
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
Published online 12 October 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.2934

SPECIAL ISSUE PAPER

Configurable and scalable class of high performance hardware
accelerators for simultaneous DNA sequence alignment

Nuno Sebastião*,†, Nuno Roma and Paulo Flores

INESC-ID = IST - Rua Alves Redol, 9, Lisboa, Portugal

SUMMARY

A new class of efficient and flexible hardware accelerators for DNA local sequence alignment based on the
widely used Smith–Waterman algorithm is proposed in this paper. This new class of accelerating structures
exploits an innovative technique that tracks the origin coordinates of the best alignment to allow a significant
reduction of the size of the dynamic programming matrix that needs to be recomputed during the subsequent
traceback phase, providing a considerable reduction of the resulting time and memory requirements. The
significant performance of the enhanced class of accelerators is attained by also providing support for an
additional level of parallelism: the capability to concurrently align several query sequences with one or
more reference sequences, according to the specific application requisites. Moreover, the accelerator class
also includes specially designed processing elements that improve the resource usage when implemented
in a Field Programmable Gate Array (FPGA), and easily provide several different configurations in an
Application Specific Integrated Circuit (ASIC) implementation. Obtained results demonstrated that speedups
as high as 278 can be obtained in ASIC accelerating structures. A FPGA-based prototyping platform,
operating at a 40 times lower clock frequency and incorporating a complete alignment embedded system,
still provides significant speedups as high as 27, compared with a pure software implementation. Copyright
© 2012 John Wiley & Sons, Ltd.

Received 12 January 2011; Revised 12 June 2012; Accepted 6 September 2012

KEY WORDS: hardware accelerator; DNA; local sequence alignment; traceback; FPGA; ASIC

1. INTRODUCTION

The advent of the High Throughput Short Read (HTSR) sequencing technologies [1] has lead to
an exponential increase of the amount of sequenced DNA. For instance, the GenBank [2], one of
the main public access databases, has presented a continuous and steady growth, and in the August
2011 release, it included over 130� 109 base pairs (bps) from several different species.

One important characteristic of these HTSR technologies is concerned with the significant
amounts of short DNA segments (reads) that are generated. However, the length of the reads
produced by most these platforms (35�150 bp) is small when compared with previous generation
sequencing technologies and much smaller than the original complete DNA sequence.

To assist the biologists in the interpretation of the huge sized sequence databases and in the
extraction of useful information, a set of alignment algorithms is usually applied to solve some open
problems in the field of bioinformatics, such as: DNA re-sequencing, where genome assembly is
carried out against a reference genome; Multiple Sequence Alignment, where multiple genomes are
aligned to perform genome annotation; Gene finding, where RNA sequences (the transcriptome) are
aligned against the organism genome to identify new genes, and so forth. Nevertheless, the

*Correspondence to: Nuno Sebastião, INESC-ID, Rua Alves Redol, 9, Lisboa, Portugal.
†E-mail: nuno.sebastiao@inesc-id.pt

Copyright © 2012 John Wiley & Sons, Ltd.

1320 N. SEBASTIÃO, N. ROMA AND P. FLORES

alignment algorithms that are adopted by these applications often have to process sequences of quite
dissimilar length. Moreover, the number of sequences to be aligned may be significantly different:
in a short-read versus reference genome scenario, there can be 106 short query sequences (each
one with as few as 35 nucleotides) to align with one single reference sequence (composed by about
108 nucleotides), whereas in a gene versus gene database scenario, both the query and reference
sequences have similar sizes (in the order of 103 nucleotides), but the database may incorporate as
much as 105 reference sequences. Besides these, other application scenarios can also be considered,
in which the sizes and the number of sequences to align may be even different from those of the
previous two examples.

One of the most used alignment techniques is based on the Smith–Waterman (S–W) algorithm [3].
It is a Dynamic Programming (DP) algorithm that determines the optimal alignment between any
pair of sequences and has a time complexity of O.nm/, where n and m represent the size of the
sequences being aligned. However, the sheer volume of data that needs to be aligned poses a
practical limitation to the execution of this algorithm in typical off-the-shelf machines. One simple
example of a common challenge comes from the need to align up to 100 million reads against a
reference genome that can be as large as 3 Gbp. With reads as short as 35 bps, this corresponds to
the computation of 100 million matrices of dimension 3�109�35, which results in a computational
task that is unfeasible even for a standard high performance machine.

To overcome the limitations of the S–W algorithm, other alignment tools, such as Basic local
alignment search tool (BLAST) [4] and FASTA [5], have been developed. Although these algorithms
present a much smaller runtime, they are based on heuristics that not always guarantee the optimal
alignment. Therefore, whenever the best quality alignment is required, alignment procedures based
on the S–W algorithm need to be adopted.

To significantly reduce the alignment time using the S–W algorithm, it has been frequently
considered the usage of efficient accelerators, tightly coupled with General Purpose Processors
(GPPs). These solutions range from parallel implementations running in Graphics Processing Units
(GPUs) [6] to dedicated hardware accelerators. The most common dedicated hardware architectures
are based on systolic arrays, such as the bidimensional structure presented in [7]. Nevertheless,
unidimensional (linear) systolic arrays are the most frequently adopted structures [8–10].
Meanwhile, a commercial solution [11], developed by CLC bio, was also made available.
Independently of the adopted structure, most of the previously mentioned dedicated accelerators are
targeted and implemented in Field Programmable Gate Array (FPGA) platforms and use the inherent
reprogrammability capabilities to broaden their application scenarios. Furthermore, architectures
targeted at Application Specific Integrated Circuit (ASIC) implementation have also have been
presented [12–14] and are also based on systolic arrays. However, these static accelerating structures
tend to be tuned for specific applications in order to satisfy particular computational requirements.
For this reason, when used in a wider range of application scenarios, the actual performance of these
statically configured structures can be significantly compromised.

On the other hand, it is observed that almost all these solutions were only focused on accelerating
the first phase of the S–W algorithm (the DP matrix fill), completely disregarding the second phase
(the traceback), which is typically performed using a GPP in a post-processing step. The exception
is observed in [15] and [10], where hardware architectures that also accelerate the traceback phase
were recently presented. Nevertheless, only the global alignment problem is addressed in [15] and
in [10] the memory space requirements when aligning long DNA sequences are extremely large.
Moreover, most of the previously proposed hardware architectures are not perfectly adapted and
optimized to deal with sequences of short reads (35�150 bp). Therefore, a flexible and configurable
accelerating structure may be regarded as a better solution to attain a good performance compromise
in a much wider range of application domains.

In this scope, this paper proposes a new configurable and fully parameterizable class of hardware
accelerators that are capable of improving even further the alignment performance levels that are
required by current DNA processing applications. Such performance improvement is the result of
two important contributions: (i) an innovative and quite efficient technique that makes use of the
information gathered during the computation of the alignment scores in the matrix fill phase
(in hardware) in order to significantly reduce the time and memory requirements of the traceback

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1321

phase (later implemented in software) [16], and (ii) the exploitation of an additional level of paral-
lelism based on the offered capability to simultaneously align several query sequences with one or
more reference sequences, according to the target application requisites.

