
A Variable Radix-2
r
 Algorithm for

Single Constant Multiplication

Abstract— In previous work, a fully predictable sub-linear

runtime heuristic for the multiplication by a constant based on

radix-2r arithmetic using a fixed radix was developed, called

RADIX-2r. In this paper, we introduce a new constant

multiplication algorithm based also on Radix-2r arithmetic but

considering a variable radix. The new version is named RADIX-

2r-VAR. Using a variable radix allows to optimize the average

number of additions in the constant multiplication since a larger

search space is explored. The new RADIX-2r-VAR recoding

requires an average of 4.4% and 2.2% less additions than

RADIX-2r for 24 and 32 bits, respectively. The RADIX-2r-VAR

algorithm is combined with RADIX-2r for more improvements in

the average number of additions. An overall saving of 6.7% and

5.5% is obtained over RADIX-2r for 24 and 32 bits, respectively.

Keywords— High-Speed and Low-Power Design, Linear-Time-

Invariant (LTI) Systems, Multiplierless Single/Multiple Constant

Multiplication (SCM/MCM). Radix-2r Arithmetic.

I. BACKGROUND AND MOTIVATION

Multiplication of data input by a constant is a fundamental
operation in many DSP and control systems, such as fast
Fourier transform (FFT), discrete cosine transforms (DCT),
FIR/IIR filters, and digital controllers. To be efficiently
designed, instead of a full-block generic multiplier, an
implementation based on addition/subtraction and shift
operations should be used. This problem is called single
constant multiplication (SCM). In this paper, we assume that
addition and subtraction have the same hardware cost, and that
the shift is costless since it can be realized without any gates,
i.e., just by hardwiring. The single constant multiplication
(SCM) problem is defined as finding the minimum number of
addition/subtraction operations to implement the constant
multiplication. The computational complexity of SCM is
conjectured to be NP-hard [1]. Hence the optimal algorithms
are impractical, only heuristics can respond in a reasonable
amount of time. Due to the importance of problem, many
efficient heuristics have been proposed for the multiplierless
design of the constant multiplier block, targeting the
minimization of the number of additions (hardware design
complexity). They are classified in four main categories:

• Digit-recoding algorithms such as minimal signed digit
(MSD) recoding [2], the canonical signed digit (CSD)
representation [3], Booth recoding [4], and RADIX-2

r

recoding [5] [6][7].

• Common subexpression elimination (CSE) using
pattern matching performed after an initial digit-
recoding. Typical examples are Hartley [8], Lefèvre [9],
Boullis [10], and Aksoy [11][12].

• Directed acyclic graph (DAG) based algorithms. This
category includes Bernstein [13], MAG [14], H(k) [15],
Hcub [16], and DFSearch [17].

• Mixed algorithms combining CSE and DAG such as the
optimal algorithm BIGE [1].

In previous work, a new heuristic (RADIX-2
r
) for constant

multiplication based on radix-2
r
 arithmetic was developed. It

has the major advantage of being fully predictable in the
maximum number of additions (upper-bound), in the average
number of additions, and in the number of cascaded adders
(adder-depth) forming the critical path. In RADIX-2

r
the two's

complement representation of each constant is split into slices
of the same bit-length (r+1). Since all slices have equal bit-
size, the decomposition covers only a part of the research
space. Therefore better solutions could be missed.

The main purpose of this work is to further reduce the
average number of additions (Avg) by developing a new digit
recoding heuristic (RADIX-2

r
-VAR) based on the radix-2

r

arithmetic. This algorithm preserves the same advantage as
RADIX-2

r
 in terms of predictability in upper bound and adder

depth. In RADIX-2
r
-VAR the two's complement recoding of

the constant is split into slices of variable bit-length, allowing
to obtain a better solution (minimal number of adders) since a
larger search space is explored, while keeping the execution
time within acceptable limits.

This paper is organized as follows. Section II gives an
overview on the RADIX-2

r
 SCM algorithms. Section III

presents the new RADIX-2
r
-VAR SCM algorithm. Results are

discussed in Section IV. Finally, Section V provides some
concluding remarks and suggestions for future work.

