
Application Specific Programmable IP Core for Motion Estimation: Technology

Comparison Targeting Efficient Embedded Co-Processing Units ∗

Nuno Sebastião†, Tiago Dias†‡, Nuno Roma†§, Paulo Flores†§ and Leonel Sousa†§

†INESC-ID, ‡ISEL-PI Lisbon, §IST-TU Lisbon

Rua Alves Redol 9, 1000-029 Lisboa, PORTUGAL

Abstract

The implementation of a recently proposed IP core of

an efficient motion estimation co-processor is considered.

Some significant functional improvements to the base ar-

chitecture are proposed, as well as the presentation of

a detailed description of the interfacing between the co-

processor and the main processing unit of the video encod-

ing system. Then, a performance analysis of two distinct im-

plementations of this IP core is presented, considering two

different target technologies: a high performance FPGA

device, from the Xilinx Virtex-II Pro family, and an ASIC

based implementation, using a 0.18µm CMOS StdCell li-

brary. Experimental results have shown that the two alter-

native implementations have quite similar performance lev-

els and allow the estimation of motion vectors in real-time.

1. Introduction

In the last few years there has been a growing trend to
design very complex processing systems by integrating al-
ready developed and dedicated IP cores which implement,
in a particularly efficient way, certain specific and critical
parts of the main system. Such designs can be conducted in
order to obtain complete and autonomous processing archi-
tectures, based on a System-on-Chip (SoC) approach. On
the other hand, these IP cores can also be used to imple-
ment specific and dedicated processing structures that are
integrated with other larger scale modules in the form of
co-processors.

Consequently, a significant amount of quite different IP
cores of specialized processing modules have been pro-
posed and made available, providing a substantial reduction
of the design effort. Nevertheless, these IP cores have to
follow strict design methodologies, in order to provide an
easy integration with the target processing systems and an
efficient implementation in a broad range of target technolo-
gies.

∗This work has been supported by the POSI program and the Por-

tuguese Foundation for Science and for Technology (FCT) under the re-

search project Adaptive H.264/AVC Motion Estimation Processor for Mo-

bile and Battery Supplied Devices (AMEP) POSI/EEA-CPS/60765/2004.

One of such modules that has deserved a particular at-
tention in the scope of digital video coding is the motion
estimator. This block is often regarded as one of the most
important operations in video coding to exploit temporal re-
dundancies in sequences of images, it usually involves most
of the computation cost of these systems [7]. As a conse-
quence, real-time Motion Estimation (ME) is usually only
achievable by adopting specialized VLSI structures.

The majority of the processing cores for hardware (HW)
ME that have been proposed in the literature [13, 4] consist
of custom ASIC implementations of the Full-Search Block-
Matching (FSBM) algorithm, mostly owed to its regularity
and data independence. To achieve real-time ME, few ar-
chitectures for faster search algorithms have been proposed
using sub-optimal search strategies, such as the Three-Step-
Search (3SS), the Four-Step-Search (4SS) and the Diamond
Search (DS) [11, 8]. However, the highly irregular control-
flow that characterizes such algorithms tends to compro-
mise the efficiency of such architectures and has there-
fore limited their implementation to general purpose pro-
grammable systems. In fact, although some individual ar-
chitectures were actually proposed [11, 8], they usually re-
sulted in complex and inefficient HW designs, that do not
offer any reconfiguration capability.

Meanwhile, data-adaptive ME algorithms have been pro-
posed, as a result of the advent of the H.264/AVC cod-
ing standard [12]. Some examples of these algorithms
are the Motion Vector Field Adaptive Search Technique
(MVFAST), the Enhanced Predictive Zonal Search (EPZS)
and the Fast Adaptive Motion Estimation (FAME) [3].
These algorithms avoid unnecessary computations and
memory accesses, by taking advantage of the temporal and
spacial correlations of the Motion Vectors (MVs), in order
to adapt and optimize the search patterns. However, just
like the fast sub-optimal ME algorithms, few efficient HW
implementations have been presented for these new ME ap-
proaches, mainly due to the inherent computational com-
plexity of their operation. One example of a highly efficient
IP core of an Application Specific Instruction Set Processor
(ASIP) that is capable of implementing any of these com-
plex ME algorithms has been recently proposed [9].

Nevertheless, despite the considered application sce-

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.66

181

nario, the availability of several feasible implementation
technologies to implement these IP cores has devised a
growing need to compare and assess such alternatives in
what concerns the resulting implementation performances.
As an example, with the advent of the most recent genera-
tions of FPGAs, it has been proved that these devices can
be regarded as feasible alternatives to other faster but more
costly implementation platforms, such as the ASICs [6].