Furthermore, this new class of hardware accelerators can be implemented in an FPGA or in
an ASIC device and exploits the characteristics of both implementation technologies to make
it more suitable for a broader range of application scenarios. When implemented in an FPGA,
the reprogrammability capabilities of such devices are exploited to fine tune the accelerator
characteristics (such as the data bit-width and number of processor elements) to the target alignment
conditions. On the other hand, when implemented in an ASIC, the proposed class of accelerators
offers the possibility to use several different configurations of the included long systolic array
structure by splitting it into several smaller arrays by means of specially designed switching
elements, thus allowing the use of the same hardware to concurrently align more than one pair of
sequences and thus improve the overall performance. This additional level of parallelism, achieved
by configuring the accelerator in a multiple-stream way, provides a significant acceleration of the
alignment of short reads against the reference genome, as used by HTSR techniques.

This manuscript is organized as follows: Section 2 gives a brief overview on the widely adopted
S–W algorithm. The proposed technique to speedup the traceback phase is presented in Section 3.
Section 4 describes the basic accelerator architecture, whereas Section 5 introduces the new class
of accelerators that implement the concurrent processing scheme of the alignment procedure. The
used prototyping platform is presented in Section 6, whereas in Section 7 the obtained results are
discussed and the achieved speedups are presented. Finally, the conclusions are drawn in Section 8.

2. SMITH–WATERMAN ALGORITHM

Sequence alignment is a fundamental operation by which useful information is extracted from the
large amounts of sequenced DNA. The alignments can be classified either as local or global. In
global alignments, the complete sequences are aligned from one end to the other, whereas in local
alignments, only the subsequences that present the highest similarity are considered. In practice,
the local alignment procedure is generally preferred when searching for similarities between
distantly related biological sequences, because this type of alignment more closely focuses on the
subsequences that were conserved during evolution.

The local alignment of any two strings S1 and S2, with sizes n and m respectively, reveals which
pair of substrings of S1 and S2 optimally align, such that no other substrings pairs have a higher
alignment score. The S–W algorithm [3] allows the computation of the n�m DP matrix G, where
each elementG.i , j / represents an alignment score. This matrix reveals the highest alignment score
between the substrings of strings S1 and S2.

The recursive relation to calculate the local alignment score G.i , j / is given by Equation (1),
where Sbc.S1.i/,S2.j // denotes the substitution score value obtained by comparing the character
S1.i/ against character S2.j /, and ˛ represents the gap penalty cost (the cost of aligning a character
to a space, also known as gap insertion). An example of a substitution function is shown in Table I.

G.i , j /Dmax

8̂
<
:̂

G.i � 1, j � 1/C Sbc.S1.i/,S2.j //,
G.i � 1, j /� ˛,
G.i , j � 1/� ˛,
0

G.i , 0/DG.0, j /D 0

(1)

Table I. Example of a substitution score matrix.

Sbc A C G T

A 3 �1 �1 �1

C �1 3 �1 �1

G �1 �1 3 �1

T �1 �1 �1 3

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1322 N. SEBASTIÃO, N. ROMA AND P. FLORES

Table II. Example of an alignment score matrix.

Figure 1. Obtained local alignment for the considered example sequences.

The alignment scores are usually positive for characters that match, thus denoting a degree
of similarity between them. Mismatching characters may have either positive or negative scores,
according to the type of alignment that is being performed and denote the biological proximity
between them. Hence, different substitution score matrices may be used to reveal different types of
alignments. In fact, the particular score values that are adopted are usually determined by biologists,
according to considered evolutionary relations. The gap penalty cost ˛ is always a positive value.

As soon as the entire score matrix G is filled, the substrings of S1 and S2 with the best alignment
can be found by locating the cell with the highest score in G. Then, all matrix cells that lead to
this highest score cell are sequentially determined by performing a traceback phase. This last phase
concludes when a cell with a zero score is reached, identifying the aligned substrings as well as the
corresponding alignment. The path taken at each cell is chosen on the basis of which of the three
neighboring cells (left, top-left, and top) was used to calculate the current score value using the
recurrence given by Equation (1).

Table II shows an example of the calculated score matrix for aligning two sequences
(S1 D CAGCCTCGCT and S2 D AATGCCAT TGAC) using the substitution score matrix
presented in Table I (a match has a score of 3 and a mismatch a score of �1). The gap penalty has a
value of 4. The shadowed cells represent the traceback path (starting at the highest score cell .8, 10/)
that was followed to determine the best alignment. The resulting alignment is illustrated in Figure 1.

3. TRACKING THE ALIGNMENT ORIGIN AND END INDEXES

Most of the previously proposed hardware accelerators only implement the score matrix computa-
tion (without performing the traceback phase), thus only returning the alignment score (the highest
value of matrix G). Afterwards, whenever the obtained score is greater than a given user-defined
threshold, the whole G matrix must be recalculated (usually by software, using a GPP). However,
contrasting to what happened in the hardware accelerator, in this recalculation, all the intermediate
data that is required to perform the traceback and retrieve the corresponding alignment must be
maintained in the GPP memory. Hence, with this common approach, the re-computation does not
re-use any data from the previous calculation performed by the hardware accelerator. Such situation
can be even aggravated by the fact that typical alignments consider sequences with a quite dissimilar
size, withm� n (e.g. HTSR sequencing analysis). Therefore, the size of the subsequences that par-
ticipate in the alignment is always in the order of n, meaning that a large part of matrix G that must
be completely recomputed in the GPP is not even required to obtain the actual alignment.

To overcome this inefficiency, an innovative technique is now proposed to significantly reduce
the time and memory space that is required to find the local alignment in the traceback phase of this
algorithm. Assuming that it is possible to know that the local alignment of a given sequence pair S1
and S2 starts at position S1.p/ and S2.q/ (denoted as .p, q/) and ends at position S1.u/ and S1.v/

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1323

(denoted as .u, v/), then the local alignment can be obtained by only considering the score matrix
corresponding to substrings Sa D S1Œp..u� and Sb D S2Œq..v�.

To determine the character position where the alignment starts, an auxiliary matrix Cb is pro-
posed. Let Cb.i , j / represent the coordinates of the matrix cell where the alignment of strings
S1Œ1..i � and S2Œ1..j � starts. By using the same DP method that is used to calculate matrix G.i , j /,
it is possible to simultaneously build matrix Cb , with the same size as G, that maintains a track
of the cell that originated the score that reached cell G.i , j / (i.e. the start of the alignment ending
at cell .i , j /). The recursive relations to compute matrix Cb are given by Equation (2), with initial
conditions of Cb.i , 0/D Cb.0, j /D .0, 0/.

Cb.i , j /D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

.i , j /, if G.i , j /DG.i � 1, j � 1/CSbc.S1.i/,S2.j //

and Cb.i � 1, j � 1/D .0,0/

Cb.i � 1, j � 1/, if G.i , j /DG.i � 1, j � 1/CSbc.S1.i/,S2.j //

and Cb.i � 1, j � 1/¤ .0,0/

Cb.i � 1, j /, if G.i , j /DG.i � 1, j /� ˛,

Cb.i , j � 1/, if G.i , j /DG.i , j � 1/� ˛,

.0,0/, if G.i , j /D 0

(2)

Hence, by applying the proposed technique, denoted as Alignment Origin and End Indexes
(AOEI) tracking, and by simply knowing the cell where the maximum score (G.u, v/) occurred,
it is possible to determine from Cb.u, v/ D .p, q/ the coordinates of the cell where the alignment
began. Consequently, to obtain the desired alignment, the traceback phase only has to rebuild the
score matrix for the subsequences S1Œp..u� and S2Œq..v�, which are usually considerably smaller
than the entire S1 and S2 sequences.