II. RADIX-2R SCM ALGORITHM

In radix-2
r
, a non-negative N-bit constant C is expressed as

follows:

(
()

) rj
rrj

r
rrj

r
rN

j

rjrjrjrj ccccccC 222222 1
1

2
2

1/1

0

2
2

1
10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

−+

=
++−∑

 ()
∑

−+

=

×=
1/1

0

2
rN

j

rj
jQ , (1)

Ahmed Liacha
1,2,3

, Abdelkrim K. Oudjida
1
, Farid Ferguene

2
, José Monteiro

3
, and Paulo Flores

3

Centre de Développement des Technologies Avancées
1
 (CDTA), System Architecture and Multimedia Division,

Cité du 20 août 1956, Baba-Hassen, Algiers, Algeria. liacha@cdta.dz , a_oudjida@cdta.dz

Université des Sciences et de la Technologie Houari Boumediene
2
 (USTHB), LRPE Laboratory,

BP 32, El Alia 16111, Algiers, Algeria. fferguene@usthb.dz

INESC-ID/IST
3
, Universidade de Lisboa, Rua Alves Redol 9,1000-029 Lisbon, Portugal. jcm@inesc-id.pt , pff@inesc-id.pt

where 01 ==− Ncc and *Ν∈r . In (1) the two's complement

representation (TCR) of C is divided into () rN /1+ slices

(jQ), each one has r+1 bit length. Each of two adjacent slices

has one overlapping bit. A digit-set ()rDS 2 corresponds to (1),

such as () { }1111 2,12,...,1,0,1,...,12,22 −−−− −−+−−=∈ rrrrr

j DSQ .

The sign of the Qj term is given by the crj+r–1 bit, and

j
k

j mQ j ×=2 , with { }1210 −∈ r,...,,,kj
 and () { }1,02 U

r

j OMm ∈ , where

() { }12,...,7,5,32 1 −= −rrOM . ()rOM 2 is the set of odd positive

digits in RADIX-2
r
 recoding, with () 122

2 −= −rr
OM . Finally,

the constant C can be expressed as follows

()
()

jrrj krj
rN

j

j

c
mC

+
−+

=

××−= ∑ −+ 21
1/1

0

1 . (2)

There exists a number of metrics for single (SCM) constant
multiplication, but the most commonly used are:

• Upper-bound (Upb): For each N-bit constant Ci, let Ai

be the number of additions for the implementation of
Ci×X. Thus, Upb = max (Ai).

• Average (Avg): The average number of additions for N

bit constant is Avg ∑
=

m

i

i mA
1

/ = , where m is the total

number of Ci constants, i.e., m = 2
N
−1.

• Adder-Depth (Ath): Let Di be the number of cascaded
adders along any path i from the input to any of the
outputs in the logic circuit of the constant
multiplication. Ath is equal to max (Di).

The average (Avg), the maximum adder-depth in cascaded
additions (Ath), and the maximum number of additions
required by RADIX-2

r
 are reported in Table I. The main

feature of RADIX-2
r
 is that it is fully predictable and it has a

sublinear runtime complexity O(N/r) with respect to the
constant size N [7].

III. RADIX-2
r
-VAR SCM ALGORITHM

In radix-2
r
, a non-negative N-bit constant C is generally

expressed by (1). But C can be expressed differently as:

() rj

rrj

r

srj

r

j

rjrjrjrj ccccccC 222222 1

1

2

2
1

0

2

2

1

10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

=
++−∑

)0 1 2 2 1

1 0 1 2 2 1
(2 2 2 ... 2 2r r

r r
c c c c c c− −
− − −= + + + + + − +

) r

N

rN

N

rN

rrrr cccccc 222...222(1

)1(

2

2

1

10

1 ×−+++++ −
−

+−
++−

0 1 2rQ Q= + × , (3)

where 01 ==− Ncc and *Ν∈r . The TCR of the constant C is

split into two of two’s complement slices (0Q , 1Q). The two

slices are adjacent and have one overlapping bit. In this
algorithm, the bit length of each slice can vary from 2 up to N
bits. The sum of the bit-length of the two slices is equal to N+2.

A digit-set ()rDS 2 corresponds to (3), such as

() { }11

0 2,12,...,1,0,1,...,12,22 −− −−+−−=∈ rrrrrDSQ and

())1(

1 2 −−∈ rNDSQ , where r is variable, and },...,2,1{ Nr∈ .