In this paper, it is presented a performance analysis of
two distinct implementations of the programmable ME co-
processor IP core based on the architecture recently pro-
posed in [9]. Although other faster but rather more ex-
pensive alternatives are currently available, this compari-
son considers two distinct implementation technologies that
represent the current best value for money compromise in
terms of the implementation cost and of the resulting per-
formance levels: a high performance FPGA device, from
the Xilinx Virtex-II Pro family, and an ASIC based imple-
mentation, using a 0.18µm CMOS standard cells library.
Besides this technology assessment, some significant func-
tional improvements to the base architecture will be also
proposed, as well as a detailed description of the interfac-
ing mechanisms between the implemented co-processor and
the main processing unit of the video encoding system. A
brief presentation of the introduced improvements on the
implemented development tools, as well as their integration
into the Eclipse framework [2] will be also presented. Such
tools represent an important contribution to maximize the
programmers’ productivity when using this co-processor.

2. Motion estimator architecture

The programmable and specialized architecture for ME
proposed in [9] was tailored to efficiently program and im-
plement a broad class of powerful, fast and/or adaptive ME
search algorithms. This architecture supports the most used
macroblock (MB) structures, such as the traditional fixed
16×16 pixels block size, adopted in the H.261/H.263 and in
the MPEG-1/MPEG-2 video coding standards, or even any
other variable block-size structures, adopted in the MPEG-4
and H.264/AVC video standards.

The offered flexibility is attained by adopting the sim-
ple and efficient micro-architecture, illustrated in Fig. 1(a),
whose modular structure is composed by optimized units
that support a minimum and specialized instruction set.
This data-path is also developed around a specialized arith-
metic unit that efficiently computes the Sum of Absolute
Differences (SAD) similarity function. Furthermore, a quite
simple and hardwired control unit is used to generate all the
required control signals [9].

2.1. Base architecture

The Instruction Set Architecture (ISA) of the ASIP pro-
posed in [9] was designed to meet the requirements of
most ME algorithms, including some recent approaches that
adopt irregular and random search patterns, such as the

data-adaptive ones. Such ISA is based on a register-register
architecture and provides a quite reduced number of differ-
ent instructions (eight), that focus on the set of operations
that are most widely used in ME algorithms:

J - control operation, to change the execution-flow

of a program, by updating the program counter

with an immediate value that corresponds to an

effective address;
MOVR - data transfer operation, to store the content of

a given register in another target register;
MOVC - data transfer operation, to store an 8-bit imme-

diate value in the upper or lower byte of a target

register;
SAD16 - graphic operation, to compute the SAD value

considering two sets of 16 pixels and to accu-

mulate the result in a target register;
ADD - arithmetic operation, to add the contents of two

registers;
SUB - arithmetic operation, to subtract the contents of

two registers;
DIV2 - arithmetic operation, to evaluate the integer di-

vision by 2 of the contents of a given register;
LD - memory data transfer operation, to load the pix-

els data into two fast and small scratch-pad local

memories.

These instructions directly operate the values stored in
a register file composed by 24 General Purpose Registers
(GPRs) and 8 Special Purpose Registers (SPRs), capable of
storing one 16-bit word each. The GPRs sub-bank is split
in two different groups. The first group comprises regis-
ters R0-R15 and can be used to hold the source and desti-
nation operands of all the instructions of the proposed ar-
chitecture. The second group, consisting of registers R16-
R23, can only be accessed using two specific instructions:
MOVR, which allows data exchange between the two regis-
ter groups; and the specialized graphics operation SAD16,
whose destination operand can be written in any of these
registers. The SPRs can also be accessed using these two
specific instructions.

The processor data-path, depicted in Fig. 1(a), includes
two specialized units to increase the efficiency of the most
complex and specific operations: an Address Generation
Unit (AGU) and a SAD Unit (SADU). Each of these units
can directly access the SPRs. The LD operation is effi-
ciently executed by the dedicated AGU, which is capable of
fetching all the pixels of either the reference MB or of the
corresponding search area. On the other hand, the SAD16
graphic instruction is implemented by the SADU. In the ar-
chitecture that is now considered, the implemented SADU
adopts a serial structure, that restricts the required HW at the
cost of requiring more clock cycles to compute this opera-
tion. Nevertheless, a complete parallel implementation of
the SADU could equally be considered, leading to a faster
execution time with an added cost of requiring more HW
resources. Further and more detailed information about this
processor architecture can be found in [9].