The obtained matrix Cb for the alignment example of sequences S1 and S2, whose G matrix
was presented in Table II, is shown in Table III. In this example, by knowing from matrix G that the
maximum score occurs at cell .8, 10/, it is possible to retrieve the coordinates of the beginning of the
alignment in cell Cb.8, 10/D .3, 4/. With this information, the optimal local alignment between S1
and S2 can be found by only processing the much smaller substrings Sa D S1Œ3..8� D GCCTCG
and Sb D S2Œ4..10� D GCCAT TG. Such alignment (between Sa and Sb) can now be determined
by computing a much smaller G matrix in the traceback phase, as shown in Table IV.

The major advantage of this technique is a significant reduction on the time and memory space
that is required to recompute matrixG, which is now confined to the subsequences that actually par-
ticipate in the alignment rather than the entire sequences. With this approach, the proposed AOEI
technique potentially provides an important contribution on the reduction of the computational effort
(time and space) of the whole alignment algorithm.

Table III. Example of an Alignment Origin and End Indexes tracking matrix.

Table IV. Reduced alignment score
matrix.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1324 N. SEBASTIÃO, N. ROMA AND P. FLORES

4. ACCELERATOR ARCHITECTURE

The local alignment algorithm described in Section 2 is usually applied to process biological
sequences with pronounced dissimilar sizes m and n, where m� n (e.g. m � 106 and n � 102).
On the other hand, the matrix fill phase of the alignment algorithm is the most computationally
intensive part, making it a good candidate for parallelization. However, the data dependencies that
exist in the calculation of each matrix cell highly restrict the parallelization model. In fact, only the
computations corresponding to the values along the matrix anti-diagonal direction can be performed
in parallel, because the values ofG.i�1, j �1/,G.i , j �1/, andG.i�1, j / are needed to calculate
the value for cell G.i , j /.

As a consequence, specialized parallel hardware that is capable of performing a great number
of simultaneous arithmetic operations has been regarded as especially suited for this task [7–10].
Linear systolic arrays with several identical Processing Elements (PEs), as shown in Figure 2, have
proved to be particularly efficient structures to implement this type of processing, by simultaneously
computing the values of matrix G that are located in a given anti-diagonal [8].

4.1. Base processing element

The PE architecture proposed in this paper is based on the PE structure described in [8] and illus-
trated in Figure 3. This base PE only implements the basic score matrix calculation (G.i , j /), and
it is composed by a two stage pipelined datapath. The throughput of each element is one score
value per clock cycle. Then, because the S–W algorithm requires the evaluation of the maxi-
mum score value among the set of scores that compose the entire matrix, an additional datapath
is also included to select the maximum value that was calculated in the whole PE array (output
Max.i , j /). With such datapath, PEi selects and stores the maximum score that was computed by
PEs 1 through i .

The array evolves along the time, by shifting the reference sequence characters through the PEs.
The query sequence character S1.i/ is allocated to the i th PE, and this PE performs, at every clock
cycle, all the computations required to determine the score value of a certain matrix cell. After all
the reference sequence characters S2.j / have passed through all the PEs, the alignment score is
available at the Max.i , j / output of the last PE.

The computation that is performed at each PE requires, among other operations, the selection
of the substitution score corresponding to the two characters under analysis, that is, the value of
Sbc.S1.i/,S2.j //. Because each PE always operates with the same character of S1, it only needs
to store the column of the substitution score matrix (Sbc) that represents the costs of aligning
character S1.i/ with the entire alphabet.

In the computation of each matrix cellG.i , j /, the evaluation of the maximum of the three distinct
terms presented in Equation (1) is also required. In particular, the zero condition of the S–W algo-
rithm is implemented by controlling the reset input of the registers that store G.i , j /. Such reset is
infered from the sign bit of the score value, that is, if the maximum value among the three partial
scores is negative, then the register that holds such score is automatically cleared.

Figure 2. Systolic array structure for DNA algorithms.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1325

Figure 3. Base architecture of processor element PEi .

4.2. Enhanced processing element

The enhanced PE architecture that is now presented implements the AOEI accelerator technique that
was proposed in Section 3. With this technique, the re-computation of the G matrix is reduced to
the minimum necessary to perform the traceback phase. It is implemented by propagating, through
the PEs, not only the partial maximum scores (as in the base PE), but also the coordinates of their
origin (the beginning of the alignment), together with the coordinates where the maximum score
has occurred. As it was shown in Section 3, this proposal greatly simplifies the traceback phase,
by only focusing on the substrings that are actually involved in the alignment, thus avoiding the
re-computation of the whole matrix G.

The architecture of the enhanced PE is presented in Figure 4. Each PE features a datapath that
implements both Equation (1) and Equation (2). The additional hardware that is required to imple-
ment Equation (2) (the AOEI technique) is mainly composed of multiplexers and registers. The
set of signals that control these additional multiplexers is generated by the magnitude comparators
integrated in the MAX units and that were already present in the base PE architecture.

The coordinates of the currently processed matrix cell are obtained by using the hardwired PE
index (i) and the symbol coordinate (j) that comes alongside with the sequence character present at
input S2.j /. Regarding the input data signals, the origin coordinates that correspond to the score at
input G.i � 1, j / are present at input Cb.i � 1, j /. Likewise, the origin coordinates corresponding
to the score at output G.i , j / are present at output Cb.i , j /. Finally, the coordinates of the currently
highest score (present at Max.i , j /) are output at MaxCb.i , j /.

5. CONFIGURABLE CLASS OF CONCURRENT PROCESSING ACCELERATORS

One important observation that should be noted is concerned with the impossibility to achieve the
maximum performance of a linear systolic array when the number of symbols of the query sequence
is lower than the number of PEs. This is due to the fact that several of the instantiated PEs cannot
perform any useful calculations (no query sequence symbol is attributed to them), thus lowering
the PE occupancy rate. This situation can be even aggravated when the query sequences under pro-
cessing are acquired by short-read sequencing platforms, whose sample sequences can be extremely
short. For instance, the reads generated by the Illumina platform can be as short as 35 nucleotides
long. This scenario would certainly lead to a substantial decrease of the array throughput.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1326 N. SEBASTIÃO, N. ROMA AND P. FLORES

Figure 4. Enhanced architecture of processor element PEi .

Therefore, considering that in most practical setups, there is a very significant number of short-
read sequences that must be aligned, or there are several medium-sized query sequences to be
aligned to different reference sequences, alternative arrangements of the available PEs are now pro-
posed to maximally use the whole set of implemented PEs and perform several alignments at the
same time. Hence, besides the typical single-stream operation mode, in which one query sequence
is aligned to one reference sequence, the class of accelerator architectures that is now proposed
possesses the capability to be easily reconfigured to operate in several multiple-stream modes:
Single-Reference Multiple-Query (SRMQ) or Multiple-Reference Multiple-Query (MRMQ). This
new feature significantly improves the actual performance of the array, because it allows a higher
PE occupancy rate with the consequent increase on the achieved array throughput and leading to a
greater speedup than would be achieved with just a single array.

5.1. Single-Reference Multiple-Query operation mode

When the alignment of various short-read sequences with the same large reference sequence is
considered, it is possible to optimize the performance of the proposed accelerator architecture by

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1327

configuring the hardware accelerator with an SRMQ processing scheme. In such configuration, the
accelerator is structured into several coupled linear arrays of PEs that work in parallel and align
several query sequences with the same reference sequence, as shown in Figure 5.

