
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015 1287

Multicore SIMD ASIP for Next-Generation
Sequencing and Alignment Biochip Platforms

Nuno Neves, Member, IEEE, Nuno Sebastião, Member, IEEE, David Matos, Member, IEEE,
Pedro Tomás, Member, IEEE, Paulo Flores, Senior Member, IEEE, and Nuno Roma, Senior Member, IEEE

Abstract— Targeting the development of new biochip platforms
capable of autonomously sequencing and aligning biological
sequences, a new multicore processing structure is proposed in
this manuscript. This multicore structure makes use of a shared
memory model and multiple instantiations of a novel application-
specific instruction-set processor (ASIP) to simultaneously exploit
both fine and coarse-grained parallelism and to achieve high
performance levels at low-power consumption. The proposed
ASIP is built by extending the instruction set architecture of
a synthesizable processor, including both general and special-
purpose single-instruction multiple-data instructions. This allows
an efficient exploitation of fine-grained parallelism on the align-
ment of biological sequences, achieving over 30× speedup when
compared with sequential algorithmic implementations. The com-
plete system was prototyped on different field-programmable gate
array platforms and synthesized with a 90-nm CMOS process
technology. Experimental results demonstrate that the multicore
structure scales almost linearly with the number of instantiated
cores, achieving performances similar to a quad-core Intel Core
i7 3820 processor, while using 25× less energy.

Index Terms— Application-specific instruction-set architec-
ture, biochip platforms, biological sequences alignment,
multicore architecture, single-instruction–multiple-data (SIMD).

I. INTRODUCTION

B IOCHIPS are probably one of the most important biotech-
nology contributions from the last decade, being con-

sidered a highly viable and prominent means to identify and
detect different biological analytes, such as deoxyribonucleic
acid (DNA), proteins, toxins, hormones, bacteria, and so on.
One particular application of these lab-on-chip devices is the
detection of specific genetic biomarkers (e.g., DNA sequences
that cause a disease or are associated with susceptibility to a
given disease), being recognized as a highly useful means in
several application domains, such as personalized medicine,
preliminary diagnosis and prognosis devices [1], [2]. In these
applications, the sequence data, corresponding to the specific

Manuscript received July 29, 2013; revised April 4, 2014; accepted June 9,
2014. Date of publication July 18, 2014; date of current version June 23,
2015. This work was supported in part by the National Funds through
the Fundação para a Ciência e a Tecnologia through the Project entitled
Heterogeneous Multi-Core Architecture for Biological Sequence Analysis
(PTDC/EEA-ELC/113999/2009), and in part by the Project entitled Threads:
Multitask System Framework With Transparent Hardware Reconfiguration
(PTDC/EEA-ELC/117329/2010) and by Project PEst-OE/EEI/LA0021/2013.

The authors are with the Instituto de Engenharia de Sistemas e Computa-
dores - Investigação e Desenvolvimento em Lisboa, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal (e-mail: nuno.neves@inesc-id.pt;
nuno.sebastiao@inesc-id.pt; david.matos@inesc-id.pt; pedro.tomas@
inesc-id.pt; paulo.flores@inesc-id.pt; nuno.roma@inesc-id.pt).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2014.2333757

biomarker that is aimed to be identified, are stored in an on-
chip memory, at configuration time, and usually correspond
to a specific part of a genome or gene related with the
disease/mutation that is being diagnosed (e.g., identification
of cancer susceptibility genes, cardiological pathologies, etc.).

However, these prominent applications have been posing
new challenges, requiring the anticipation of several common
and often required postprocessing analysis steps to the biochip
level. Among them, biological sequence alignment, close to
or even within the biochip [3], has been regarded as a very
promising challenge. Accordingly, the presented research
envisages the fulfillment of the current processing gap in
embedded sequence alignment platforms, thus foreseeing
the development of fast, portable, disposable, and fully
autonomous biological sequence analysis systems [4] at
the point-of-care [5], instead of being restricted to large
centralized facilities. To achieve this objective, the usage of
programmable solutions is regarded as highly necessary to
comply with adaptability and flexibility requirements, and
contrasts with other dedicated architectures that have also
been proposed in the last years [6]–[9].

Moreover, autonomous and portable devices are highly lim-
ited in what concerns their application requisites, contrary to
what happens with conventional high-performance computing
(HPC) solutions. Besides the imposed constraints concern-
ing compactness, cost-efficiency, high production yields, and
robust functionality, the most stringent constraint is usually
concerned with their low-power consumption [10]. However,
the involved amount of data and the complexity of the required
computations rarely permit any significant lightening of the
computational capabilities. As such, the main motivation of
the presented research is the development of an efficient
architecture for biochips with highly limited power constraints
(up to a few watts) and whose performance should be as
close as possible to that of a state-of-the-art general purpose
processor (GPP). To verify the fulfillment of such a promising
goal, the processing performance offered by the proposed low-
power biological sequence alignment processor will be com-
pared with that of an Intel Core i7 processor, which, despite
its high-processing performance, is completely unsuited for
embedded biochip purposes, due to its much greater power
requisites (minimum 38 W with a single-thread execution).

The biochip under development is a heterogeneous multi-
core system-on-chip (SoC), composed of two types of highly
optimized processor elements (PEs): 1) Type A PEs implement
a preliminary heuristic filtration phase, using indexed exact
search algorithms (e.g., k-mers, FM-index), where fragments

1063-8210 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1288 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

of the patient’s sample are looked up in the biomarker-
indexed sequence (stored in memory) to identify a partial
match and to determine its approximate location(s) in the
biomarker sequence; and 2) Type B PEs implement the sub-
sequent computational demanding sequence alignment phase
(allowing insertions, deletions, and substitutions) of the subset
of samples identified in the first phase, using an exhaustive
dynamic programming (DP) approach applied to the delimited
region(s) of the biomarker sequence identified in the first
phase.

Among the several design options, the development of an
efficient application-specific instruction-set processor (ASIP)
architecture for Type B PEs, specifically adapted for opti-
mal biological sequence alignment algorithms, is regarded
as a particularly suited approach to comply with all the
performance and design requisites enumerated above [11].
The attained processing throughput is achieved as a result of
a twofold contribution: 1) inclusion of multiple specialized
single-instruction multiple-data (SIMD) vector instructions in
the processor instruction-set architecture (ISA), to extensively
exploit fine-grained parallelism; and 2) support for an exten-
sive multicore computational structure, composed of multiple
instantiations of the designed ASIP, to efficiently exploit
coarse-grained parallelism. The cumulative result of these two
important contributions was demonstrated with different field-
programmable gate array (FPGA) prototypes of the proposed
multicore SIMD ASIP, which proved capable of offering
speedup values as high as 720×.

To further demonstrate that the proposed multicore ASIP
complies with the performance and efficiency requirements of
the target application domain, it was also implemented in a
90-nm CMOS process technology. Experimental results indi-
cate that the proposed solution achieves a performance similar
to that of HPC processors (e.g., an Intel Core i7) while using
20× less energy.

The manuscript is organized as follows. After the intro-
ductory motivation presented above, Section II presents a
brief overview on biological sequences alignment algorithms,
as well as on their current state-of-the-art SIMD implemen-
tations. In Section III, the new and adapted ISA for this
specific application domain is presented, while its architecture
implementation is presented in Section IV. In Section V,
the developed multicore processing structure, composed of
multiple instantiations of the designed ASIP is presented.
Section VI presents the obtained experimental results and
Section VII concludes the presentation with the enumeration
of the most important contributions.

II. BIOLOGICAL SEQUENCES ALIGNMENT

The alignment strategy that was adopted in the devel-
oped biochip platform follows the same approach that is
usually applied in conventional HPC solutions. The patient’s
samples are firstly applied to a suboptimal heuristic-based
method [12], [13], which uses an index data structure of a
specific biomarker (previously stored in on-chip memory)
to identify a potential partial match and to determine its
approximate location(s) in the biomarker sequence. These

suboptimal methods offer fast and preliminary solutions at
the cost of a reduced sensitivity. Such preliminary indexed
search is then refined by applying an optimal DP align-
ment method, such as the Needleman–Wunsch [14] and
Smith–Waterman (SW) [15] algorithms.