TABLE I. RADIX-2r
 SCM FOR A NONNEGATIVE N-BIT CONSTANT

 Metrics Equations

Adder cost
() 22

1 2 −+

 +
= −r

r

N
rUpb

Adder depth
() 3

1
−+

 +
= r

r

N
rAth

 Average

() 2221 −++−≤≤++− r

ppompp AvgrAvgAvgAvg

 with

()

 +
×−= −

r

N
Avg r

pp

1
21 ,

() ()[]∑ ∑

−

 +

=

−

=

−×=
−

1
1

0

12

1

2

1
r

N

j k

j

jkjkom

r

mPmPAvg ,

 ()
1

1

2

2

12

2
log

−

−

+×
=

r

r

jk

k
mP

 ,

 ()())2/log()2log(1W2 ⋅+⋅= Nr

W: Lambert function; : Ceiling function.

The sign of 0Q and 1Q terms is given by the
1−rc and Nc bits,

respectively. The two terms
0Q and 1Q can be written as:

00
02 mQ

k ×= and
11

12 mQ
k ×= , with }1,...,2,1{0,0 −∈ rk ,

},...,2,1{0,1 rNk −∈ , () { }1,020 U
rOMm ∈ , () { }1,02)1(

1 U
−−∈ rNOMm ,

where () { }12,...,7,5,32 1 −= −rrOM . ()rOM 2 is the set of odd

positive digits in RADIX-2
r
-VAR recoding, with

() 122 2 −= −rrOM . Finally, the constant C can be expressed as

101 2)1(2)1(10

krckc
mmC Nr +××−+××−= −

101 22)1(10

krkc mmr +×+××−= − . (4)

The main objective is to decrease Avg without increasing
Upb and Ath as in RADIX-2

r
. As shown in the pseudo-code

given in Fig. 1, the RADIX-2
r
-VAR algorithm is divided into

two parts. The first part of the algorithm consists in
constructing (off-line) a table containing the recoding with an
optimized adder cost for all partial products that can be
produced during the different partitioning of the constant. This
table is built only one time and saved. In this part, we apply the

A-operation [16] to optimize the recoding of the terms 0Q and

1Q , so that they can be expressed as
hel vuQ 2)1(2 ××−+×= ,

where l, h ≥ 0 are integers denoting left shifts, and {0,1}e∈

represents the sign that indicates if an addition or a subtraction
operation is to be performed. Using the new expression of Q,
the equation (4) can be rewritten in more details as

[]+××−+××−= − 0001 2)1(2)1(00

helc vuC r [] rhel
vu 22)1(2 111

11 ×××−+× , (5)

where, { }12,...,5,3,1,0, 1)2/(−∈ −rvu , { }1,...,2,1,0 −∈ rl , { }1,0∈e ,

and { }1)2/(,...,2,1,0 −∈ rh .

For the same value of Q, the quintuplet (u, l, e, v, h) is not
unique. Therefore several valid combinations may exist. For

instance 25=Q can be expressed as 25=3×2
3
+1×2

0
, or

25=5×2
2
+5×2

0
, or 25=7×2

2−3×2
0
.

For each odd |Q| varying from 1 to 2
r−1−1, we exhaustively

explore all (u, l, e, v, h) possibilities and select the least adder
consumer combination according to the following priority
ordering: (u,v)=(u,0); (u,v)=(1,1); (u,±1×2

0
); (u,v)=(1,3) or

(3,1); (u,v)=(3,3); (u,v)=(1,5) or (5,1); (u,v)=(5,5); (u, v)= (1,7)
or (7,1); (u,v)=(7,7); (u,v)= (3,5) or (5,3); (u,v)=(3,7) or (7,3);
(u,v)=(5,7) or (7,5).

Fig. 3. Partitioning of (571113)10 in RADIX-2r-VAR.

This ordering reduces the number of additions in the whole
recoding of the constant C by maximizing the occurrences of
the digit “1”, then of “3”, etc, and minimize the occurrences of
those requiring a high number of adders [6].