Hence, although the reference sequence is shifted into the multiple array structure, the set of
independent query sequences to be processed is distributed and assigned to the PEs of the multiple-
stream array. The exact number of instantiated parallel PE arrays is configurable according to
the size of the short-read sequences to be aligned and to the configuration parameters of the
implemented accelerator.

5.2. Multiple-Reference Multiple-Query operation mode

Besides aligning several query sequences to the same reference sequence, it is also of interest to
align several query sequences to different reference sequences, especially when a large number
of PEs is available. In the MRMQ mode of operation, the initial PE array is divided in several
smaller and equally sized arrays, which independently process the alignment between distinct pairs
of sequences, as shown in Figure 6. This is equivalent to having several accelerators with less PEs
working in parallel, but using the same PE resources.

In this mode of operation, each reference sequence is aligned to a single query sequence, thus
forming a given sequence pair, which is assigned to a particular smaller PE array. Hence, the
several sequence pairs are processed in parallel, and the alignment results of the several pairs are
concurrently obtained.

5.3. Configuration and implementation

All possible configurations that are offered by the proposed class of hardware accelerators can be
obtained by specifying a predefined set of configuration parameters such as (i) the number of PEs
that compose the array, (ii) the resolution (bit-width) of the calculated score value (G.i , j /), (iii) the
resolution of the coordinates (Cb.i , j /), (iv) the type of PE that is implemented (base or enhanced),
and (v) the number of multiple-streams to be processed. Each of these parameters can be adjusted to
obtain a specific configuration of the accelerating structure, which can subsequently be implemented
either on an FPGA or as an ASIC.

On one hand, the inherent reprogrammability of FPGAs can be used to easily implement accel-
erating structures that are fine-tuned to specific characteristics of the alignments at-hand. For

Figure 5. Example configuration of a Single-Reference Multiple-Query Processing Element (PE) array.

Figure 6. Example configuration of a Multiple-Reference Multiple-Query Processing Element (PE) array.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1328 N. SEBASTIÃO, N. ROMA AND P. FLORES

instance, it is possible to implement an accelerator on the basis of the SRMQ mode of operation
by considering specific score and coordinates resolutions. FPGAs also allow the implementation
of PE versions specifically optimized for a given operation mode to provide certain improvements
in what concerns the resource usage of the accelerator. As an example, in the SRMQ mode, it is
possible to share a set of resources that are common to the multiple parallel PEs that are processing
the same reference sequence. This is accomplished by using a common set of registers that hold
the reference symbol (S2.j /) and the respective coordinate (j), used by the several elements of the
arrays that work in parallel, as shown in Figure 7 for a dual-stream SRMQ configuration.

Figure 7. Example of a Single-Reference Multiple-Query Processing Element (PE) in dual-stream Single-
Reference Multiple-Query configuration.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1329

On the other hand, ASICs typically offer better performance levels, because they are usually
capable of operating at higher clock frequencies and are not constrained by the predefined amount of
available resources as in FPGAs, thus allowing the implementation of a larger number of PEs. More-
over, ASIC platforms allow the implementation of accelerator configurations targeting a broader
range of possible application scenarios, by including a larger number of PEs and wider resolution
of the score and coordinates values.

At this respect, it is important to recall that contrary to what usually happens with statically
optimized ASIC devices, the inclusion of the reconfiguration capabilities in the proposed class of
accelerators allows the implementation of more than one single configuration of the proposed class
in when implemented in an ASIC. Such multiple configuration ASIC device is able to be used in a
wider range of application scenarios and still allows it to provide high performance levels because
of the higher PE occupancy rate. This dynamic reconfiguration capability is achieved with the
inclusion of a special array element in the PE array. Such switching element, depicted in Figure 8,
is instantiated at the locations where the array can be split, to form smaller and equally sized PE
arrays. For instance, if a 256 PE array is to be split in four smaller arrays with 64 PEs, than three
of these switching elements will have to be included in the array. With this approach, the perfor-
mance of the original array is kept and assured, by including additional registers in the datapath to
avoid any increment on the propagation delays of the critical path, thus maintaining the maximum
achievable clock frequency. One resulting consequence is that the array latency is increased by one
clock cycle for each of the included switching elements. Nevertheless, the impact of this additional
latency is not significant in most realistic scenarios, where the smaller arrays do not have less than
35 PEs. With the inclusion of such switching elements, a given hardware accelerator implemented
in an ASIC device can be dynamically configured to provide any of the multiple-stream modes of
operation (SRMQ and MRMQ) that are proposed in this manuscript. Such feature approximates the
flexibility levels provided by the ASIC accelerator with those that are traditionally only offered by
FPGA devices.

Figure 8. Processing Element (PE) array with the switching element.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1330 N. SEBASTIÃO, N. ROMA AND P. FLORES

5.4. Array programming

Because all the comparisons that are performed at each PE always consider the same query sequence
character, the PE will just need to access the values present at the corresponding column of the sub-
stitution matrix. Therefore, each PE will only receive the substitution score matrix column that
corresponds to the query sequence character allocated to that PE. Such data is stored in dedicated
registers within each PE, as this allows for a fast reprogramming of a new query sequence. In the
event of a PE is not being used (because the query sequence has a smaller size than the number
of available PEs (N)), the substitution score data that is stored in such PE corresponds to a matrix
column in which all of the values are zero.

At this respect, an auxiliary query sequence data load structure (depicted in Figure 2) composed
by a n bit-wide shift register, was included in the array to program the score values corresponding
to query sequence S1. This temporary storage shift register allows the pre-loading of the next query
sequence data by serially shifting the substitution matrix column, while the array is still process-
ing the data corresponding to the current query sequence. Hence, as soon as the array has finished
the processing of the current query sequence, the next query sequence data (already stored in the
auxiliary shift register) is parallel loaded (in just one clock cycle) into the respective PEs. This
allows to mask the time that would be required to shift the next query sequence data into the array
and therefore significantly reduces its programming time. Furthermore, the use of this shift register
also provides a scalable method to program the array, as it avoids the use of a common data bus to
program the several PEs.

In case the proposed accelerator architecture is configured in a multiple-stream mode, the several
PE arrays simultaneously process different sequences. Hence, each individual PE array will have
the corresponding auxiliary query sequence data load structure, which allows the simultaneous load
of the query information to the several PEs. In the particular case of the SRMQ mode, the reference
sequence is the same for all the PE arrays. Because the query sequences are independently loaded
in the arrays, it is only necessary to stream the reference through the several arrays to obtain the
alignment results. When the accelerator is implemented in an ASIC, the SRMQ operation mode is
achieved by simultaneously loading the same reference to all of the multiple-stream arrays. In case
of an FPGA implementation, an optimized PE version can be used, where the reference sequence is
loaded only once.

Finally, if the MRMQ mode is used, the several arrays work with different sequence data.
However, because the operation in the several PE arrays is synchronous, they simultaneously start
and stop their processing. Therefore, the time to process the distinct sequence pairs depends on the
longest reference sequence that is under processing. Hence, this synchronous operation reduces the
overall complexity of the control and keeps the same high performance levels as those obtained for
the single-stream mode.