A. Optimal Alignment Algorithm

The SW algorithm [15], characterized by an O(nm) time
complexity, is a widely established dynamic programming
(DP) algorithm used to obtain the local alignment between a
query sequence (q) and a reference/database sequence (d), of
sizes m and n, respectively. It operates in two distinct phases:
it starts by filling a score matrix H , followed by a traceback
phase over this matrix. The matrix is typically filled using an
affine gap penalty model [16], given by the following equation:

H (i, j) = max

⎧
⎪⎪⎨

⎪⎪⎩

H (i − 1, j − 1) + Sbc(q[i], d[j])
E(i, j)
F(i, j)
0

, with

F(i, j) = max

{
H (i − 1, j) − α
F(i − 1, j) − β

and

E(i, j) = max

{
H (i, j − 1) − α
E(i, j − 1) − β

where α and β represent the cost of gap opening and extension,
and Sbc(q[i], d[j]) denotes the substitution score value when
aligning character q[i] against character d[j]. The initial
conditions are given by H (i, 0) = H (0, j) = E(i, 0) =
F(0, j) = 0. The strict data dependencies of this algorithm
require a prior processing of the neighboring upper, left, and
upper-left cells, before calculating the value of a given cell.

Several solutions have been proposed to accelerate the
execution of the SW algorithm. The processing structures
that offer the highest performance typically adopt the form
of dedicated accelerators like those proposed in [6]–[9].
However, these solutions lack the necessary flexibility
to allow the execution of other similar algorithms
(e.g., Needleman–Wunsch [14]) or even variations of the same
algorithm (e.g., banded SW algorithm used in FASTA [13]).

On the other hand, it is also desirable to develop processing
structures that are easily adapted to detect/identify distinct
patterns, mutations, or anomalies. As an example, while some
pathologies might be identified by a single detection of a given
biomarker pattern, other anomalies are only identified by a suc-
cessive repetition of a specific pattern [1]. Therefore, whenever
flexibility is a system requirement, the usage of programmable
processing solutions proves to be highly convenient. Among
these, GPPs are a natural and commonly used platform to
execute these algorithms, especially due to the set of SIMD
instruction-set extensions that are available in most current off-
the-shelf processors (e.g., Intel processors). Such instructions
allow to efficiently exploit fine-grained parallelism within
these algorithms and thus improve the resulting performance.

B. SIMD Implementations

To accelerate the alignment procedure, while still ensuring
the optimal alignment, several SIMD parallelizations of the

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1289

Fig. 1. SIMD implementations of the SW algorithm [15]. The first five
SIMD iterations were numbered and represented with different gray levels.
For simplicity, only four data elements are shown in each SIMD register.
(a) Rognes and Seeberg [17]. (b) Farrar [19]. (c) Rognes [18].

SW algorithm have been presented. The most recent imple-
mentations, based on the exploitation of Intel SSE instruction
set extensions, were presented in [17]–[19]. Their differences
mainly lie in the adopted data processing pattern (Fig. 1).

The first implementation that was proposed in [17] precom-
putes a profile for the entire reference sequence. With such
a technique, a vector of cells parallel to the query sequence
can be simultaneously processed by each SIMD instruction
[Fig. 1(a)]. The compliance with the data dependencies is
guaranteed by defining threshold conditions relating each
computed score and the insertion/extension gap penalties,
allowing to disregard most comparisons related to the vertical
dependencies of the algorithm. Nevertheless, such an approach
still implies the introduction of conditional branches in the
inner loop of the algorithm, thus making the execution time-
dependent on the used scoring matrix and gap penalties.

Farrar [19] also adopted a precomputed profile (of the
query), but improved the processing scheme using a striped
access pattern [Fig. 1(b)], where the computations are carried
out in several separate stripes that cover different parts of
the query sequence. Hence, the query is divided into p equal
length segments, where p is given by the number of vector
elements that can be simultaneously accommodated in an
SIMD register. As an example, when 128-bit SSE2 registers
are considered to process 8-bit data elements, p equals 16.
The length of each segment is given by t = �(m + p − 1)/p�,
where padding zeros are inserted whenever the query size (m)
is not long enough to completely fill all the segments.

This striped computation of the score matrix is fulfilled by
assigning each SIMD vector element to one distinct segment.
Accordingly, each matrix column, corresponding to a reference
symbol d[j], is processed in t iterations, where each iteration
simultaneously processes p query symbols, separated by
t − 1 lines in the score matrix. As an example, when
p = 16, the second iteration of the algorithm simultaneously
processes in an SIMD register the following query sym-
bols:

{
q[2], q[t + 2], q[2t + 2], q[3t + 2], . . . , q[15t + 2]}.

With this modified pattern, it is possible to move the
conditional statements related to the commitment of the
vertical dependencies to an independent lazy loop. This

loop is executed outside the inner loop, where the vertical
dependencies have to be considered only once, before starting
the processing of the next reference symbol, thus reducing
the impact of the vertical dependencies.

The above cumulative set of contributions and improve-
ments led to significant speedup values of the alignment, which
makes Farrar’s technique [19] one of the fastest SIMD imple-
mentations of the SW algorithm. For this reason, this algorithm
is integrated in many current high-performance alignment
frameworks, such as the latest versions of SSEARCH [20].

Meanwhile, Rognes [18] presented another paralleliza-
tion of the algorithm that exploits other capabilities made
available by modern processors. However, the considered
application domain is somewhat different from the pre-
vious approaches. Instead of solving the single-reference
single-query alignment problem, he simultaneously compares
several different reference sequences with one single query
sequence in each SIMD operation [Fig. 1(c)], which allows
additional speedups when the underlying application aligns
a specific and single query to a database of reference
sequences.

When transposing this latest Rognes’ approach to the appli-
cation scenario under consideration, the specific biomarker
sequence that was assigned to the considered biochip configu-
ration would be the natural choice for the query sequence that
is simultaneously aligned (in parallel) with several references,
corresponding to the set of fractions of the patient’s samples
identified in the first suboptimal phase. However, this approach
would also require the score profile of each identified fraction
of the patient’s reference to be calculated at runtime, which
results in a significant performance penalty. On the other
hand, with Farrar’s algorithm, it is possible to calculate the
score profile of the biomarker sequence in a preconfiguration
step and store it in the biochip memory. Afterward, the
biomarker sequence score profile can be directly used in the
alignment with each of the identified fractions of the patient’s
reference sequence. Hence, when compared with the Rognes’
approach, Farrar’s saves valuable execution time and energy
when aligning query sequences of smaller sizes (as is the
case of the considered application domain), since the profiles
do not need to be calculated at runtime. Therefore, Farrar’s
algorithm is not only the adequate choice for the considered
application domain, but also presents itself as the solution
with the broadest range of applications, thus broadening the
scenarios where a system that accelerates its execution can be
applied.

III. DEDICATED SIMD INSTRUCTION SET FOR

BIOLOGICAL SEQUENCES ALIGNMENT

The proposed ISA was defined targeting the accelera-
tion of the classic local and global sequence alignment
procedures (such as the several SIMD implementations
of the Needleman–Wunsch and SW algorithms [17], [19],
[21]). Due to the high-performance and low-energy con-
straints of the considered biochip platform, mainly tar-
geted for portable and autonomous biological sequence
alignment of next-generation sequencing (NGS) [22] data,

1290 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

Farrar’s SIMD implementation [19] was considered the most
suited for this specific application domain. Nevertheless, since
the proposed ISA includes both general-purpose and special-
purpose SIMD instructions, it can be easily used to implement
a broader range of algorithms, including other operations with
biological sequences (e.g., hidden Markov models (HMMs),
Viterbi chains, etc.), which heavily rely on DP methods.

A. SIMD Sequence Alignment Implementation

By analyzing the original Farrar’s pseudocode
definition [19] [Fig. 3(a)], it is clear that the adoption
of vector arithmetic instructions will potentially accelerate
this algorithm implementation. These instructions should not
only speed up the operations between vectors, but they may
also facilitate the various operations between vectors and
scalars, which are particularly useful when subtracting the gap
penalties. The shifting of the F and H vectors can also be
efficiently implemented with vector element shift instructions.
Furthermore, since all these instructions will be dealing with
SIMD vectors, it is also advantageous to include specialized
memory access instructions, to handle vector-sized variables.

On the other hand, from a more detailed inspection of an
Intel SSE2 assembly implementation [19] [Fig. 3(b)], it can
also be observed that the lazy loop condition assertion requires
at least five instructions. Therefore, a new and specialized
branch instruction, to simultaneously assert a branch condition
in all vector elements, without any additional processing,
would significantly increase the achieved performance.