The second part consists in finding the recoding (brec) that
ensures the minimum cost (bc). We split the constant into two

TCS (4), calculate the values of 0Q and 1Q , and then check the

recoding of 0Q and 1Q in the table of partial product recoding.

We start with two slices of bit-length of 2 and N+1 for the slice
1 and 2, respectively. The process repeats in the same way,
increasing the bit length of the first slice by one and decreasing
the second slice by one until we reach a bit length of N+1 and 2
for the slice 1 and 2, respectively. Fig. 2(a) depicts all possible
partitionings of the constant C= (455)10.

In radix-2
r
 representation, the slices (10), (110), (1110), and

(11…10) are the same and equal to -1. Note that the “0” was
added and is not part of the original number. Likewise, the
slices (01) and (0…01) are the same and equal to 1. We apply
these two equivalences to reduce the number of operations in
our algorithm by eliminating the groups which gives the same
value. Thus, instead of varying the partitioning of the constant
by incrementing the bit-size of the slices 1 by one, the
partitioning is realized whenever there is a transition from 1 to
0 or from 0 to 1. Fig. 2(b) depicts all possible partitionings
defined by the transition from 1 to 0 and from 0 to 1 of the
constant C= (455)10.

A. Illustrative Example

To illustrate RADIX-2
r
-VAR algorithm, let us consider

C= (571113)10, which in TCR is represented as
(010001011011011101001)2. Thus, the constant bit-size is N+1
(20+1=21 bits for 571113).

We scan all possible bit-length combinations of the two
slices Q1 and Q2. For each value of Q1 and Q2 we check in the
table of recoding, calculate the adder cost, and finally take the
minimum. Depending on the choice of grouping, several
solutions of recoding for the constant C are obtained, for
example C can be written as:

571113=71389<<3+1, with 71389=279<<8–35, 279=9<<5–9,

35=1<<5+3, 9=1<<3+1, and 3=1<<1+1. Which gives an adder

cost of 6.

571113=35695<<4–7, with 35695=35<<10–145, 145=9<<4+1,

35=1<<5+3, 9=1<<3+1, 7=1<<3–1, and 3=1<<1+1. Which

gives an adder cost of 7.

571113=17847<<5 +9, with 17847=35<<9 –73, 73=9<<3+1,

35=1<<5+3, 9=1<<3+1, and 3=1<<1+1. Which gives an adder

cost of 6.

571113=2231<<8–23, with 2231=35<<6–9, 35=1<<5+3,

23=3<<3–1, 9=1<<3+1, and 3=1<<1+1. Which gives an adder

cost of 6.

The recoding that ensures a minimum adder cost (Fig. 3) is
C=279×2

11
–279=571113, with 279=9×2

5
-9 and 9=1×2

3
+1.

This recoding involves the pre-computation of two Partial
Products (PPs) only {279×X, 9×X}. It has to be noted that the
adder cost and the adder depth for C=571113 are 3 and 3,
respectively. Note that RADIX-2

r
 and CSD recodings of

C=571113 requires both 7 additions, where RADIX-2
r
-VAR

needs only 3. A saving of 4 additions is achieved. Compared to
RADIX-2

r
algorithm that has a sublinear runtime complexity

O(N/r), RADIX-2
r
-VAR algorithm improves the number of

additions at the cost of small increase in execution time O(N).
For more improvement in average number of additions, the
RADIX-2

r
-VAR algorithm is combined to RADIX-2

r

algorithm. Here for each constant we execute the two
algorithms RADIX-2

r
 and RADIX-2

r
-VAR and choose the

minimum adder cost.

IV. EXPERIMENTAL RESULTS

The average number of additions (Avg) of both algorithms
(RADIX-2

r
-VAR and combined RADIX-2

r
-VAR with

RADIX-2
r
) has been calculated exhaustively for each C

varying from 0 to 2
N−1−1, with N=8, 16, and 24. For N=32, we

have calculated Avg using constant sets with 10
4
, 10

5
, 10

6
, and

10
7
 uniformly distributed random values of C. The Avg value

oscillates around 7.985 additions for the pure RADIX-2
r
-VAR

and 7.716 additions for the combined RADIX-2
r
-VAR with

RADIX-2
r
. Note that the difference between the average

obtained results for different sizes of the constant sets is
insignificant (<10

–3
).