5.5. Interface

To interconnect the proposed hardware accelerator with the GPP that will implement the remaining
alignment procedure (i.e. the traceback), the accelerator includes an embedded controller that is
responsible for decoding eight instructions that are required to properly control and configure the
array, as well as to receive the data to be processed. The developed interface, illustrated in Figure 9,
is composed of an output First-In First-Out queue (FIFO) (to return the processed values), a sta-
tus output, an input FIFO for query sequences and commands and an input FIFO for the reference
sequence of each PE array (whenever the MRMQ mode is available). Each of the used FIFOs has a
depth of 64 words and is 32-bits wide, to match the bus-width adopted by most current GPPs.

The query and command input FIFO allows the next query sequence to be loaded into the array
while the current alignment is being processed. One single FIFO is sufficient to program all the
query sequences required for multiple-stream operation. This is possible because the several queries
are stored in the auxiliary query sequence data load structures, and then all the PEs are simultane-
ously loaded with the corresponding query sequence information. The commands provided through
the query and command input FIFO specify which array will be loaded with each specific query
sequence. The use of one single input FIFO for each reference sequence allows the synchronous

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1331

Figure 9. Accelerator interface. PE, Processing Element.

Figure 10. Instruction encoding.

operation of the several arrays without incurring in a higher control complexity. Finally, as soon as
the alignment scores and corresponding AOEI coordinates are calculated, they are serially stored in
the output FIFO for later processing by the GPP.

The instruction set used by the controller of the proposed hardware accelerator is composed of
eight 32-bit instructions, whose encoding is presented in Figure 10. The config instruction is only
available in the accelerators that implement the multistream MRMQ mode; it is used to configure the
desired number of processing arrays (field # arrays) and set the arrays to work in MRMQ or SRMQ
mode (field MS). The rstproc instruction is used to reset the PEs without resetting the acceler-
ator’s controller, whereas the rstquery instruction is used to reset the auxiliary query sequence
data load structure. The shiftnxtcost is used to load the substitution score data into the appro-
priate array, selected using the proc array field. The query sequence size field is used to specify the
size of the query sequence that will be loaded. Because of the fact that the instructions and query
sequence data are loaded using the same input FIFO, upon receiving the shiftnxtcost instruction, the
controller will suspend the decoding of further instructions and will immediately start loading the
following words received in the query sequence and command input FIFO into the corresponding
auxiliary query sequence data load structure. This operation will continue until the amount of data
corresponding to the query sequence size field has been loaded, with the consequent resuming of
the instruction decoding operation. The ldcost operation performs the loading of the PEs with
the new data already stored in the corresponding auxiliary query sequence data load structures. The
ldref instruction tells the processor to start reading from the reference input FIFO specified by the
field proc array, loading into the corresponding array the amount of reference elements specified
in the field reference sequence size. This allows several load commands to be sequentially issued
to the same processing array, thus not limiting the size of the reference sequence to a predefined
value. The endref instruction signals the processor that no additional ldref instructions will be
given for the current sequences and that the final results can be obtained and written into the output
FIFO. The getid instruction writes into the output FIFO an identification field that allows the host
to determine the capabilities of the current accelerator (e.g. the number of arrays available for the
MRMQ mode).

The status output, whose encoding is shown in Figure 11, contains information about the avail-
able positions (full = almost full) in each of the input FIFOs, allowing the implementation of a

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1332 N. SEBASTIÃO, N. ROMA AND P. FLORES

Figure 11. Status output encoding.

flow control mechanism. Furthermore, this status output also indicates when output data is available
in the output FIFO (field OA), reporting that the accelerator has concluded its computation of the
alignment. The status output also indicates when an invalid instruction is received (field II) and
when an invalid configuration is attempted (field IC).

6. PROTOTYPING PLATFORM

To validate the functionality and to assess the performance of the proposed hardware accelerator in a
practical realization, a complete local alignment system based on the S–W algorithm was developed
and implemented. The basic configuration of this system consists of a Leon3 GPP processor [17]
that executes all operations of the S–W algorithm, except those concerning the score matrix compu-
tation phase. Such phase is executed by the proposed hardware accelerator, acting as a specialized
functional unit of the GPP.

The Leon3 processor [17] is one of the most used freely available processor Intellectual Property
(IP) cores and consists of a highly configurable and fully synthesizable core, described in VHDL,
implementing a Reduced Instruction Set Computer (RISC) architecture conforming to the SPARC
v8 definition. The Leon3 32-bit core is based on a 7-stage instruction pipeline adopting a Harvard
micro-architecture, with 32-bit internal registers. The core functionality can be easily extended by
means of the Advanced Microcontroller Bus Architecture (AMBA) 2.0 on-chip buses (Advanced
High-performance Bus (AHB) and Advanced Peripheral Bus (APB)). The AHB bus is used to
connect the Leon3 processor with high-speed controllers, such as the cache and memory con-
trollers. On the other hand, the APB bus is used to access most on-chip peripherals and is accessed
through the AHB=APB Bridge. External memory access and memory mapped Input/Output (I/O)
operation are provided by a programmable memory controller with interfaces to Programmable
Read-Only Memory (PROM), Static Random-Access Memory (SRAM) and Synchronous Dynamic
Random-Access Memory (SDRAM) chips.

The proposed hardware accelerator was interconnected with the Leon3 processor by means of the
AMBA-2.0 APB bus as a slave device. The selection of this bus arises not only because it offers
enough bandwidth for all of the sequence data transfers, but also because it provides a simple inter-
face and low-power consumption. Furthermore, some additional wrapper logic, responsible for the
adaptation of the accelerator interface to the AMBA-2.0 APB bus, was needed. The I=O FIFOs and
the status register of the alignment core were mapped in the Leon3 memory address space. Hence,
with such interface, the write and read operations over this peripheral can be easily implemented
using simple load and store operations.

7. RESULTS

Two distinct implementation platforms were considered to evaluate the offered performance of the
proposed accelerator: an FPGA and an ASIC. In the FPGA device, it was implemented a complete
alignment system composed of the proposed accelerator interconnected with the Leon3 GPP. This
embedded alignment system, used fundamentally as a proof-of-concept prototyping platform, was
implemented by using a GR-CPCI-XC4V development board from Pender Electronic Design [18].
Such development system includes a Virtex4 XC4VLX100 FPGA device from Xilinx, a 133 MHz
256 MB SRAM memory bank and several peripherals for control, communication, and storage pur-
poses. The entire system was described using parameterizable VHDL code and synthesized using
Xilinx ISE 10.1 (SP3) software tools.

The ASIC implementation of the accelerator was primarily used to assess its performance and
resources requisites in a less restrictive prototyping technology, that is, without the restrictions

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1333

imposed by the GPP and the adjacent peripherals (e.g. DRAM memory). The accelerator was syn-
thesized with a StdCell library from Faraday Technology, based on a 90 nm CMOS process from
UMC [19], using the Synopsys Design Compiler tools. The selection of the parameterization that
was adopted by the synthesized accelerator took into account not only the possibility to handle very
large sequences, but also the ability to support multiple configurations suited for a broad range of
application scenarios.

7.1. Resource usage

The obtained resource usage results of the entire embedded prototyping system that was imple-
mented in the FPGA platform are presented in Table V, considering either single-stream
(n�streamD 1) and multiple-stream (n�stream > 1) array configurations. This table also includes
the resources occupied solely by the Leon3 processor, revealing that this GPP alone occupies 18%
of the available logic resources of the used FPGA device. In what concerns the resource usage
of the processing array, using the enhanced PEs, it is possible to observe that it is 77% larger
than the corresponding base configuration (i.e., without the AOEI tracking functionality). However,
the exact increase of the amount of used hardware depends on the considered operating environ-
ment, namely, the size of the sequences to be aligned (which determines the bit resolution of the
coordinate representation) and the adopted scoring scheme (which influences the resolution of the
score calculations).