182

R2 R3

R6 R7

R10 R11

R14 R15

R18 R19

R22 R23

Σ

..
.

..
.

ASR

Σ

‘0’

‘1’

SADU

AGU

RAM
(Firmware)

Instruction Decoding

R0 R1

R4 R5

R8 R9

R12 R13

R16 R17

R20 R21

PC

...

ALU

Negative

Zero

R26 R27

R30 R31

R24 R25

R28 R29

M

U
X

M
U

X

M

U
X

M
U
X

M
U

X

M

U
X

M
U

X

AGU

SADU

MB
MEM

SA
MEM

(a) Base architecture (SPRs are shaded in the register file).

Motion Estimator

Co-processor

data

addr

#oe_we

data

addr

reqgnt
gntreq

done

Memory

Controller

Video Encoder
Frame

Memory

enrst

8

20

(b) Interface with the video encoding system.

Figure 1. Proposed application specific programmable IP core (ASIP).

2.2. Functional improvements to base archi-
tecture

To maximize the efficiency of the implemented co-
processor, some significant functional improvements were
introduced in the base micro-architecture. In particular, the
status register that stores the flags reflecting the current state
of the processor and that allow to control its execution-flow
was modified. In fact, according to the base architecture
proposed in [9], the Negative and Zero flags of this status
register are updated by the ADD, SUB, DIV2 and SAD16 in-
structions, in order to provide some extra information about
their outcome. Such information can then be used by the
jump (J) instruction to conditionally change the control-
flow of a program. Besides these flags, two extra flags were
introduced in the presented co-processor implementation,
in order to reduce the Clocks per Instruction (CPI) perfor-
mance metric achieved by this architecture: the AGU and
SADU flags. These two new flags are represented in the
processor block-diagram depicted in Fig. 1(a) and provide
the following information:

• The AGU flag reports the conclusion of a transfer op-
eration of pixel data from the external frame memory
into an internal scratch-pad local memory, triggered by
the last LD instruction. This particular feature allows
the programs to be highly optimized: by using this sta-
tus information in conditional jump instructions, it al-
lows data fetching from the external memory to occur
simultaneously with the execution of other parts of the
program that do not depend on this data, thus allowing
the AGU to work in parallel with the remaining func-
tional units.

• The SADU flag indicates that the result of the last
computed SAD16 operation is a minimum SAD value.
With this feature, efficient early-stopping mechanisms
can be easily implemented without any additional
arithmetic operations, which significantly increases the
performance of the ME algorithms.

3. Integration with the video encoding system

To embed the ASIP core as a ME co-processor in a video
encoding system, a simple and efficient interface for both
the data and control signals must be made available. In ad-
dition, the co-processor must also use simple and efficient

protocols, to exchange the control commands and data with
the main processing unit of the video encoding system.

3.1. Interface

The implemented programmable and configurable archi-
tecture for ME presents a simple and reduced pin count in-
terface, as it can be seen in Fig. 1(b). Such interface was
designed to allow the fetching of the pixel data required for
the ME task from the main frame memory of the video en-
coding system, i.e., the pixels of a reference macroblock
and of a search area. In addition, the proposed interface
is also able to efficiently export the configuration parame-
ters and the output results of the ME operation to the video
encoding system main processing unit, i.e., the coordinates
and the SAD value for the computed best matching MVs.

The data transfers with the video encoder frame memory
are mostly supported through five I/O ports, as it can be seen
in Fig. 1(b). The 1-bit port #oe we is used to set the type of
external memory operation: a load or store. The addr port
is 20-bit width and is used to select the position of the frame
memory from which the pixels of a reference macroblock,
or those of a search area, are to be retrieved by the load op-
eration. Since the pixel values used for ME are usually rep-
resented using only 8-bits, an 8-bit width signal is used to
exchange data with the frame memory. Such signal is avail-
able at the data port of the proposed structure. Thus, the
total memory address space provided by this programmable
architecture is 1 MB. Considering that the MVs are esti-
mated using pixels from two different frames, the reference
and search frames, such address range therefore allows the
computation of MVs for the most used image formats (e.g.:
in the 4CIF image format each frame consists of 704× 576

pixels). This data port is also used to transfer the result
of the ME operation to the video encoder, as well as the
configuration parameters of the ME co-processor used in
such computation. These parameters consist of the horizon-
tal and vertical coordinates of the computed best matching
MV, its corresponding SAD value, the MB size, the search
area size and the image width and height, which can be dy-
namically adjusted by the ME algorithm implemented in the
co-processor. The video encoder accesses these parameters
by reading a reserved memory region of the frame memory,
beginning at memory address 0xFFFF0 and encompassing
16 memory locations, as depicted in Fig. 2. Consequently,
the number of required I/O connections is minimized.