As a consequence, it is clear from the above observations
that a dedicated and optimized ISA not only should include an
adapted set of arithmetic SIMD operations (with a particular
emphasis on the addition, subtraction, compare and maxi-
mum operations), but should also incorporate other classes of
instructions, comprehending logic, memory-access, and con-
trol operations. Furthermore, an appropriate register structure
particularly adapted to the targeted application domains should
also be defined, to accommodate both the vector and scalar
operands. These two aspects will be briefly covered in the
following two subsections.

B. SIMD Registers

The proposed instruction set and the corresponding data-
path (Section IV) can be fully parameterized in terms of the
adopted register and vector-element sizes. To obtain a fair
comparison with Farrar’s [19] SSE2 implementation, the base
parameterization that will be considered in this particular
implementation uses the same register and vector-element
sizes as those of the Intel SSE2 (used by Farrar [19]),
i.e., 128-bit registers, with 8 or 16 elements. Nevertheless,
different register and element sizes can be used, as shown in
Section VI-C, where experimental results considering different
register sizes are presented.

To simplify the implementation of the proposed instruction
set, it is assumed that all processor registers within the register
bank have the same size. Hence, any scalar (non-SIMD)
instruction will only operate over the least significant part
of the register, corresponding to a scalar processor word.

Fig. 2. Division of each processor register into a parameterizable number
of SIMD vector elements (v.e.). Scalar operands coexist in the same register,
occupying the least significant word.

TABLE I

PROPOSED SIMD SPECIALIZED INSTRUCTION SET

FOR BIOLOGICAL SEQUENCE ALIGNMENT

In contrast, all the proposed SIMD instructions will operate
over the entire register (Fig. 2). With this design option, the
critical path of the processor is confined within the data-
path corresponding to the scalar (non-SIMD) operations, thus
making it independent of the extended SIMD register size.

C. Proposed SIMD Instruction Set

The specialized ISA that is herein proposed defines
56 SIMD instructions for arithmetic, logic, memory access,
and control operations. The set of proposed SIMD instructions,
which are used in Farrar’s algorithm implementation, are
depicted in Table I. The instructions are subdivided into
three classes: vector–vector, operating over the corresponding
pairs of vector elements in each SIMD register; vector–scalar,
operating between one SIMD register and the scalar operand
of another register; and inner-vector, operating between the
adjacent pairs of vector elements in a single SIMD register.

According to the defined register structure, scalar load
and store instructions will only operate over the processor
scalar word-size. As a consequence, the extended SIMD
instruction set also provides the corresponding SIMD versions
(LV and SV) for vectorized memory accesses. The memory
address is computed with scalar operands and only the
destination (LV) or the origin (SV) are SIMD operands. There
is also a special move instruction to write a scalar value
to a specific SIMD vector position, keeping the remaining
positions unchanged. The position and the value are provided
in scalar operands.

Furthermore, by considering the requirements that were
referred to in Section III-A, particular attention was also
devoted to the definition of a new subset of control instruc-
tions that can be applied in a variety of applications and
are especially interesting for the SW algorithm. The need
arises from the significant predominance of loop statements
in the mentioned DP algorithms (generally implemented with
conditional branch instructions) and takes into account the

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1291

Fig. 3. Farrar’s SIMD implementation [19] of the SW algorithm.
(a) Pseudocode definition. (b) Intel SSE2 assembly. (c) Proposed ISA assem-
bly code. Instructions outlined in bold face belong to the specialized ISA.
Shaded areas outline the blocks of identical operations that require a different
number of instructions to complete in the two implementations. Only the inner
and lazy loops are illustrated in this figure.

severe penalties that these control instructions impose on deep
pipeline architectures. As a consequence, the inherent losses
in the attainable throughput (imposed by unavoidable pipeline
flushes introduced by branch instructions) also had to be taken
into account when the base processor structure was selected, as
will be described in Section IV. These restrictions determined
the adoption of shallower pipeline structures, contrasting with
modern superscalar GPP architectures, e.g., Intel and ARM.
To further adapt the new ISA to the targeted algorithms,
the branch condition in the new set of conditional branch
operations is evaluated over all the elements in the SIMD
vector, and the branch is taken if the condition is either verified
for all of them or for at least one of them. The branch target
is computed with scalar operands.

Fig. 3 presents a mapping of Farrar’s [19] algorithm and
the corresponding implementations with the Intel SSE2 ISA
and with the proposed SIMD ISA. By comparing the two
implementations, an immediate gain is observable with the
proposed ISA, with more visible advantages in the lazy loop.
The major contributor to this reduction is the proposed set
of vectorized control instructions that significantly reduce the
control overhead.

Another significant advantage of the proposed ASIP results
from the adoption of a strict reduced instruction set computer
(RISC) paradigm based on a shallow pipeline structure,
contrasting with Intel’s deep pipeline complex instruction set
computer (CISC) model [23]. As a consequence, the observed
difference in the number of executed instructions, together
with the RISC single-cycle per instruction ratio (instead
of CISC multiple-cycle per instruction), will significantly
augment the processing gain, as will be demonstrated in
Section VI.

IV. SIMD PROCESSOR ARCHITECTURE

The MB-LITE [24] soft-core was used as the base archi-
tecture for the implementation of the proposed ISA, not only
due to its simple and portable processing structure, but also
because it is a compliant implementation of the well known
MicroBlaze ISA [25], offering the advantage of an already
existing compiler that can also be extended to support the
new instructions. Furthermore, the MB-LITE design is highly
configurable and is relatively easy to adapt to support the
proposed ISA. The reduced hardware resources required by
this core were also taken into account, due to the fact that it
will be used as the base for a scalable multicore processing
platform, which exploits coarse-grained parallelism, as will be
described in Section V.

A. MB-LITE Processor Architecture

The MB-LITE [24] processor is a 32-bit Harvard RISC
based on the MIPS five-stage pipeline architecture. Accord-
ingly, all instructions have a single cycle latency, except
the branches whose latency is two or three clock cycles
(with or without delay slots, respectively).

The considered MicroBlaze ISA contains the usual integer
arithmetic and logic operations, conditional and unconditional
branches, and load/store instructions. Some groups of instruc-
tions were left out, including the multiplication and barrel
shifter operations, as well as all floating point and special
register operations. As in the MicroBlaze architecture [25],
MB-LITE has two basic types of instructions: 1) Type (register
type); and 2) Type (immediate type). Consistently, all instruc-
tions have three operands (three registers, or two registers
plus one immediate), except the control and shift instructions,
which have two operands (two registers, or one register plus
one immediate). According to the MicroBlaze architecture, the
register bank is also composed of 32 general-purpose registers
with three read-ports and one write-port.

All data hazards are identified and solved in the decode
stage of the pipeline. Forwarding is provided from the latest
stages, with the exception of the load instruction, which causes
the introduction of a stall when the memory value is used
by the following instruction. Control hazards are solved by
performing static branch prediction with a predict not-taken
strategy, which results in a pipeline flush whenever the branch
should be taken. The processor also provides a single-line
interrupt mechanism. The 32-bit data memory is organized
in parallel 8-bit blocks, to improve the memory writes.

1292 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

Fig. 4. Block diagram of the SIMD ALU module, for example, 4-element
vector configuration, illustrating the required logic to implement. (a) Vector–
vector and vector–scalar operations. (b) Inner-vector operations.

Among the provided modules, MB-LITE [24] integrates an
address decoder to allow communication with the different
peripherals in a memory mapped I/O organization. It also
provides a character device so that the Standard output (STD-
OUT) can be easily used in the software development phase.

B. Modification of the Execution Unit

To support the proposed SIMD ISA, the execution unit had
to be modified by extending its original ALU to include a new
SIMD module.

Despite being fully parameterizable, the configuration
of the designed SIMD module that was adopted for this
specific implementation uses 128-bit registers with 16 SIMD
vector elements of 8 bits each. Other parameterizations could
equally be used, to process values ranging from 16-bit data
words to any other word size, but taking into account that
by increasing the word size, the maximum clock frequency
may decrease. The operand size can range from 2 bits (useful
for DNA processing) to half of the register size (SIMD).
By increasing the number of SIMD operands, the amount
of generated logic also increases, with consequences on the
processor’s hardware resources.