Because of the strict hardware restrictions imposed by this prototyping device, the presented
configurations only considered the SRMQ operation mode, because this FPGA does not support the
implementation of a larger number of PEs. In fact, as it will be seen in the following subsection,
the MRMQ mode is more suited for ASIC implementations, where the newly proposed reconfig-
uration capabilities (that are not natively present in ASICs) can be efficiently exploited. Because
of the already mentioned FPGA restrictions, the maximum number of supported multiple-streams
is 3. However, the proposed class of accelerators supports any number of concurrently processed
streams, provided that there are enough available resources to implement them. The corresponding
hardware requisites for n�streamD2 and n�streamD3 were also presented in Table V.

Finally, the maximum operating frequency that was obtained upon the synthesis of the proposed
accelerating core in this FPGA is 120 MHz. Nevertheless, the actual clock frequency used by the

Table V. Resource usage of the Field Programmable Gate Array implementation (Single-Reference
Multiple-Query multiple-stream mode).

PE Maximum size Resource usage

Type # n-stream
Score
width Reference Query Registers LUTs

Base 16 1 7 � 16 7441 (8%) 19818 (20%)
Base 64 1 9 � 64 11736 (12%) 28148 (29%)
Base 128 1 10 � 128 16031 (16%) 34130 (35%)

Enh. 16 1 7 216 16 9499 (10%) 22168 (23%)
Enh. 35 1 9 222 35 15427 (16%) 28071 (29%)
Enh. 37 1 9 228 37 16618 (17%) 28941 (29%)
Enh. 64 1 9 222 64 22625 (23%) 36114 (37%)
Enh. 128 1 10 222 128 40024 (41%) 56541 (58%)

Enh. 35 2 9 222 35 24149 (25%) 38169 (39%)
Enh. 35 3 9 222 35 32687 (33%) 48205 (49%)
Enh. 37 2 9 228 37 26471 (27%) 39140 (40%)
Enh. 37 3 9 228 37 36117 (37%) 49493 (50%)
Enh. 64 2 9 222 64 38349 (39%) 54183 (55%)

Leon3 � � � 6246 (6%) 17788 (18%)

PE, Processing Element.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1334 N. SEBASTIÃO, N. ROMA AND P. FLORES

Table VI. Application Specific Integrated Circuit implementation hardware resources
(Multiple-Reference Multiple-Query multiple-stream mode).

PE Maximum size

Type # n-Stream
Score
width Reference Query

Implementation
area

�
mm2

�

Enh. 64 1 9 222 64 0.826
Enh. 512 8 12 228 512 9.261

PE, Processing Element.

entire prototyping embedded system is 60 MHz, because of limitations that are strictly imposed by
the considered Leon3 GPP IP core.

In what concerns the ASIC implementation of the proposed accelerator, the occupied area for
the two analyzed configurations is presented in Table VI. Just as in the FPGA prototype, it is still
possible to implement larger arrays, by simply considering parameterizations that include more PEs.
In fact, an ASIC usually provides the possibility to implement longer arrays, thus allowing a much
higher number of concurrent score calculations and significantly broadening its application scenar-
ios. As an example, an accelerator with 512 PEs provides the capability to align sequences directly
obtained from the GS FLX Genome Analyzer (454) sequencing platform [1], which typically has a
read length of 400 bp. The same is also true in what concerns the offered performance levels (as it
will be seen in the next subsection), because it allows significantly higher operating frequencies
(the 250 MHz operating frequency was determined using results from the synthesis tool and was
subsequently confirmed and validated). Hence, both of these factors contribute to a much higher
processing throughput of the ASIC platform. Furthermore, with the added MRMQ multiple-stream
feature, the performance of this accelerator can still be considerably higher.

7.2. Performance analysis

To evaluate the performance speedup that is provided by the proposed system, a set of real DNA
sequences obtained from the GenBank database [2] were used in the conducted experiments. In what
concerns the processed query sequences, their maximum size is limited by the number of available
PEs in the array. Consequently, for the considered prototyping configuration implemented in the
FPGA, it should not be greater than 128 nucleotides long (a size entirely compatible with the reads
generated by the latest Next-Generation Sequencing Technologies, such as the Solexa 1G and the
SOLiD sequencers [1]). For the considered ASIC implementation, the maximum query sequence
size is 512 nucleotides.

In the conducted evaluation of the proposed accelerator, it was mainly considered a short-read
versus a reference genome alignment task. In fact, because the typical size of the sequences that
are processed in this procedure is usually small, it often represents a quite challenging application
domain, which can be used to better assess the actual performance provided by the array accelerator
in a scenario quite close to the worst case situation. For this alignment task, the unmasked genomic
DNA sequence of the Mus Musculus Chromosome 1 from release 58 of the NCBIM37 assembly,
composed by 200 � 106 nucleotides, was used as the reference genome sequence. The short-reads,
used as the query sequences, were obtained from run SRR058608 of study SRP002695, available
at the Sequence Read Archive (SRA) database of NCBI. A total of 8223733 reads were available,
each one with 37 bps. To perform the evaluation tests, the first 100 sequences were aligned with the
reference genome.

Besides comparing the results that were obtained by using the two considered implementation
technologies, the conducted assessment also considered, as a reference, the alignment performance
that can be obtained with a generic computational alignment system, consisting of a 2.4 GHz Intel
Core2 Duo processor executing the SSEARCH35 software tool from the FASTA framework [5],
with Single Instruction Multiple Data (SIMD) optimizations.

Table VII presents the obtained execution times for both the FPGA and ASIC implementa-
tions of the accelerator, and for the GPP running the state-of-the-art software tool from FASTA

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1335

Table VII. Performance results for the short-read versus reference genome application.

Intel Core2 Duo FPGA accelerator ASIC accelerator

Frequency 2400MHz 60MHz 250MHz
PE (total) � 111 512
n-stream 1 3 8
Alignment time (s) 3064 115 11

Speedup 1 27 278

FPGA, Field Programmable Gate Array; ASIC, Application Specific Integrated Circuit; PE,
Processing Element.

(SSEARCH35). All those execution times consider all the data transfers and control overheads to
compute the complete alignments. In what concerns the SSEARCH35 tool, some limitations already
reported in the community were observed when dealing with large sequences, making it necessary
to perform several partial runs to obtain the entire set of alignments. Therefore, the presented align-
ment time is the sum of the partial times, which are, in turn, reported by the tool itself. Regarding
to the accelerating platform implemented in the FPGA, whose configuration is reported in Table V
(#PE D 37 and n�stream D 3), the reported time includes the post-processing tasks performed by
the embedded Leon3 processor to obtain the alignments.