183

0xFFFF0

0xFFFEF0x800000x00000

0x7FFFF 0xFFFFF

Search
Frame

Reference
Frame

Config

Figure 2. Memory map of the proposed ASIP.

The two remaining I/O ports provided by the proposed
architecture, req and gnt, are used to implement the required
handshake protocol with the bus master of the video en-
coding system. Such control task is required not only be-
cause the frame memory bank is shared between the ME
co-processor and the main processing unit of the video en-
coder, but also to optimize the memory usage and minimize
the memory bandwidth requirements of the frame memory.

Lastly, the en input port is used to control the co-
processor operation, while the rst input port is used to set
the co-processor into its startup state. The done output port
is used to signal the video encoder that the ME co-processor
has completed the estimation of a new MV.

3.2. Communication protocols

The communication between this programmable archi-
tecture and the video encoder is carried out through the
interface signals described in section 3.1, by using three
distinct simple and efficient protocols. Such protocols are
aimed to support the operating principle of the video en-
coding system, consisting of only three different tasks.

The first task consists in the configuration of the ME
co-processor, by downloading the compiled assembly code
of the considered ME algorithm to the co-processor (i.e.,
the co-processor’s firmware). Both the firmware and the
ME configuration parameters are uploaded into the co-
processor’s program RAM through the data port. The con-
figuration of the co-processor is therefore achieved by first
storing the required data in the frame memory of the video
encoder system and by setting the co-processor into its pro-

gramming mode. The co-processor enters in this mode
when both signals, rst and en, are high, as it can be seen in
Fig. 3. In this programming mode, the co-processor firstly
acquires the bus ownership. Then, it supplies memory ad-
dresses through the addr port to the frame memory, in order
to download the corresponding instructions into its internal
program RAM, organized in the little-endian format. Since
each instruction is 16-bit width, two memory access cycles
are required to load an instruction into the program mem-
ory. The co-processor exits the programming mode as soon
as the last memory position of its 2 kB program memory
is filled in. Such approach allows to minimize the number
of required I/O connections of the ME co-processor with-
out degrading its efficiency, since the downloading of a ME
algorithm into the co-processor is not very often executed.

The second task consists in all data transfers concerning
not only the pixels of a given reference MB and of its cor-
responding search area from the video encoder frame mem-
ory to the ME co-processor, but also all the control param-
eters required to the ME operation, namely, the MB size,

the search area size, the image width and the image height.
A protocol entirely similar to the one described above is
used to support this task, as depicted in Fig. 4. This task oc-
curs on demand by the co-processor and is controlled by the
AGU. This unit must firstly generate all the required con-
trol signals for the co-processor to acquire the bus owner-
ship before initiating the pixel data transfer. Then, the AGU
supplies the correct memory addresses to the frame mem-
ory through the addr port, so that all the pixels of the MB,
or of its corresponding search area, are retrieved from the
external frame memory and loaded into the local scratch-
pad memories of the ME co-processor. Since each pixel is
represented using 8-bits, a single memory access cycle is
required to transfer a pixel value from the external frame
memory into the local memories of the ME co-processor.

The third task consists in transferring, to the video en-
coder, both the result of the ME operation, as well as the
ME configuration parameters updated by the co-processor
during its operation. A different protocol is used, but again,
such data transfer occurs on demand by the co-processor
and it is controlled by its main control unit. The co-
processor starts the output operation by requesting the bus
ownership, as it can be seen in Fig. 5. Then, it enters in a
loop that outputs the contents of all the co-processor’s SPRs
through the data port. Two memory access cycles are re-
quired for this operation, since the SPRs are 16-bit width
and the output data port is only 8-bit width. In addition,
every time a new value is outputted through the data port,
the status of the done output port is toggled, in order to sig-
nal the video encoder that new data was uploaded into the
reserved memory region of the video encoding system. The
memory position used to store the data is selected according
to the value being outputted at the addr port.