The addition and subtraction operations require one adder
per SIMD vector element together with some extra multiplex-
ing logic (Fig. 4). Since different types of SIMD operations are
supported (vector–vector, vector–scalar, and inner-vector), the
required elements have to be selected from the corresponding
registers and only then does the execution unit perform all
the parallel arithmetic operations. The results are then chosen
based on appropriate control signals. Furthermore, to reduce
the complexity of the control logic and to maintain the proces-
sor’s critical path, the inner-vector operations are performed
by an independent set of ALU modules, as it is possible to
observe in Fig. 4(b).

The SIMD maximum instruction is based on the compare
instruction, comprising a subtraction followed by a signal eval-
uation. Therefore, the same logic is used to implement both
of these instructions, requiring only a multiplexer, selected by
the most significant bit of the result, to choose the maximum
between the two operands. Though simple to implement,
this additional logic would greatly increase the critical path
of the execution unit when extending to an SIMD model.

Fig. 5. Maximum decision logic is postponed to the next pipeline stage and
to the pipeline forwarding lines.

To overcome this issue, the decision logic was moved to the
next pipeline stage and to the pipeline forwarding lines, as
described in Fig. 5. This new maximum instruction substitutes
one compare and one branch instruction, thereby eliminating
the pipeline flush and gaining three or four clock cycles,
depending on whether the branch has delay slots or not.

The SIMD conditional branches were implemented by repli-
cating the condition evaluation logic and by modifying it to
separately evaluate all the elements in the vector, while the
branch target address is calculated in the scalar ALU (Fig. 6).

Scalar load/store instructions provide memory transfers with
byte, halfword, or word sizes. Since the SIMD vector can be
greater than the processor word size (32 bits), a new vector
transfer size had to be defined. This vector size is transparently
considered by the defined SIMD load/store instructions in
terms of the transferred data size so that the instructions
can work with the different vector sizes. This contrasts with
the scalar load/store instructions, which only work with fixed
transfer sizes.

Finally, the destination vector element of the new SIMD
move instruction (defined as move-to-vector) is selected just
as in the store instructions, i.e., the scalar value can be
multiplexed to any of the SIMD vector elements. Therefore,
the resulting SIMD vector will retain the previous values in
all other elements.

C. Adaptation of the Decoding Unit

Since the encoding of most original MB-LITE Type A
instructions has unused bit-fields, it was decided to assign
the same opcode to the new SIMD arithmetic and shift
instructions as their scalar counterparts, thus using such unused
fields to distinguish them in the processor control unit. With
such options, it was possible to reuse most of the decoding
structures already implemented in the processor, except for
a few control signals that had to be generated from such
bit-fields. The maximum instruction, which did not exist in
the original architecture, adopted the same opcode as the
compare instruction, since the implemented logic operations
are the same until the decision stage (Fig. 5). The new SIMD
branch instructions were also encoded using unused bit-fields
(co-located with the identification of the destination register),
allowing an easy distinction from their scalar counterparts.

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1293

Fig. 6. Proposed ASIP pipelined architecture. The new and modified modules were highlighted in the block diagram. The decoding logic of the proposed
SIMD instructions is included in the Instruction Decode/Interrupt Handle block. The SIMD addition, subtraction, compare, shift, and move instructions are
implemented in the SIMD ALU block. Note the replication of the saturation detection logic and of the maximum decision logic in the forwarding lines from
the MEM stage.

In contrast, unused opcodes were assigned to the SIMD
load/store instructions, where the bit-field corresponding to an
immediate operand was used to encode the memory address.
The assigned opcodes are consecutive to those corresponding
to the scalar load/store, allowing for an easier decoding of the
instruction. The SIMD move instruction was also assigned an
unused opcode, due to the absence of a similar instruction in
the MB-LITE ISA. As a consequence, new decoding logic had
to be added to the processor control unit.

The final ASIP pipelined architecture, with the above
described modifications, is presented in Fig. 6.

D. Compiler Implementation

Writing programs directly in machine language, i.e., byte
code, is not practicable and would be a serious limitation to
the ASIPs usability. A compiler is thus a critical tool because it
not only eases the task of writing programs, but also allows for
some code optimizations and loosens the coupling between the
program and the processor’s implementation, ideally rendering
low-level changes transparent to the programmer.

Accordingly, three aspects are relevant concerning the
compiler support: the front-end, by supporting high-level
language features, in the form of special types or syntax;
the middle-end, in the form of automatic program optimiza-
tion; and the back-end, by providing direct support for a
specific ISA.

The conducted implementation of the compiler that was
specifically developed for the proposed ASIP is based on the
well known GNU compiler collection (GCC) family [26]. The
base GCC structure was extended to support the proposed
architecture, to immediately allow programs to be written
in the target processor’s assembly language (ASM). Since
GCC already supports the MicroBlaze processor, adding the
new mnemonics and opcodes was straightforward. Currently,
support is provided only at the back-end level. In the future,
particular attention will also be given to the middle-end, since

it allows other optimizations using the abstract syntax tree
(AST). This will allow for further leverage of the specific
aspects of the underlying ISA, including automatic vector-
ization. Nonetheless, support for the C/C++ programming
languages can be provided by relying on intrinsic functions
that directly use the SIMD instructions.

V. MULTICORE PROCESSING PLATFORM

The integration of the proposed ASIP within the biochip
SoC follows the typical GPP + accelerator co-design
approach. The GPP targets the coordination of the two process-
ing steps of the biochip: 1) preliminary heuristic search phase,
using exact search algorithms, where fragments of the patient’s
sample are looked up in the biomarker-indexed data structure
(stored in memory); and 2) optimal sequence alignment phase
(allowing insertions, deletions, and substitutions) of the subset
of samples identified in the first phase.

Accordingly, the proposed ASIP architecture aims to
accelerate the second phase, where a significant amount
of fractions, preliminarily identified in the first processing
phase, are efficiently processed by simultaneously exploiting
both fine- and coarse-grained parallelism models: the former
using the proposed SIMD ASIP, while the latter by dividing
the set of patient’s samples among the instantiated cores.
This allows the creation of multiple jobs (coarse-grained
parallelism), each executed in parallel by an instance of
the proposed ASIP using the proposed SIMD instructions
(fine-grained parallelism).

To apply this processing scheme, a shared memory model
similar to the one in [27] is used, where both the patient’s
samples and the biomarker sequence are stored in a shared
main memory (Fig. 7). The computation is performed using:
1) a work controller that manages the work queue, where
each item corresponds to the alignment of one sample to
the biomarker sequence; 2) multiple processing elements that

1294 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

Fig. 7. Processing scheme for the alignment of multiple sequences.

Fig. 8. Multicore architecture for biological sequences alignment. (a) General
overview of the multicore architecture. (b) Schematic of the processing cores.

actually perform the alignment; and 3) a mechanism to gather
the results from all processing elements.

Nevertheless, it is worth noting that other possible paral-
lelization models could equally be applied. As an example,
in a different (and more conventional) application domain,
where the alignment of a single query sequence to a large
reference sequence is required, the processing could be split
into small stripes that would be processed in pipeline: each
thread i would compute one single stripe and communicate
the result to the following thread i + 1.

The considered parallel processing structure is implemented
using the multicore architecture described in Fig. 8(a). Such
architecture is composed of: 1) a memory element, to store
both the biological sequences and the alignment scores;
2) a master core (GPP), which is responsible for managing the
work queue and to gather the results; 3) multiple processing
cores, to perform the score calculations; 4) a mutex circuit, to
handle core synchronization; and 5) a high-bandwidth inter-
connection, to handle the required communications. To reduce
the amount of data that is transferred between the master
and the processing cores, the shared memory model studied
in [28], which was developed for this specific application
domain, was considered. It should be noted that the current
architecture does not include any cache level in the cores, thus
alleviating the need for any explicit coherence mechanism.
Using this approach, the master core only needs to communi-
cate a minimal set of data (consisting of the addresses, in
the shared memory, and length of the involved sequences)
to start the alignment between a reference and a query
sequences.

Each of the processing cores is composed of the specialized
SIMD ASIP presented in Section IV, an instruction memory,
a local (scratchpad) memory, a direct memory access (DMA)
controller and an on-chip network interface [Fig. 8(b)].

A. Data Communication

The proposed architecture supports various types of inter-
connections (e.g., shared bus, ring/mesh network-on-chip, etc.)

with minimum changes in the base structure. The considered
prototyping implementation, which is described in this man-
uscript, uses a shared bus coupled with an arbiter to manage
the access to the bus. The adopted bus protocol is AMBA 3
AHB-Lite compatible (with multilayer support), requiring a
minimum of two clock cycles to transmit the data: the first to
request access to the bus and the second to transmit the data.
Naturally, whenever the bus is unavailable (busy), additional
clock cycles are required. To minimize the data transfer time,
the bus arbiter also supports a burst mode, where a single bus
request is used to transmit multiple data packets. In this case,
a minimum of n +1 clock cycles are required for transmitting
n data packets.