A more detailed analysis of the processing time of the several components is presented in
Table VIII. At this respect, it is worth noting that the accelerator works in a data streaming mode
of operation, therefore starting its processing as soon as there is some data available, which not
only reduces the latency to begin the processing, but also reduces the internal storage memory
requirements for the sequence data. Furthermore, the post-processing operations that are executed
in the Leon3 GPP are also performed, whereas the accelerator is processing a new set of sequences.
Thus, it is possible for the Leon3 processor to perform the post-processing tasks in parallel with
the accelerator (using a pipelined processing scheme). The results presented in Table VIII consider
two distinct situations: (i) a simple serial processing scheme, where just three queries are aligned
(only one 3-stream data set, thus only one iteration of the array) and in which the post-processing
operations (2� and 3�) are only performed after the accelerator ends, and (ii) a pipelined process-
ing scheme, where 100 queries are aligned (34 iterations of the array) and in which almost all of
the post-processing operations are performed while the accelerator is processing a new data set.
The pipelined processing scheme naturally occurs when the accelerator has to align a large set of
queries, which is the most common scenario in bioinformatics applications. The presented results
depict the time of each of the processing phases: (i) the score and coordinate calculation time, which
is performed in the hardware accelerator and includes the time to transfer the code and initial data
to the accelerator, (ii) the processing time in the Leon3 GPP to perform the reduced matrix fill, and
(iii) the traceback processing time in the Leon3 GPP. As it is possible to observe, the accelerator is,
in this case, the limiting factor of the performance on the entire alignment system.

The obtained values reveal that the conceived accelerating platform implemented in the FPGA
device provides a speedup as high as 27 when compared with a pure and highly optimized software

Table VIII. Decomposition of the alignment time (s) for the Field Programmable Gate
Array accelerator implementation.

Score and Reduced Reduced
coordinates matrix fill traceback Total

Queries (Hardware) (Leon3) (Leon3) Time

3 3.4 0.050 0.001 3.5
100 115.3 1.741 0.033 115.4

Legend: �max
n

I C
o

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1336 N. SEBASTIÃO, N. ROMA AND P. FLORES

implementation running in the Intel Core2 Duo processor. Such significant speedup is mainly due
to a very efficient usage of the available hardware resources that are provided by the configurable
accelerator platform, which enabled a triple-stream configuration using the same FPGA device. It
should be noted that such performance advantage is still significant even when compared with the
performance offered by typical multicore processors currently available in the end-user market. In
fact, in the case in which a multithreaded version of the SSEARCH35 tool is used, whose execution
time reduces almost linearly with the number of available cores, the attained speedup when using
the accelerator (27) still exceeds the maximum theoretical speedup obtained with a typical multicore
system (e.g. with four or six processing cores).

On the other hand, contrasting with the evaluation that was conducted for the FPGA proto-
type, where the proposed accelerator was integrated in a complete embedded alignment system,
the performance of the ASIC prototype was evaluated by considering an IP core perspective of the
accelerator. Under this view, it was assumed a common scenario where the required time to com-
pute the alignment score (as well as its origin coordinates) in the hardware accelerator is still much
larger than the time that is needed by the GPP to perform the reduced matrix calculation and the
subsequent traceback operation. Such an assumption was carefully validated in the considered Intel
Core2 Duo processor, which requires about 1 ms to process all the reduced matrices and to perform
the corresponding tracebacks. The execution time of the ASIC accelerator (11 s) was obtained using
a behavioral simulation model, which allowed to determine the exact number of clock cycles to
perform the calculations in the accelerator.

Hence, for the considered implementation scenario, where the accelerator was parameterized to
allow the simultaneous alignment of up to eight different query sequences (configuration presented
in Table VI), it was obtained a speedup as high as 278, when compared with a sequential execution in
the Intel Core2 Duo processor. It is still worth noting that such improved performance was obtained
by using an operating frequency that is almost 10 times lower than the GPP clock frequency, which
provides extra benefits from the power consumption point of view.

Finally, in Table IX, it is depicted a short presentation of the performance levels that can be
obtained by using some configurations that are offered by the adopted parameterization of the ASIC
implementation of the proposed class of accelerators. It can be seen from these results that the inno-
vative multiple-stream feature provides a useful and straightforward adaptation of the implemented
accelerating structure to the target processing application, allowing a reduction of the alignment
time from 91 s to only 11 s when the accelerator is aligning the 37 long query sequences and is
configured for 8-stream operation.

7.3. Comparison and discussion

The direct comparison of the obtained performance results of the presented accelerator with
previously proposed accelerators also implemented in a FPGA is not entirely fair, because pre-
vious accelerators only accelerate the matrix fill phase of the S–W algorithm. Nevertheless, in
what concerns the raw throughput (not considering the advantages of the new AOEI method),
the performance of the presented accelerator (according to the widely used Giga Cell Updates

Table IX. Possible dynamic configurations of the considered Application
Specific Integrated Circuit implementation.

PE Maximum size

(Total) # (Per array) n-Stream Reference Query
Alignment

time (s)

512 64 8 228 64 11
512 128 4 228 128 23
512 256 2 228 256 45
512 512 1 228 512 91

PE, Processing Element.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1337

per Second (GCUPS) metric) is 6.5 GCUPS for the FPGA implementation and 67 GCUPS for
the ASIC implementation. The raw throughput of other already presented solutions ranges from
0.8 GCUPS (140 PEs) [7] to 5.4 GCUPS (135 PEs) [9] and 7.6 GCUPS (168 PEs) [8]. There-
fore, not only does the presented hardware accelerator maintain a similar level of raw performance
when compared with other solutions implemented in FPGAs, but it also provides the additional
benefits of the AOEI method and the performance improvements enabled by the proposed modes
of operation.

Nevertheless, there are also other high performance implementations based on programmable
devices (e.g. multicore CPUs and GPUs) that may also attain a high processing performance. In the
case of the used CPUs, the attained performance of the SSEARCH35 tool is about 0.250 GCUPS.
Despite the fact that such performance scales almost linearly with the number of processing nodes,
the presented results have shown that a large number of processing nodes is required to attain a per-
formance level equivalent to that of the presented accelerator. Such large number of processing cores
will inevitably present a much higher power consumption than the proposed accelerator implementa-
tions. On the other hand, there are also efficient implementations of the S–W algorithm specifically
designed to run on GPUs, such as the CUDASWCC [20]. However, although the attained per-
formance in the GPU can be significantly high (17 GCUPS), such implementation imposes strict
limitations on the maximum size of both sequences. Thus, unlike the proposed accelerator, which
is able to align arbitrarily long reference sequences, such tool can not be used to align large refer-
ence sequences. Moreover, the power consumption of the GPU device is significantly high when
compared with either an FPGA device or a custom ASIC device. Furthermore, considering an ASIC
implementation with the presented configuration, the performance of the accelerator is almost four
times higher than that of the CUDASWCC implementation executed on a NVidia GeForce GTX
280 GPU.

In what concerns the performance of the complete alignment system, it must be noted that
the developed proof-of-concept prototype implements the whole system with limited hardware
resources (due to the model of the used FPGA device). Despite the considerable performance results
obtained in such a system, it would be possible to improve the overall performance by implementing
the accelerator with a more recent and larger FPGA device (e.g. a Xilinx Virtex7 device) intercon-
nected by using the Peripheral Component Interconnect Express (PCIe) bus to a computational
system with a typical off-the-shelf GPP (e.g. an Intel multicore processor). This implementation
would easily scale not only the dimension of the accelerator array, by allowing either more PEs
or a higher number of simultaneous streams (due to the higher amount of available resources in
the FPGA device), but also the processing capacity of the GPP and the data-transfer bandwidth, by
using one or more PCIe interconnection lanes [21]. This type of computational systems greatly ben-
efits from the reconfiguration capabilities of the FPGA device, which allows the accelerator to be
dynamically adapted to the current alignment task required by the considered application. Further-
more, it also significantly benefits from the FPGA’s lower power consumption when compared with
GPP implementations. However, whenever the highest performance levels are required, an ASIC
implementation will possibly provide the best option, but with some reduced flexibility. In terms of
power consumption, such highly customized implementation may also achieve the smallest power
consumption per cell update.