4. Improved integrated development tool

Each programmed ME firmware of the implemented
ASIP can be developed using a custom toolchain. Such
programming environment was integrated into the Eclipse
framework [2] with a plug-in, thus maximizing the pro-
grammers’ productivity when developing the firmware.
This environment was specially designed for the pro-
posed ISA and consists of three different programming
tools: a symbolic assembler (amep-elf-as), a linker
(amep-elf-ld) and a cycle-based accurate simulator
(amep-elf-sim).

The assembler compiles the source files, written using
the co-processor’s ISA (see section 2.1) and a syntax very
similar to the one adopted by the GNU as, and generates
the corresponding object code files in the ELF format. The
amep-elf-as tool also has the capability to validate the
syntax and semantics of the assembly instructions, to man-
age comments and symbols, that can either refer to labels or
linked values, and even to process macros. This feature al-
lows the development of firmware modules faster and better
structured, since the original ISA does not support subrou-
tine nor function calls.

184

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

0x7FF

Instr1023 MSB

...

...

...

...

...

...

...

...

...

Normal Mode Programming Mode

0x00000

Instr0 LSB

0x00001

Instr0 MSB

Figure 3. Temporal diagram concerning the loading of the firmware into the proposed ASIP.

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

Address Pixel0 Address Pixeli

Pixel Value0 Pixel Valuei

...

...

...

...

...

...

...

...

Loading of a pixel value

...

Address Pixel1

Pixel Value1

Figure 4. Temporal diagram concerning the loading of MB/search area pixels into the proposed ASIP.

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

0xFFFF0 0xFFFFF

R28 LSB R27 MSB

...

...

...

...

...

...

...

...

...

R28 MSB

0xFFFF1

Figure 5. Temporal diagram concerning the output of the result of a ME operation.

The amep-elf-ld tool generates a file containing the
firmware for the proposed micro-architecture, i.e., the exe-
cutable file to be stored in the program memory of the ASIP.
Such file is obtained by relocating the machine code instruc-
tions of the object code file provided by the amep-elf-as
assembler to memory base address 0x0. For more com-
plex ME algorithms, where the algorithm implementation
consists of several different source assembly files, the de-
veloped linker is also capable of linking all the correspond-
ing object files into a single executable file and of resolv-
ing all the crossed references to the corresponding symbols
within the object files. This procedure may involve the re-
targeting of jump instructions, since in the proposed archi-
tecture these instructions always refer to absolute memory
address values.

The operation of the proposed ASIP for a given firmware
can be validated using the amep-elf-sim simulation tool.
The simulations are executed in a cycle by cycle basis and
allow the profiling of the implemented ME algorithms, by
providing the required mechanisms to count the number of
clock cycles required to execute the whole algorithm, or
some parts of it. Moreover, the developed simulation tool

provides the most commonly adopted debug techniques,
namely the use of breakpoints and of the step, run until

and continue execution commands. The simulator also
allows to examine the three memory banks of the ASIP,
i.e., the program memory and the current MB and search
area memories, as well as all the registers of the processor:
the GPRs and the SPRs banks, the flags and the program
counter.

5. Prototyping platform

To validate the functionality of the ME programmable
architecture in a practical realization, a complete video en-
coding system was developed and implemented. The base
configuration of the encoding system consists of a general-
purpose processor that executes all the video encoder op-
erations, except for the ones concerning ME. The ME op-
erations are executed by the IP core processor, acting as a
specialized co-processor of the main processing unit of the
video encoder, i.e., the general purpose processor. This co-
processor computes, in parallel with the other operations,
the several MVs that are required by the encoder to im-
plement the temporal prediction mechanism. Two different

185

platforms were considered for prototyping the ME core, in
order to evaluate its performance when implemented using
both FPGA and ASIC target technologies.

The implemented video encoder consists of a software
implementation of the H.264/AVC standard [12]. Such
implementation includes some optimizations of the JM
H.264/AVC Reference Software [1], in order to make its
use more efficient in embedded systems. The modifications
include the redesign of all functions used in ME, the dec-
laration of all variables in these functions using the prefix
register, so as to optimize the program execution time and
the adaptation of the memory allocation mechanism in order
to convert all dynamic allocations to static memory alloca-
tions. To maximize its performance, the linker script of the
video encoding system was also adapted to the target em-
bedded system. Such modifications aimed at optimizing the
data transfers from the video encoder main memory module
to the ME co-processor, concerning the pixels of the refer-
ence MB and of its corresponding search area.

5.1. FPGA based prototype

The implementation of the video encoding system using
an FPGA device was realized using a Xilinx ML310 devel-
opment platform [14], which includes a 100MHz 256MB
DDR memory bank and a Virtex-II Pro XC2VP30 FPGA
device from Xilinx. This FPGA offers a significant set of
implementation resources, two Power-PC processors, sev-
eral Block RAM (BRAM) modules and high speed on-chip
bus-communication links.