To further reduce the contention in the system bus, each
processing element maintains temporary data in its local
scratchpad memory, being its internal DMA controller respon-
sible for handling accesses to the main memory (e.g., to
prefetch the query or reference sequences to the scratchpad
memory). This approach reduces the number of bus requests
and allows to hide the communication time with the compu-
tation time. The DMA controller can also flag an interruption
to the ASIP whenever a given copy request is finished. This
allows the creation of an interrupt routine that handles all of
the data prefetching operations.

To ease the programming task (and compiler development),
the ASIP adopts a typical memory mapped I/O organization.
Therefore, access to the DMA registers (to configure the DMA
transfers and check their status) or to the scratchpad memory
can be performed using the usual load/store instructions.

B. Synchronization Mechanism

To allow an efficient cooperation between the different
cores, the multicore architecture includes a multiregister mutex
circuit, with each register supporting two states: locked by
core k and unlocked. This circuit works as follows: when one
core attempts to read from an unlocked mutex (register), a
value of 1 is returned and the mutex locks. After that, all
other cores that read from such mutex receive the value 0
until the initial core unlocks it by writing the value 1. All of
the write and read operations are atomic, assured by specific
bus arbitration logic, thus guaranteeing that only one core has
access to a given mutex at any given time.

VI. EXPERIMENTAL RESULTS

To evaluate the proposed ASIP as well as its integration in
the multicore processing framework, a thorough performance
analysis of the complete system is presented in this section.
The first analysis evaluates the impact of the proposed SIMD
instruction-set on the required hardware resources and on the
processor’s maximum clock frequency. Afterward, the attained
processing speedup is evaluated by comparing the executions
of the vanilla (sequential) version of the SW algorithm and of
Farrar’s [19] SIMD version. To assess the ASIPs performance,
several implementations of the processor [in different field-
programmable gate arrays (FPGAs)] will be compared with
two off-the-shelf low-power processors: 1) an Intel Atom
E665C, running at 1.3 GHz; and 2) an ARM Cortex-A9,

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1295

Fig. 9. Required hardware resources and corresponding operating frequency of the multicore system when implemented in different prototyping platforms.

running at 533 MHz. Furthermore, the ASIPs performance
will also be compared to that of a high-performance processing
solution, which, despite its high throughput, is unable to be
used in low-power environments, as those of autonomous
and mobile platforms. In particular, the proposed low-power
multicore processing structure was synthesized targeting a
90-nm CMOS process technology and compared to a state-
of-the-art Intel Core i7 3820, running at 3.6 GHz with a
power consumption of 38 W for a single core. For a fair
comparison, no algorithmic changes have been introduced in
any cases, apart from those resulting from the ISA differences.
Finally, the scalability of the proposed multicore structure with
the number of instantiated processing cores is also analyzed
by considering a raw performance metric [number of cell
updates per second (CUPS)], a raw energy metric [number of
cell updates per Joule (CUPJ)], and an energy-delay product-
related metric [cell updates per Joule-second (CUPJS)].

To evaluate the performance and connectivity of the pro-
posed multicore processing structure with the master core of
the biochip platform, the complete alignment system was also
prototyped in three different platforms: 1) a Xilinx Zynq 7020
SoC, comprising reconfigurable logic and a dual-core ARM
Cortex-A9 processor connected through an AMBA 3 (AXI)
link, making it a particularly interesting prototyping platform
for developing mobile biochip systems, as stated in [29];
2) a Kontron Microspace MSMST single-board computer
composed of an Altera Arria II GX FPGA (EP2AGXE6XX)
and an Intel Atom E665C connected through a 4× PCIe
Gen 1 link; and 3) a personal computer composed of a Xilinx
Virtex 7 FPGA (XC7VX485T) connected to an Intel Core
i7 3820 through an 8× PCIe Gen 2 link. The synthesis and
place-&-route for the FPGAs were performed using Xilinx
ISE 14.4 and Altera Quartus II v12.0. Accurate clock cycle
measurements of the required time to execute each biological
sequences analysis in the proposed platform was achieved
using Modelsim SE 10.0b. On the Intel Core i7, cycle accurate
measurements were obtained using the precision approach path
indicator (PAPI) library to read the processor performance
counters. For the Intel Atom and ARM Cortex-A9, the system
timing functions were used to determine the total execution
time of the DNA sequence alignment. To improve the mea-
surement accuracy, several repetitions of the same alignment
were done. The obtained values were subsequently divided by
the number of repetitions and the processor clock frequency.

A. Biological Benchmarking Setup

In the considered evaluation and performance analysis, the
used DNA dataset is composed of several reference sequences,
ranging from 128 to 16 384 base pairs, and a number of
query sequences, ranging from 20 to 2276 base pairs. The
reference sequences correspond to 20 indexed regions of the
Homo sapiens breast cancer susceptibility gene 1 (BRCA1
gene) (NC_000017.11). The query sequences were obtained
from a set of 22 biomarkers for diagnosing breast cancer
(DI183511.1 to DI183532.1) and a fragment, with 68
base pairs, of the BRCA1 gene with a mutation related to the
presence of a Serous Papillary Adenocarcinoma (S78558.1).

B. Required Hardware Resources and Timing Analysis

To evaluate the attained performance and the resources
overhead introduced by the proposed SIMD ISA, the original
MB-LITE processor and the proposed ASIP were implemented
on the previously referred prototyping devices, namely, the
Zynq 7020 SoC, the Arria II GX FPGA, and the Virtex-7
FPGA. For a fair comparison, the multiplier and the barrel-
shifter were deactivated in the original MB-LITE core. This
way, the proposed ASIP presents maximum operating frequen-
cies of 187, 158, and 115 MHz, on the Virtex-7, Zynq 7020,
and Arria II GX devices, respectively.

The left chart of Fig. 9 presents, for both the MB-
LITE and the ASIP core on the Zynq SoC, the hardware
resources and the maximum operating frequencies. As it can
be observed, the number of LUTs increased approximately 5×,
mostly due to the extra logic that is required for the parallel
arithmetic operations and the additional multiplexing logic.
The number of registers and RAM/FIFO blocks duplicated
because the increase in the register size, from 32 to 128 bits,
requires the use of two block-RAMs per read-port, instead of
just one. On the other hand, the processor maximum operating
frequency decreased by about 42 MHz (21%), mostly due to
the added multiplexing logic that is required to implement
the SIMD instructions. Nonetheless, this decrease is by far
compensated by the larger than 30× increase of the ISAs
performance, as will be described in the following subsections.

The remaining charts of Fig. 9 present the hardware
resources occupied by the proposed multicore ASIP imple-
mentations. As expected, these results follow an almost linear
relation with the number of instantiated cores.

1296 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

Fig. 10. Evaluation of the offered SIMD ISA in the considered platforms
(excluding technological differences) for sequence alignment applications.
(a) Execution time (in clock cycles) and speedup variation for the alignment
of different sized query sequences in the considered execution platforms.
(b) Average number of clock cycles to perform one single cell update.

C. SIMD Instruction Set Evaluation

To assess the benefits of the SIMD ISA extension introduced
in the proposed ASIP, and to validate whether it compensates
for the additional resources and the smaller maximum operat-
ing frequency, the number of clock cycles required to execute a
DNA sequence alignment procedure was accurately measured.
Furthermore, the proposed architecture was also validated
by comparing it against the three distinct superscalar GPPs:
1) the Intel Atom E665C processor, which is capable of dual
instruction issue with in-order execution; 2) the ARM Cortex-
A9 processor, which is capable of dual instruction issue with
out-of-order and speculative execution; and 3) the Intel Core i7
3820 processor, capable of multiple instruction issue with out-
of-order and speculative execution of up to 6 μops per clock
cycle. For this test, both the vanilla (sequential) and Farrar’s
SIMD versions of the SW algorithm were considered. The
sequence alignment code was compiled with GCC 4.6.2 (using
the corresponding back-ends) using flags −O2 (sequential
case) and −O (SIMD case), which are the most favorable
parameterizations for each case.

