larger sequences (e.g. the 2623402 nucleotide

long reference sequence, whose memory requirements pre-

vent it from being aligned on the GPP) as it significantly

reduces the amount of memory used by the GPP.

7. CONCLUSIONS

An innovative method to significantly reduce the compu-

tational requirements of the traceback phase that is exe-

cuted by the widely used Smith-Waterman algorithm for

local alignment of DNA sequences is presented. Based

on this technique, a new hardware accelerator architecture

was developed and integrated with a Leon3 general pur-

pose processor. Such developed embedded system for DNA

alignment was implemented in a Virtex-4 FPGA. The ob-

tained results demonstrate that this system, based on the

proposed technique, offers global speedups as high as 6042,

when compared to the pure software version of the Smith-

Waterman algorithm running on the Leon3 processor. Fur-

thermore, it was shown that the use of the proposed accel-

erator enables the alignment of larger sequences, even in a

memory restricted environment.
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