The programmable architecture for ME is implemented
using the configurable logic blocks provided by this FPGA,
while the main processing unit of the video encoder consists
of a Power-PC 405 D5 processor, operating at 300MHz.
Such processor runs the optimized software implementa-
tion of the H.264 video encoder [1], which is built into
the FPGA BRAMs and the ML310 DDR memory bank.
The linker script used for this implementation maximizes
the performance of the encoder by taking into account the
significantly different access times provided by these two
memory banks. To do so, the me section of the application
was located in a 128kB FPGA BRAM module, while the
text, data, stack and heap sections were located in the DDR
memory module, due to its large size (more than 256kB).
The interconnection between the Power-PC processor and
the ME co-processor is implemented by using both the high-
speed 64-bit Processor Local Bus (PLB) and the general
purpose 32-bit On-chip Peripheral Bus (OPB), where the
Power-PC is connected as the master device. Such intercon-
nect buses are used not only to exchange the control signals
between the Power-PC and the ME co-processor, but also to
send all the required data to the ME structure.

5.2. ASIC based prototype

The implementation of the ME co-processor in an ASIC
was carried out in conjuction with an AT91SAM9263-EK
evaluation kit [5] from ATMEL. This development board

includes an AT91SAM9263 micro-controller, based on the
ARM926EJ-S processor, widely adopted by the latest gen-
eration of mobile phones and PDAs. This board also has an
extensive set of peripherals for control, communication and
data storage purposes. Such set of peripherals also includes
all the components required to implement a modern video
encoding system, i.e., a graphical 1/4 VGA TFT LCD mod-
ule, an ISI connector that provides interface to video cam-
eras and a 100 MHz 64MB SDRAM memory bank. In ad-
dition, this development board offers the possibility to eas-
ily embed user-developed peripherals, by making available
some connectors to the External Bus Interface (EBI) of the
processor.

Hence, the main processing unit of the video encoder
was implemented in the AT91SAM9263 processor, oper-
ating at 99.33MHz. Just as the FPGA prototyping system,
such processing unit runs the optimized software implemen-
tation of the H.264 video encoder [1]. In this prototyping
platform, all program code and data sections of the applica-
tion are located in the 64MB SDRAM memory bank. An
expansion slot is used to connect the AT91SAM9263-EK
prototyping platform to a daughter board, with the ASIC
implementation of the ME co-processor, by making use of
the processor’s EBI. This EBI is used to exchange the con-
trol signals and all the required data between the processor
and the ME co-processor.

6. Implementation and experimental results

The performance analysis of the FPGA and ASIC pro-
totypes of the programmable ME IP core was realized for a
specific configuration of this parameterizable structure. The
considered setup adopted a simplified AGU that does not
allow data re-usage and a power efficient serial processing
structure for the SADU module. Such architecture was se-
lected as the result of a compromise between the amount of
required HW resources, the circuit power consumption and
its usability for real-time operation. Previous research work
has shown that for single reference frame ME and for im-
age formats up to CIF (352 × 288 pixels), a serial structure
for the SADU presents the best trade-off. However, depend-
ing on the target application, the considered architecture can
be reconfigured to use other AGU and SADU modules that
represent different compromises.

6.1. FPGA implementation

The video encoding system described in section 5.1 was
implemented using the EDK 9.1i and ISE 9.1i tools from
Xilinx. The implementation layout of the whole video en-
coding system in this FPGA is presented in Fig. 6. Table 1
presents the implementation results obtained for the ME co-
processor IP core. These results evidence that FPGA based
implementations of the considered ME architecture allow
a maximum operating frequency of about 100 MHz. They
also show that very few HW resources (about 6k equivalent
logic gates) are required to implement the ME co-processor

186

Figure 6. Implemented prototype of the ME
ASIP in a Virtex-II Pro XC2VP30 FPGA device.

Table 1. Implementation results of the motion
estimator using the Virtex-II Pro XC2VP30
FPGA device.