In Fig. 10, the speedup variation to execute the DNA
sequence alignment on the proposed ASIP and on the three
GPPs is presented. It is important to note that the measured
values presented in Fig. 10(a) correspond to the alignment to
a single reference size, since it was found that the reference
sequence size does not affect the throughput of the implemen-

tations. By analyzing the speedup columns in Fig. 10(a), it
can be observed that the proposed ISA allows the proposed
ASIP to achieve an average speedup of 37.5×. In comparison,
the ARM Cortex-A9 processor achieves an average value of
5.09×, the Intel Atom E665C an average of 18.47×, and the
Intel Core i7 3820 achieves 16.67×.

The second measurement of the ISA efficiency was con-
ducted by comparing the average number of clock cycles
required to perform a single cell update of the sequence
alignment matrix in the considered processors. These values
were obtained by dividing the total number of clock cycles (c)
by the product of the lengths of the reference and query
sequences (m and n, respectively)—c/(m × n)—and are
presented in Fig. 10(b). For the particular case of the pro-
posed ASIP, the SIMD word size was also varied. From the
presented chart, it can be concluded that, even though the
off-the-shelf Intel Atom and ARM Cortex-A9 processors can
issue two instructions per clock cycle, the proposed ASIP
offers a 2 and 2.5× speedup when compared with them,
respectively. On the other hand, the Intel Core i7 uses a
complex control structure capable of simultaneously exe-
cuting multiple instructions out-of-order (issuing up to six
micro-ops per clock cycle [23]) to achieve an average of
two instructions per cycle for the considered datasets. This
allows reducing the number clock cycles per cell update
to 1.35 (on average), which compares with a value of
1.70 cycles per cell update for the proposed ASIP (using
a 128-bit vector) issuing only one instruction per clock
cycle. Naturally, while the Intel architecture achieves a higher
instruction throughput, it does so at the expense of addi-
tional hardware resources used to control the processor.
As a consequence, and as it will be shown later in this section,
the Intel i7 processor requires more energy to perform the
same operation.

From the previous ISA evaluation, it is possible to conclude
that a simple RISC processor with the proposed set of SIMD
instructions can be very effective to execute bioinformatics
algorithms, allowing it to simultaneously fulfill both the low-
power and performance requirements of the NGS mobile
platforms [4], [10]. Furthermore, important speedups can
also be achieved by parallelizing the sequence alignment in
a multicore approach.

D. Scalability of the Multicore Processing Structure

To evaluate the performance gains of a multicore alignment
structure, the coarse-grained parallel architecture described
in Section V was implemented. All processing cores were
based on the proposed ASIP, exploiting the ISA benefits that
were presented in the previous subsection. The integrated
scratchpad and shared memories were set to an address-width
of 15 bits. To evaluate the shared bus contention, which
constrains the multicore scalability, the reference sequence
used by the alignment algorithm was stored in the shared
memory, and each processing core requests access to the
bus (once per iteration) to obtain the corresponding symbol.
All other variables were stored in the scratchpad memory of
each processing core.

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1297

Fig. 11. Multicore processing structure performance regarding the original
MB-Lite and ASIP cores; each line in (b) corresponds to the scaling of (a),
considering the device maximum operating frequency of each individual core
configuration. (a) Clock cycle speedup variation with the number of ASIP
cores. (b) Time speedup variation with the number of ASIP cores.

Fig. 9 also presents the occupied hardware resources and
the maximum operating frequency of the multicore processing
structure for different aggregates of processing cores on dif-
ferent prototyping platforms. A maximum of eight processing
cores can be prototyped in the Zynq SoC and in the Arria II
GX FPGA due to the limitations imposed by the available
Block-RAM and logic resources, respectively. Regarding the
Virtex-7 FPGA, it has sufficient resources to implement the
32 cores of the multicore prototype system. In all cases,
the operating frequency remains practically constant as the
number of cores increases to eight. On the Virtex-7 FPGA,
the frequency has a slight reduction with the number of cores.
It can also be observed that the Zynq SoC achieves almost the
same operating frequency as the larger Virtex-7 and an almost
3× higher frequency than the Aria II GX FPGA, which mainly
results from the different technology of the latter FPGA.

Fig. 11 presents the clock cycle and the absolute time
speedups for configurations with different numbers of cores,
compared to a single 128-bit SIMD ASIP core, when
processing the considered benchmark dataset. Fig. 11(a)
depicts the architecture scalability in terms of the attained
clock cycle speedup. This analysis allows to verify the
multicore architecture scalability independently of the
implementation platform. It is possible to observe that the
speedup increases almost linearly for configurations of up to
16 cores. With additional cores, the contention in the
shared bus becomes the limiting factor, thus reducing the
effectiveness of the extra cores and resulting in a sub-linear
speedup increase. Nonetheless, when considering the SIMD
(or the sequential) implementation as reference, a maximum
clock cycle speedup of 26× (or 830×) is achieved in a
32-core configuration.

Fig. 12. Frequency, area and power scaling of the synthesized ASIC. The
bold line represents the area, while the dashed line represents the dynamic
power consumption, both in relation to the operating frequency.

Fig. 11(b) presents the achieved processing time speedup
by taking into account the maximum operating frequen-
cies obtained for the considered multicore configurations,
implemented on different technologies. When considering the
SIMD (or the sequential) implementation as the reference, the
obtained results demonstrated that a 22× (or 720×) processing
time speedup can be obtained with a 32-core implementation
of the proposed ASIP in the Virtex-7 FPGA, with a maximum
operating frequency of 157.3 MHz. Maximum processing time
speedups of 6× (or 210×) and 2× (or 70×) were obtained for
an 8-core configuration in the Zynq and Arria II GX FPGA
devices, respectively, with maximum operating frequencies of
156.4 and 54.7 MHz. The lower processing time speedup
obtained in the Arria II GX FPGA results from the significant
decrease in the system’s maximum operating frequency. Such
decrease results from the inclusion of the shared bus, which
in turn increases the amount of routing inside the FPGA.

E. ASIC Synthesis

The proposed ASIP was also synthesized using the Faraday
Standard Cell Library targeting the UMC 90-nm CMOS
process (library FSD0A_A), and an exhaustive performance
and energy evaluation was performed. Fig. 12 presents the
obtained results in terms of the total circuit area, operating fre-
quency, and dynamic power consumption for different period
constraints, from 5 ns (200 MHz) to the minimum achievable
period constraint for the 90-nm technology.

As expected, the main drawback of operating the circuit
with higher frequencies is the increase in dynamic power,
which goes from 24.2 mW (200 MHz) to a maximum of 98
mW (769 MHz) for a single core system. Despite its increase,
this power consumption response respects the low-power
requirements of autonomous NGS biochip platforms. This
is especially relevant considering that, when embedded in
a diagnosis system, the proposed ASIP may only work
during reduced amounts of time, after the sample biological
sequence is acquired and while the sequence alignment is
being performed. Therefore, the significant performance gains
provided by the proposed ASIP structure are offered with a
very small impact in terms of the power consumption of the
whole biochip platform.

Finally, the complete multicore structure was also
synthesized targeting the same 90-nm CMOS process
technology. From the synthesis results, presented in Table III

1298 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

(Section VI-F), it is possible to observe that a maximum
operating frequency of 685 MHz is attained up to a 16-core
configuration, while the 32-core configuration presents a
decrease of 16%.

F. Performance and Energy Efficiency Evaluation

Besides the presented evaluation in terms of the resulting
speedup values, several efficiency metrics are also used to
study the computational and energy efficiency of the pro-
posed multicore platform. In particular, three different met-
rics are used to characterize the multicore ASIP: 1) the
attained raw throughput; 2) the energy efficiency; and 3) the
performance-energy efficiency. These metrics were also deter-
mined for the three GPPs: 1) the Intel Atom E665C processor;
2) the ARM Cortex-A9 processor; and 3) the Intel Core i7
3820 processor. Among these, the Intel Atom and the ARM
Cortex-A9 may potentially cope with the energy constraints
of the target mobile platform, whereas the Intel Core i7 was
only considered to compare the performance achieved by the
proposed multicore platform with that of a GPP.

To compare the attained raw throughput, the CUPS metric
was adopted, which is typically used in this application
domain. This metric is based on the number of processed query
sequences (q) in all cores, the length of the query and reference
sequences (m and n, respectively), and the corresponding
runtime, (t), in seconds. Hence, the CUPS metric is obtained
as (q × m × n)/t (considering that all queries have the same
length). The obtained throughputs are shown in Fig. 13(b) and
account for the maximum operating frequency of each imple-
mentation platform for the corresponding number of cores.