 (a) (b)
 Fig. 2. Partitioning of (455)10 in RADIX-2r-VAR. (a) all cases, (b) with

 transition from 1-0 and 0-1.

 RADIX-2
r
-VAR(C)

 N: bit length of C

 bc: best cost

 brec: best recoding

 n: number of transitions

 OM_Table: optimal recoding of odd multiples

 begin

 1: TCR(C) // two’s complement representation of C

 2: Determine vector V containing 0 to 1 and 1 to 0 transitions

 3: for i = 2 to n do

 J = V(i).

 Q0 = (Cj...0) // calculate Q0 value and make it odd and positive.

 Q1 = (CN...Cj) // calculate Q1 value and make it odd and positive.

 Rec // check Q0 and Q1 recoding in OM_Table

 Cost // calculate the cost

 if i = 2 begin

 brec = rec

 bc = cost

 elseif cost < bc begin

 brec = rec

 bc = cost

 end // for

 return brec and bc

Fig. 1. The RADIX-2r-VAR algorithm.

TABLE II. RADIX-2r-VAR VERSUS CSD: AVG

N (bits) CSD RADIX-2r-VAR Saving %

8 2.111 2.001 5.210

16 4.777 3.995 16.370

24 7.444 5.891 20.862

32 10.111 7.985 21.026

TABLE IV. COMBINING RADIX-2r
 WITH RADIX-2r-VAR VERSUS

RADIX-2r: Avg

N (bits) RADIX-2r
COMBIN. RADIX-2r

& RADIX-2r-VAR
Saving %

8 2.001 2.001 0.000

16 4.130 3.929 4.866

24 6.165 5.752 6.699

32 8.165 7.716 5.499

The results of comparison between the RADIX-2
r
-VAR

algorithm and the CSD representation are reported in Table II.
For N=24 and N=32, we achieved a savings of 20.862% and
21.026% additions over CSD, respectively. Table III shows a
comparison between RADIX-2

r
-VAR and RADIX-2

r

algorithms. For N equals 16, 24, and 32 bits, RADIX-2
r
-VAR

uses 3.268%, 4.444%, and 2.204% less additions than RADIX-
2

r
, respectively. Results of the combined RADIX-2

r
-VAR to

RADIX-2
r
 are reported in Table IV. We have obtained better

savings: 4.866%, 6.699%, and 5.499% for N=16, N=24, and
N=32, respectively.

The results show that RADIX-2
r
-VAR algorithm has higher

capability to find better solutions when compared to CSD and
RADIX-2

r
 algorithms. The combination of RADIX-2

r
 with

RADIX-2
r
-VAR helps to further improve the adder cost.

Another performance indicator of the recoding is the
smallest value that requires q additions, for q varying from 1 to
the upper-bound of the recoding. The results are reported in
Table V for a 32-bit constant (24-bit constant only for the
RADIX-2

r
-VAR). Note that starting from q=4, higher values

are obtained by RADIX-2
r
-VAR when compared to CSD.

V. CONCLUSION AND FUTURE WORK

Based on radix-2
r
 arithmetic, we have developed a new

algorithm (RADIX-2
r
-VAR) for single constant multiplication

with a variable radix. The latter improved the average number
of additions over RADIX-2

r
 algorithm and CSD recoding.

Further improvements are achieved combining RADIX-2
r
-

VAR and RADIX-2
r
. The average number of additions has

been improved at the cost of a small increase in execution time.

Our on-going work deals with the application of RADIX-
2

r
-VAR algorithm to the multiple constant multiplication

(MCM) problem.

REFERENCES

[1] J. Thong and N. Nicolici, “An optimal and practical approach to single
constant multiplication,” IEEE Trans. on Computer-Aided Design of
Integrated Circ. and Systems, vol. 30, no. 9, pp. 1373-1386, Sep. 2011.

[2] I-C. park and H-J. Kang, “Digital filter synthesis based on minimal
signed digit representation, ” in Proceeding of DAC, 2001, pp, 468-473

[3] A. Avizienis, “Signed-digit number representation for fast parallel
arithmetic,” IRE Trans. on Electronic Computers, vol. EC-10, No. 3, pp.
389–400, September 1961.