Occupied Slices 811 (5%)

Occupied LUTs 1235 (4%)

Estimated Equivalent Logic Gates 6 kGates

Occupied BRAMs 4 (2%)

Maximum operating frequency 100.30 MHz

in an FPGA device. In fact, the ME co-processor uses only
20% of the total slices required to implement the whole
video coding system, that can operate at a maximum fre-
quency of 62 MHz. Such operating frequency limits the
performance of the ME co-processor and is due to the extra
hardware resources required to implement all the system pe-
ripherals (i.e., an USART, that allows communication with
the encoder; a timer module, to evaluate the performance of
the encoder and of the ME task; and BRAM local memo-
ries) and its interconnections with the ME co-processor and
the Power-PC processor.

The functionality of the implemented video coding sys-
tem was successfully verified by encoding a set of bench-
mark QCIF video sequences, with quite different charac-
teristics in terms of movement and spacial detail, and by
using several different ME algorithms. The adopted encod-
ing used the typical set of video coding parameters: 8-bits
to represent the pixel values, MBs with 16 × 16 pixels and
search areas with 32 × 32 pixels. This performance assess-
ment considered the FSBM, the 3SS and the DS ME algo-
rithms, which were programmed using the instruction set
presented in section 2.1.

6.2. ASIC implementation

The video encoding system described in section 5.2 was
implemented with the GNU toolchain for the ARM ar-
chitecture, targeting the AT91SAM9263-EK evaluation kit
connected to the expansion board with the ASIC implemen-
tation of the ME co-processor. This ASIC adopted the same
configuration as the one used for the FPGA implementa-
tion. In addition, it also included a complete set of test-
ing structures, that can be accessed by means of an inte-
grated JTAG controller. The circuit, whose layout is pre-
sented in Fig. 7, was manufactured under the mini@SIC

(a) ASIC layout.

(b) Wire bond-

ing.

(c) Packaged chip.

Figure 7. Implemented prototype of the ME
ASIP in an ASIC based on UMC 0.18µm CMOS
process.

Table 2. Implementation results of the mo-
tion estimator using the UMC 0.18µm CMOS

ASIC.

Silicon Area / IP Core 0.25 mm2 / 25 kGates

Equivalent Test Struct. 0.15 mm2 / 16 kGates

Logic Gates Memories 0.68 mm2 / 70 kGates

Max. operating frequency 100 MHz

Power (Core @100MHz) 31 mW

program from EUROPRACTICE, using a StdCell library
based on a 0.18µm CMOS process with 1 poly and 6 metal
layers from UMC (UMC L180 1P6M MM/RFCMOS) [10].
Table 2 presents the obtained implementation results, with
Vdd = 1.8V . These results show that the ASIC implementa-
tion (excluding the program code and pixel data local mem-
ories) only requires 41k equivalent logic gates (111k equiv-
alent logic gates are required to implement the whole pro-
cessor). When compared with the FPGA implementation,
this difference arises from the absence of optimized arith-
metic cells, such as fast carry-propagate-like adders and
multipliers, that are usually available in FPGAs. Conse-
quently, such arithmetic units had to be fully designed and
implemented. The functionality of the implemented video
encoder was verified using the same methodology as the one
adopted for the FPGA implementation and proved to allow
the real-time computation of MVs up to the CIF image for-
mat.

6.3. Comparison analysis

The performance results presented in Table 2 for the ME
ASIC are quite similar to those obtained with the FPGA
implementation, presented in Table 1. However, the results
obtained for the implementation of the whole video encod-
ing system show that the FPGA implementation provides a
lower operating frequency than the ASIC implementation:

187

Table 3. Comparison of the performances of
the two considered implementations of the
ME co-processor.

ME

Algorithm

Average

#Clk/MB

Max. frame-rate [fps]

QCIF CIF

FPGA ASIC FPGA ASIC

FSBM 75922 8.29 13.30 2.07 3.33

3SS 7453 84.49 135.52 21.12 33.88

DS 10588 56.68 94.12 14.67 23.53

66 MHz vs 100 MHz. This decrease in the operating fre-
quency of the FPGA implementation, which is owed to the
embedding of the PowerPC processor and of the remaining
peripherals that compose the system, causes a slight degra-
dation in the performance of the video encoding system,
as depicted in Table 3. Nevertheless, the considered ME
systems still allow the estimation of MVs in real-time for
the QCIF and CIF image formats (e.g.: when the 3SS al-
gorithm is adopted). In fact, better performance levels can
be achieved by using different SADU architectures. For ex-
ample, by using a fully parallel architecture for the SADU,
it is possible to estimate MVs in real-time for images up to
4CIF resolution.