As it can be concluded from Fig. 13(b), the single-core
ASIP implementations in the Xilinx FPGAs achieve through-
puts very close to those of the ARM Cortex-A9 processor.
On the other hand, the two considered Xilinx devices with an
8-core configuration and running at less than 200 MHz attain
throughputs similar to those of the Atom processor, running at
1.3 GHz. Finally, a 32-core CMOS implementation, which is
the most suited to the presented application, is able to achieve
a performance similar to that of a quad-core Intel Core i7
running at an around 5× lower clock frequency and consuming
around 230× less power [Fig. 13(a)].

An energy efficiency study was also performed using:
1) the power estimation tools of the Xilinx ISE and Quartus II
software frameworks to obtain the values for the Virtex-7
FPGA, the Zynq SoC, and the Arria II GX FPGA; 2) the
GPP thermal dissipation power (TDP) values depicted in
the corresponding data-sheets (Table II); and 3) the Intel
energy performance counters. Table III presents the obtained
power consumption for the FPGAs and the ASIC, consider-
ing the worst-case power estimation for the used hardware
resources at the maximum operating frequencies. For the
Intel Atom and the ARM Cortex-A9 GPPs, the TDP was
divided by the number of available cores in each processor,
whereas for the Intel Core i7, the performance counters
were used to accurately measure the power consumption.
In Fig. 13(a), the power consumption of the considered
platforms is presented, where the division between HPC and

Fig. 13. Multicore system performance in comparison with the embedded
ARM Cortex-A9 and Intel Atom E665C (depicted by the horizontal lines)
and the high-end Intel Core i7 3820. (a) Total Power consumption for the
embedded and HPC platforms (lower is better). (b) Raw throughput, given in
cell updates per second (CUPS) (higher is better). (c) Energy efficiency, using
the cell updates per Joule (CUPJ) metric (higher is better). (d) Performance-
Energy efficiency, using an inverted energy-delay product (EDP) metric, the
cell updates per Joule-second (CUPJS) (higher is better).

embedded platform was purposely set to include the Intel
Atom processor.

After obtaining the energy consumption, given by the prod-
uct of the execution time with the total supplied power, a
performance efficiency metric based on the number of cell
updates can be obtained to study the efficiency of the different
configurations. The adopted CUPJ metric is given by the total

NEVES et al.: MULTICORE SIMD ASIP FOR NGS 1299

TABLE II

GPP OPERATING FREQUENCIES AND POWER ESTIMATION PARAMETERS.

POWER ESTIMATE FOR THE GPPS IS THERMAL DISSIPATION POWER

DIVIDED BY THE NUMBER OF CORES

TABLE III

POWER CONSUMPTION MEASUREMENTS FOR EACH FPGA AND ASIC

IMPLEMENTATION, WITH DIFFERENT CORE CONFIGURATIONS

number of processed cells divided by the total consumed
energy. Fig. 13(c) represents the average CUPJ evolution for
different core configurations. From these results, it is possible
to observe that the FPGA and the ASIC implementations of the
proposed multicore ASIP clearly surpass the energy efficiency
of all of the considered GPPs. It can also be ascertained that,
with configurations of up to eight cores, the energy efficiency
of the FPGA implementations increases up to a steady state
value, being the implementations on the Zynq FPGA, the
most efficient among the three. This can be explained by
the lower dynamic power values required by these configu-
rations, coupled with the exponential growth of the number of
processed cells and with the reduced shared bus contention,
as it was observed in the speedup analysis. For the Virtex-7
FPGA, it can be observed that the 16-core configuration
presents the highest energy efficiency, hence corresponding
to the best tradeoff between energy consumption, maximum
operating frequency, amount of hardware resources, number of
processed cells, and shared bus contention. As expected, the
ASIC implementation outperforms all other implementations
by a factor of over 4×.

The adopted performance-energy efficiency metric, given in
cell updates per Joule-second (CUPJS), evaluates the number
of cells each system can compute such that its corresponding
EDP is not greater than 1 Js. It can be demonstrated that this
metric is equivalent to the application of the geometric mean
CUPJS = √

CUPJ × CUPS. Fig. 13(d) depicts the calculated
performance-energy efficiency in CUPJS for the considered
platforms. By comparing only the used FPGAs, it is possible
to observe that the implementations on both Xilinx devices are
almost 4× more efficient than those on the Altera Arria II GX
FPGA. On the other hand, when comparing the performance-
energy efficiency of the low-power ARM Cortex-A9 GPPs,
it is possible to observe that its efficiency is very close to
the efficiency offered by a single-core ASIP implementation
on the Virtex-7 FPGA, only attaining a higher efficiency than

the single and 2-core ASIP implementations on the Arria II
GX FPGA (the worst, among the used FPGAs platforms).
When looking at the other low-power GPP (the Intel Atom
processor), it is possible to observe that its performance-energy
efficiency is higher than that presented by the ARM processor,
by the ASIP implementations on the Arria II GX FPGA and
by the single ASIP implementations on both Xilinx devices
(Virtex-7 and Zynq). Nevertheless, the ASIP implementations
for 4, 8, 16, and 32 cores on both Xilinx devices are capable
of achieving a much higher performance-energy efficiency.
In what concerns the Intel i7 processor, it is possible to observe
that its performance-energy efficiency is higher than that of
the ASIP implementations up to 8-cores in the FPGA devices.
Only the 16 and 32-core implementations of the ASIP on the
Virtex-7 FPGA outperform the single-core Intel i7. Finally,
the ASIC implementation of the proposed multicore ASIP
presents the highest performance-energy efficiency, for the
corresponding number of cores, among all of the considered
platforms (the single-core ASIC, providing 58 × 1012 CUPJS,
is almost 3× as efficient as the Intel Core i7 processor, with
21 × 1012 CUPJS).

In another perspective, it is also possible to compare the per-
formance of the programmable solutions with that of dedicated
hardware alignment solutions. The latter are capable of raw
throughputs as high as 67×109 CUPS [30] (higher than all of
the analyzed programmable solutions), but lack the necessary
flexibility that is highly advantageous in the targeted embedded
platforms, which address different types of analysis and bio-
markers. Thus, considering the presented results, it is possible
to conclude that the proposed multicore ASIP complies with
all the requisites to be embedded on low-power autonomous
platforms, while simultaneously providing HPC capabilities
that are usually only offered by state-of-the-art GPPs.

VII. CONCLUSION

This paper presented a new high performance and low
power ASIP architecture especially suited for DNA sequence
alignment at the biochip level. To exploit an algorithm’s fine-
grained parallelism, the proposed ASIP features an extended
SIMD ISA that, while general, is especially interesting to
bioinformatics algorithms. In the particular case of the Far-
rar’s SW implementation, the in-order single-instruction issue
implementation of the proposed SIMD ISA was able to achieve
speedups of about 2.5 and 2×, when compared with equivalent
SIMD implementations on dual-instruction issue NEON and
SSE implementations of the ARM Cortex A9 and of the Intel
Atom E665C, respectively. In fact, the obtained experimental
results show that the architecture of the proposed ASIP,
based on a single-instruction issue and a five-stage pipeline
implementation, can achieve a performance comparable to that
of an out-of-order Intel Sandy Bridge microarchitecture.

To exploit the coarse-grained parallelism model, a mul-
ticore platform was developed and prototyped on different
FPGA devices. It was demonstrated that a linear speedup
can be achieved with up to 16 processing cores, since no
relevant contention on the interconnection bus exists. When
the number of instantiated processors was further increased,

1300 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 23, NO. 7, JULY 2015

a gradual (but expected) sub-linear behavior was observed
in the attained speedup. Nevertheless, when considering the
cumulative speedup resulting from using both the SIMD ISA
and the multicore architecture, the proposed system is capable
of achieving speedup values as high as 800×, with 32 cores.

Finally, and targeting an integrated biochip platform,
a 90-nm CMOS implementation of the proposed multicore
processing structure was considered. Experimental results
show that a performance level similar to that of an Intel
Core i7 processor can be achieved using 25× less energy.
This demonstrates the viability of the proposed system on NGS
biochip platforms.

REFERENCES

[1] K. K. Jain, The Handbook of Biomarkers. New York, NY, USA:
Humana Press, 2010.