Finally, from a system integration point of view, the use of a platform that integrates the pro-
posed accelerator (either in an FPGA or an ASIC device) in a typical computational environment
(like the one previously described) significantly improves and facilitates the processing of biological
sequences, such as DNA. In fact, such environment allows an easier use of the proposed accelerator
architecture on already existing alignment tools that either execute a pure S–W alignment algo-
rithm (e.g. SSEARCH) or use such algorithm in one of the processing phases (e.g. BLAST [4]
heuristic tool). In fact, by using the accelerator in conjunction with heuristic tools, it will be pos-
sible to greatly improve the quality of the whole alignment, because of the fact that heuristic
tools constantly balance the sensitivity of the alignment with the execution time. By using this
hardware accelerator, it is possible to allow a greater number of sequences to be passed on to
the higher sensitivity stage in which the S–W algorithm is executed, while still maintaining the
overall speed.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

1338 N. SEBASTIÃO, N. ROMA AND P. FLORES

8. CONCLUSIONS

s This paper presents a new class of flexible and configurable hardware accelerators capable of
providing a high-performance alignment solution based on the widely adopted S–W algorithm.
The resulting accelerating structures are easily adapted to various application scenarios and exploit
an innovative technique that significantly reduces the time and memory requirements to perform
the subsequent traceback phase. Moreover, a distinctive characteristic of the proposed class is the
possibility to concurrently process several small query sequences, which not only improves the
performance of the accelerator but also provides a much more efficient usage of the instantiated
PEs, when dealing with small query sequences.

The new class of accelerators can be implemented either in FPGA or ASIC technologies. When
using FPGAs, their inherent reprogramming capabilities can be used to fine-tune the accelera-
tor instantiation to the current alignment requisites, by choosing the most appropriate number of
PEs and the resolution of representation. In contrast, ASIC implementations can take advantage of
custom configurations with a higher operating clock frequency and a larger number of PEs. The
obtained accelerating structures incorporate dedicated PEs that allow to optimize the resource usage
in FPGAs and easily provide several configurations in ASIC implementations.

The obtained results have shown that speedups as high as 278 can be obtained in ASIC
implementations when compared with off-the-shelf personal computers. In fact, it was also observed
that even the FPGA-based prototyping platform, where a complete embedded alignment system was
implemented, provided speedups as high as 27, while running at a 40 times lower clock frequency.

ACKNOWLEDGEMENTS

This work was partially supported by national funds through Fundação para a Ciência e a Tecnologia (FCT)
under project “HELIX: Heterogeneous Multi-Core Architecture for Biological Sequence Analysis” with ref-
erence to PTDC/EEA-ELC/113999/2009, project PEst-OE/EEI/LA0021/2011, and by the PhD grant with
reference to SFRH/BD/43497/2008.

REFERENCES

1. Shendure J, Ji H. Next-generation DNA sequencing. Nature Biotechnology 2008; 26(10):1135–1145.
2. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Research 2010;

38(Database):D46–51. DOI: 10.1093/nar/gkp1024.
3. Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of Molecular Biology 1981;

147(1):195–197.
4. Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic local alignment search tool. Journal of Molecular Biology

1990; 215(3):403–410.
5. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proceedings National Academy of

Sciences of the United States of America 1988; 85(8):2444–2448.
6. Ligowski L, Rudnicki W. An efficient implementation of Smith Waterman algorithm on GPU using CUDA,

for massively parallel scanning of sequence databases. In IEEE International Symposium Parallel & Distributed
Processing. IPDPS 2009. IEEE: Rome, Italy, 2009; 1–8.

7. Hasan L, Al-Ars Z, Nawaz Z, Bertels K. Hardware implementation of the Smith-Waterman Algorithm using recur-
sive variable expansion. In 3rd International Design and Test Workshop, IDT 2008. IEEE: Monastir, Tunisia, 2008;
135–140.

8. Oliver T, Schmidt B, Maskell D. Hyper customized processors for bio-sequence database scanning on FPGAs.
In Proceedings 13th International Symposium Field-Programmable Gate Arrays, FPGA’05. ACM: Monterey,
California, USA, 2005; 229–237.

9. Benkrid K, Liu Y, Benkrid A. A highly parameterized and efficient FPGA-based skeleton for pairwise biological
sequence alignment. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2009; 17(4):561–570.

10. Nawaz Z, Nadeem M, van Someren J, Bertels KLM. A parallel FPGA design of the Smith-Waterman traceback.
International Conference on Field-Programmable Technology, FPT 10, Beijing, China, 2010; 454–459.

11. CLC Bio. White paper on CLC Bioinformatics Cube 1.03. Technical Report, CLC Bio, Finlandsgade 10-12 - 8200
Aarhus N - Denmark, May 2007.

12. Singh R, Hoffman D, Tell S, White C. BioSCAN: a network sharable computational resource for searching
biosequence databases. Bioinformatics 1996; 12(3):191–196. DOI: 10.1093/bioinformatics/12.3.191.

13. Guerdoux-Jamet P, Lavenier D. SAMBA: hardware accelerator for biological sequence comparison. Bioinformatics
1997; 13(6):609–615. DOI: 10.1093/bioinformatics/13.6.609.

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

CONFIGURABLE AND SCALABLE CLASS OF HIGH PERFORMANCE HARDWARE ACCELERATORS 1339

14. Grate L, Diekhans M, Dahle D, Hughey R. Sequence analysis with the Kestrel SIMD parallel processor. In Pacific
Symposium on Biocomputing, 2001; 263–274.

15. Lloyd S, Snell Q. Sequence alignment with traceback on reconfigurable hardware. In International Conference
Reconfigurable Computing and FPGAs - ReConFig ’08. IEEE: Cancun, Quintana Roo, Mexico, 2008; 259–264,
DOI: 10.1109/ReConFig.2008.30.

16. Sebastião N, Dias T, Roma N, Flores P. Integrated accelerator architecture for DNA sequences alignment with
enhanced traceback phase. International Conference on High Performance Computing and Simulation. HPCS 2010,
Caen, France, 2010; 16–23, DOI: 10.1109/HPCS.2010.5547154.

17. Aeroflex Gaisler. SPARC V8 32-bit Processor LEON3 = LEON3-FT Companion Core Data Sheet, Version 1.0.3,
December 2008.

18. Gaisler Research = Pender Electronic Design. GR-CPCI-XC4V Development Board – User Manual. 0.1 edn, April
2006.

19. Faraday Techn. Corp.. FSD0C_A 90nm Generic Core Cell Library (v0.3), February 2009.
20. Liu Y, Schmidt B, Maskell D. CUDASWCC2.0: enhanced Smith-Waterman protein database search on

CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions. BMC Research Notes 2010; 3(1):93.
DOI: 10.1186/1756-0500-3-93.

21. Lund K. White paper: PCI Express for the 7 Series FPGAs. Technical Report WP384, Xilinx Inc., March 2011.
Available from: http://www.xilinx.com/support/documentation/white_papers/wp384_PCIe_7Series.pdf [Accessed
on 2012/06/11].

Copyright © 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2013; 25:1319–1339
DOI: 10.1002/cpe