[4] Y.E. Kim et al., “Efficient Design of Modified Booth Multipliers for
Predetermined Coefficients,” Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2717-2720, Island of
Kos, Greece, May 2006.

[5] A.K. Oudjida and N. Chaillet, “Radix-2r Arithmetic for Multiplication
by a Constant,” IEEE Trans. on Circuits and Systems II: Express Brief,
61, (5), pp. 349-353, May 2014.

[6] A.K. Oudjida, N. Chaillet, and M.L. Berrandjia, “Radix-2r Arithmetic
for Multiplication by a Constant: Further Results and Improvements,”
IEEE Trans. on Circ. and Systems II, 62, (4), pp. 372-376, April 2015.

[7] A.K. Oudjida, A. Liacha, M. Bakiri, and N. Chaillet, “Multiple Constant
Multiplication Algorithm for High Speed and Low Power Design,”
IEEE Trans. on Circuits and Systems II: Express Brief, vol. 63, no 2, pp.
176-180, February 2016.

[8] R.I. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE Trans. on Circuits and Systems II: Analog and
Digital Signal Processing, vol. 43, No. 10, pp. 677-688, October 1996.

[9] V. Lefèvre, “Multiplication by an Integer Constant,” INRIA Research
Report, No. 4192, Lyon, France, May 2001.

[10] N. Boullis and A. Tisserand, “Some Optimizations of Hardware
Multiplication by Constant Matrices,” IEEE Trans. on Computers (TC),
vol. 54, No. 10, pp. 1271-1282, October 2005.

[11] Levent Aksoy et al., “Exact and approximate algorithms for the
optimization of area and delay in multiple constant multiplications,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (TCAD), 27(6):1013-1026, June 2008.

[12] L. Aksoy et al.,,“Optimization algorithms for the multiplierless
realization of linear transforms”. ACM Trans. on Design Automation of
Electronic Systems (TODAES), 17(1):3:1 - 3:27, January 2012.

[13] R.L. Bernstein, “Multiplication by Integer Constant,” Software– Practice
and Experience 16, 7, pp. 641-652, 1986.

[14] O. Gustafsson, A.G. Dempster, and L. Wanhammar, “Extended Results
for Minimum-Adder Constant Integer Multipliers,” Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), vol.
1, pp. I-73 I-76, Scottsdale Arizona, USA, May 2002.

[15] A. Dempster and M. Macleod, “Using Signed-Digit Representations to
Design Single Integer Multipliers Using Subexpression Elimination,”
Proceedings of the IEEE International Symp.m on Circuits and Systems
(ISCAS), vol. 3, pp. III-165-168, Vancouver, Canada, May 2004.

[16] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant
Multiplication,” ACM Trans. on Algorithms (TALG), vol. 3, No. 2,
article 11, pp. 1-38, May 2007.

[17] L. Akso et al., “Search algorithms for the multiple constant
multiplications problem: Exact and approximate”. Microprocessors and
Microsystems: Embedded Hardware Design (MICPRO), 34(5):151-162,
August 2010. Special issue on selected papers from NORCHIP, 2008.

TABLE V. RADIX-2r-VAR VERSUS RADIX-2r , CSD AND

EXHAUSTIVE SEARCH: SMALLEST VALUES UP TO A 32-BIT CONSTANT

Number of
additions (q)

CSD RADIX-2r
RADIX-
2r-VAR

Exhaustive
search [9]

1 3 3 3 3

2 11 11 11 11

3 43 43 43 43

4 171 339 343 683

5 683 2387 2347 14709

6 2731 18605 14635 699829

7 10923 148825 158153 171398453

8 43691 1186451 898219 –

9 174763 9521325 6994263 –

10 699051 143739053 NA –

11 2796203 2291222701 NA –

12 11184811 – – –

13 44739243 – – –

14 178956971 – – –

15 715827883 – – –

16 2863311531 - - -

NA: Not available

TABLE III. RADIX-2r-VAR VERSUS RADIX-2r: Avg

N (bits) RADIX-2r RADIX-2r-VAR Saving %

8 2.001 2.001 0.000

16 4.130 3.995 3.268

24 6.165 5.891 4.444

32 8.165 7.985 2.204