[2] R. J. Leary et al., “Development of personalized tumor biomarkers
using massively parallel sequencing,” Sci. Transl. Med., vol. 2, no. 20,
p. 20ra14, Feb. 2010.

[3] F. A. Cardoso et al., “Integration of magnetoresistive biochips on a
CMOS circuit,” IEEE Trans. Magn., vol. 48, no. 11, pp. 3784–3787,
Nov. 2012.

[4] J. Germano et al., “A portable and autonomous magnetic detection plat-
form for biosensing,” Sensors, vol. 9, no. 6, pp. 4119–4137, May 2009.

[5] F. Haque, J. Li, H.-C. Wu, X.-J. Liang, and P. Guo, “Solid-state
and biological nanopore for real-time sensing of single chemical and
sequencing of DNA,” Nano Today, vol. 8, no. 1, pp. 56–74, Feb. 2013.

[6] N. Sebastião, N. Roma, and P. Flores, “Integrated hardware architecture
for efficient computation of the n-best bio-sequence local alignments
in embedded platforms,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 7, pp. 1262–1275, Jul. 2012.

[7] K. Benkrid, Y. Liu, and A. Benkrid, “Design and implementation of
a highly parameterised FPGA-based skeleton for pairwise biological
sequence alignment,” in Proc. IEEE Symp. Field-Program. Custom
Comput. Mach. (FCCM), Apr. 2007, pp. 275–278.

[8] X. Jiang, X. Liu, L. Xu, P. Zhang, and N. Sun, “A reconfig-
urable accelerator for Smith-Waterman algorithm,” IEEE Trans. Circuits
Syst. II: Exp. Briefs, vol. 54, no. 12, pp. 1077–1081, Dec. 2007.

[9] Z. Nawaz, M. Nadeem, J. van Someren, and K. Bertels, “A parallel
FPGA design of the Smith-Waterman traceback,” in Proc. Int. Conf.
Field-Program. Technol. (FPT), Dec. 2010, pp. 454–459.

[10] R. Singh, B. Li, A. Elligton, and A. Hassibi, “A CMOS �-� photodetec-
tor array for bioluminescence-based DNA sequencing,” in Proc. Symp.
Very Large Scale Integr. Circuits (VLSIC), 2011, pp. 96–97.

[11] N. Neves et al., “BioBlaze: Multi-core SIMD ASIP for DNA sequence
alignment,” in Proc. Int. Conf. Appl.-Specific Syst., Archit. Process.
(ASAP), Jun. 2013, pp. 241–244.

[12] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool (BLAST),” J. Molecular Biol.,
vol. 215, no. 3, pp. 403–410, Oct. 1990.

[13] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence
comparison,” Proc. Nat. Acad. Sci., vol. 85, no. 8, pp. 2444–2448, 1988.

[14] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
J. Molecular Biol., vol. 48, no. 3, pp. 443–453, Mar. 1970.

[15] T. F. Smith and M. S. Waterman, “Identification of common molec-
ular subsequences,” J. Molecular Biol., vol. 147, no. 1, pp. 195–197,
Mar. 1981.

[16] O. Gotoh, “An improved algorithm for matching biological sequences,”
J. Molecular Biol., vol. 162, no. 3, pp. 705–708, Dec. 1982.

[17] T. Rognes and E. Seeberg, “Six-fold speed-up of Smith-Waterman
sequence database searches using parallel processing on common micro-
processors,” Bioinformatics, vol. 16, no. 8, pp. 699–706, Mar. 2000.

[18] T. Rognes, “Faster Smith-Waterman database searches with inter-
sequence SIMD parallelisation,” BMC Bioinform., vol. 12, no. 1, p. 221,
2011.

[19] M. Farrar, “Striped Smith-Waterman speeds database searches six times
over other SIMD implementations,” Bioinformatics, vol. 23, no. 2,
pp. 156–161, 2007.

[20] W. R. Pearson, “Searching protein sequence libraries: Comparison
of the sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms,” Genomics, vol. 11, no. 3, pp. 635–650, Nov. 1991.

[21] A. Wozniak, “Using video-oriented instructions to speed up sequence
comparison,” Comput. Appl. Biosci., vol. 13, no. 2, pp. 145–150, 1997.

[22] M. L. Metzker, “Sequencing technologies—The next generation,” Nature
Rev. Genet., vol. 11, no. 1, pp. 31–46, Jan. 2010.

[23] Intel 64 and IA-32 Architectures Software Developer’s Manual.
Santa Clara, CA, USA: Intel, Feb. 2013.

[24] T. Kranenburg and R. van Leuken, “MB-LITE: A robust, light-
weight soft-core implementation of the MicroBlaze architecture,” in
Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), Mar. 2010,
pp. 997–1000.

[25] MicroBlaze Processor Reference Guide. San Jose, CA, USA: Xilinx,
Jan. 2009.

[26] GCC, the GNU Compiler Collection, document GNU Project, Feb. 2013.
[27] F. S. Castaño, A. Ramirez, and M. Valero, “Quantitative analysis of

sequence alignment applications on multiprocessor architectures,” in
Proc. ACM Conf. Comput. Frontiers, 2009, pp. 61–70.

[28] N. Roma and P. Magalhaes, “System-level prototyping framework for
heterogeneous multi-core architecture applied to biological sequence
analysis,” in Proc. IEEE Int. Symp. Rapid Syst. Prototyping (RSP),
Oct. 2012, pp. 156–162.

[29] J. Leitao, J. Germano, N. Roma, R. Chaves, and P. Tomas, “Scalable
and high throughput biosensing platform,” in Proc. 23rd Int. Conf. Field
Program. Logic Appl. (FPL), Sep. 2013, pp. 1–6.

[30] N. Sebastião, N. Roma, and P. Flores, “Configurable and scalable
class of high performance hardware accelerators for simultaneous DNA
sequence alignment,” Concurrency Comput., Pract. Exper., vol. 25,
no. 10, pp. 1319–1339, Jul. 2013.

Nuno Neves received the M.Sc. degree in electrical and computer engineering
from the Instituto Superior Técnico, Technical University of Lisbon, Lisbon,
Portugal, in 2013, where he is currently pursuing the Ph.D. degree.

He is a Junior Researcher with the Instituto de Engenharia de Sistemas e
Computadores-Investigação e Desenvolvimento, Lisbon. His current research
interests include computer architectures and parallel computing.

Nuno Sebastião received the M.Sc. degree in electrical and computer engi-
neering from the Instituto Superior Técnico, Technical University of Lisbon,
Lisbon, Portugal, in 2007, where he is currently pursuing the Ph.D. degree.

He is a Junior Researcher with the Instituto de Engenharia de Sistemas e
Computadores-Investigação e Desenvolvimento, Lisbon. His current research
interests include architectures for biological sequences processing.

David Matos received the Ph.D. degree in information systems and computer
engineering from the Instituto Superior Técnico (IST), Technical University
of Lisbon, Lisbon, Portugal, in 2005.

He is an Assistant Professor with the Department of Computer Science,
IST, and a Senior Researcher with the Instituto de Engenharia de Sistemas e
Computadores-Investigação e Desenvolvimento, Lisbon. His current research
interests include intelligent systems, computational music processing, and
high-performance computing.

Pedro Tomás received the Ph.D. degree in electrical and computer engineering
from the Instituto Superior Técnico (IST), Technical University of Lisbon,
Lisbon, Portugal, in 2009.

He is an Assistant Professor with the Department of Electrical and
Computer Engineering, IST, and a Senior Researcher with the Instituto de
Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento,
Lisbon. His current research interests include computer architectures and
parallel computing.

Paulo Flores received the Ph.D. degree in electrical and computer engineering
from the Instituto Superior Técnico (IST), Technical University of Lisbon,
Lisbon, Portugal, in 2001.

He is an Assistant Professor with the Department of Electrical and
Computer Engineering, IST, and a Senior Researcher with the Instituto de
Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento,
Lisbon. His current research interests include computer architecture and
algorithms, embedded systems, and EDA.

Nuno Roma received the Ph.D. degree in electrical and computer engineering
from the Instituto Superior Técnico (IST), Technical University of Lisbon,
Lisbon, Portugal, in 2008.

He is an Assistant Professor with the Department of Electrical and
Computer Engineering, IST, and a Senior Researcher with the Instituto de
Engenharia de Sistemas e Computadores-Investigação e Desenvolvimento,
Lisbon. His current research interests include computer architectures and
specialized structures for high performance computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