Furthermore, the FPGA implementation of the ME co-
processor also presents increased advantages for certain
specific video encoding applications, due to its reconfigura-
bility properties. By using such capability to reconfigure
the ME co-processor and use different SADU and/or AGU
structures, it is possible to dynamically adapt the video en-
coder to the characteristics of the target application and/or
of the communication channel. In such situations, this im-
plementation can be regarded as a suitable alternative for
video encoding applications running on portable and mo-
bile devices [6].

On the other hand, when battery-supplied devices are
considered, different requirements must be taken into ac-
count. For such cases, where power consumption is a
mandatory requirement, the implemented ASIC ME circuit
clearly evidences its suitability to efficiently implement ME
algorithms, by requiring only 31 mW when operating at
100 MHz.

7. Conclusions

This paper presents a performance analysis of two dis-
tinct implementations of a recently proposed high perfor-
mance programmable and specialized architecture for ME.
The comparison is performed by considering the integration
of such structure in a video encoding system as a motion
estimation co-processor, using two quite different technolo-
gies: a high performance FPGA device, from the Xilinx
Virtex-II Pro family, and an ASIC based implementation,
using a 0.18µm CMOS standard cells library.

The experimental results obtained with the implementa-
tion of several different ME algorithms (FSBM, 3SS and
DS) in these co-processors have shown that the two con-
sidered implementations present very similar performance

levels and allow the estimation of MVs in real-time (above
25 fps) up to the CIF image format. Such results also
demonstrated that the power consumption requirements of
the ASIC implementation makes it more suitable to effi-
ciently implement ME algorithms in battery-supplied de-
vices. Nevertheless, the reconfigurability properties of the
FPGA implementation allow the motion estimator to dy-
namically adapt the video encoder to the characteristics of
the target application and/or of the communication channel.

References

[1] JM H.264/AVC Reference Software - version 13.2.

http://iphome.hhi.de/suehring/tml/, 2007.

[2] Eclipse framework. http://www.eclipse.org, 2008.

[3] I. Ahmad, W. Zheng, J. Luo, and M. Liou. A fast adap-

tive motion estimation algorithm. IEEE Transactions on

Circuits and Systems for Video Technology, 16(3):439–446,

Mar. 2006.

[4] S. Ang, G. Constantinides, W. Luk, and P. Cheung. The

cost of data dependence in motion vector estimation for re-

configurable platforms. In Proc. of Int. Conf. on Field Pro-

grammable Technology - FPT’2006, pages 333–336. IEEE,

Dec. 2006.

[5] ATMEL Corporation. AT91SAM9263-EK Evaluation Board

- User Guide, March 2007.

[6] A. Berić, R.Sethuraman, H. Peters, J. L. van Meerbergen,

G. de Haan, and C. A. A. Pinto. A 27 mW 1.1 mm2 mo-

tion estimator for picture-rate up-converter. In Proc. of the

17th Int. Conf. on VLSI Design - VLSI’04, pages 1083–1088,

2004.

[7] V. Bhaskaran and K. Konstantinides. Image and Video Com-

pression Standards: Algorithms and Architectures. Kluwer

Acad. Publish., 2nd edition, June 1997.

[8] W. Chao, C. Hsu, Y. Chang, and L. Chen. A novel hybrid

motion estimator supporting diamond search and fast full

search. In IEEE Int. Symp. on Circuits and Systems - IS-

CAS’2002, pages 492–495, May 2002.

[9] T. Dias, S. Momcilovic, N. Roma, and L. Sousa. Adap-

tive motion estimation processor for autonomous video de-

vices. EURASIP Journal on Embedded Systems - Special

Issue on Embedded Systems for Portable and Mobile Video

Platforms, (57234):1–10, May 2007.

[10] Faraday Techn. Corp. Faraday ASIC Cell Library FSA0A C

0.18µm Standard Cell (v1.0), August 2004.

[11] Y. Jehng, L. Chen, and T. Chiueh. An efficient and sim-

ple VLSI tree architecture for motion estimation algorithms.

IEEE Transactions on Signal Processing, 41(2):889–900,

Feb. 1993.

[12] Joint Video Team of ITU-T and ISO/IEC JTC1. ITU-T Rec-

ommendation H.264, “Advanced Video Coding for Generic

Audiovisual Services”. ITU-T, May 2003.

[13] N. Roma and L. Sousa. Efficient and configurable full search

block matching processors. IEEE Transactions on Circuits

and Systems for Video Technology, 12(12):1160–1167, Dec.

2002.

[14] Xilinx. ML310 User Guide for Virtex-II Pro Embedded De-

velopment Platform v1.1.1. Xilinx, Inc., 2004.

188

