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Abstract— In previous work, a fully predictable sub-linear 

runtime heuristic for the multiplication by a constant based on 

radix-2r arithmetic using a fixed radix was developed, called 

RADIX-2r. In this paper, we introduce a new constant 

multiplication algorithm based also on Radix-2r arithmetic but 

considering a variable radix. The new version is named RADIX-

2r-VAR. Using a variable radix allows to optimize the average 

number of additions in the constant multiplication since a larger 

search space is explored. The new RADIX-2r-VAR recoding 

requires an average of 4.4% and 2.2% less additions than 

RADIX-2r for 24 and 32 bits, respectively. The RADIX-2r-VAR 

algorithm is combined with RADIX-2r for more improvements in 

the average number of additions. An overall saving of 6.7% and 

5.5% is obtained over RADIX-2r for 24 and 32 bits, respectively. 

Keywords— High-Speed and Low-Power Design, Linear-Time-

Invariant (LTI) Systems, Multiplierless Single/Multiple Constant 

Multiplication (SCM/MCM). Radix-2r Arithmetic. 

I. BACKGROUND AND MOTIVATION 

Multiplication of data input by a constant is a fundamental 
operation in many DSP and control systems, such as fast 
Fourier transform (FFT), discrete cosine transforms (DCT), 
FIR/IIR filters, and digital controllers. To be efficiently 
designed, instead of a full-block generic multiplier, an 
implementation based on addition/subtraction and shift 
operations should be used. This problem is called single 
constant multiplication (SCM). In this paper, we assume that 
addition and subtraction have the same hardware cost, and that 
the shift is costless since it can be realized without any gates, 
i.e., just by hardwiring. The single constant multiplication 
(SCM) problem is defined as finding the minimum number of 
addition/subtraction operations to implement the constant 
multiplication. The computational complexity of SCM is 
conjectured to be NP-hard [1]. Hence the optimal algorithms 
are impractical, only heuristics can respond in a reasonable 
amount of time. Due to the importance of problem, many 
efficient heuristics have been proposed for the multiplierless 
design of the constant multiplier block, targeting the 
minimization of the number of additions (hardware design 
complexity). They are classified in four main categories:  

• Digit-recoding algorithms such as minimal signed digit 
(MSD) recoding [2], the canonical signed digit (CSD) 
representation [3], Booth recoding [4], and RADIX-2

r
 

recoding [5] [6][7]. 

• Common subexpression elimination (CSE) using 
pattern matching performed after an initial digit-
recoding. Typical examples are Hartley [8], Lefèvre [9], 
Boullis [10], and Aksoy [11][12]. 

• Directed acyclic graph (DAG) based algorithms. This 
category includes Bernstein [13], MAG [14], H(k) [15], 
Hcub [16], and DFSearch [17]. 

• Mixed algorithms combining CSE and DAG such as the 
optimal algorithm BIGE [1]. 

In previous work, a new heuristic (RADIX-2
r
) for constant 

multiplication based on radix-2
r
 arithmetic was developed. It 

has the major advantage of being fully predictable in the 
maximum number of additions (upper-bound), in the average 
number of additions, and in the number of cascaded adders 
(adder-depth) forming the critical path. In RADIX-2

r 
the two's 

complement representation of each constant is split into slices 
of the same bit-length (r+1). Since all slices have equal bit-
size, the decomposition covers only a part of the research 
space. Therefore better solutions could be missed.   

The main purpose of this work is to further reduce the 
average number of additions (Avg) by developing a new digit 
recoding heuristic (RADIX-2

r
-VAR) based on the radix-2

r
 

arithmetic. This algorithm preserves the same advantage as 
RADIX-2

r
 in terms of predictability in upper bound and adder 

depth. In RADIX-2
r
-VAR the two's complement recoding of 

the constant is split into slices of variable bit-length, allowing 
to obtain a better solution (minimal number of adders) since a 
larger search space is explored, while keeping the execution 
time within acceptable limits. 

This paper is organized as follows. Section II gives an 
overview on the RADIX-2

r
 SCM algorithms. Section III 

presents the new RADIX-2
r
-VAR SCM algorithm. Results are 

discussed in Section IV. Finally, Section V provides some 
concluding remarks and suggestions for future work. 

II. RADIX-2R SCM ALGORITHM 

In radix-2
r
, a non-negative N-bit constant C is expressed as 

follows: 
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where 01 ==− Ncc  and *Ν∈r . In (1) the two's complement 

representation (TCR) of C is divided into ( ) rN /1+  slices 

( jQ ), each one has r+1 bit length. Each of two adjacent slices 

has  one  overlapping bit. A digit-set ( )rDS 2  corresponds to (1), 

such as ( ) { }1111 2,12,...,1,0,1,...,12,22 −−−− −−+−−=∈ rrrrr

j DSQ . 

The sign of the Qj term is given by the crj+r–1 bit, and 

j
k

j mQ j ×=2 , with { }1210 −∈ r,...,,,kj
 and ( ) { }1,02 U

r

j OMm ∈ , where 

( ) { }12,...,7,5,32 1 −= −rrOM . ( )rOM 2  is the set of odd positive 

digits in RADIX-2
r
 recoding, with ( ) 122

2 −= −rr
OM . Finally, 

the constant C can be expressed as follows      
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There exists a number of metrics for single (SCM) constant 
multiplication, but the most commonly used are: 

• Upper-bound (Upb): For each N-bit constant Ci, let Ai 

be the number of additions for the implementation of   
Ci×X. Thus, Upb = max (Ai). 

•  Average (Avg): The average number of additions for N 

bit constant is Avg ∑
=

m

i

i mA
1

/ = , where m is the total 

number of Ci constants, i.e., m = 2
N
−1. 

•  Adder-Depth (Ath): Let Di be the number of cascaded 
adders along any path i from the input to any of the 
outputs in the logic circuit of the constant 
multiplication. Ath is equal to max (Di). 

The average (Avg), the maximum adder-depth in cascaded 
additions (Ath), and the maximum number of additions 
required by RADIX-2

r
 are reported in Table I. The main 

feature of RADIX-2
r
 is that it is fully predictable and it has a 

sublinear runtime complexity O(N/r) with respect to the 
constant size N [7].  

III. RADIX-2
r
-VAR  SCM ALGORITHM 

In radix-2
r
, a non-negative N-bit constant C is generally 

expressed by (1). But C can be expressed differently as: 

( ) rj

rrj

r

srj

r

j

rjrjrjrj ccccccC 222222 1

1

2

2
1

0

2

2

1

10

1 ×−+⋅⋅⋅++++= −+
−

−+
−

=
++−∑

      

   
)0 1 2 2 1

1 0 1 2 2 1
( 2 2 2 ... 2 2r r

r r
c c c c c c− −
− − −= + + + + + − +

 

      ) r

N

rN

N

rN

rrrr cccccc 222...222( 1

)1(

2

2

1

10

1 ×−+++++ −
−

+−
++−  

   
0 1 2rQ Q= + × ,                                                                  (3)    

where 01 ==− Ncc  and *Ν∈r . The TCR of the constant C is 

split into two of two’s complement slices ( 0Q , 1Q ). The two 

slices are adjacent and have one overlapping bit. In this 
algorithm, the bit length of each slice can vary from 2 up to N 
bits. The sum of the bit-length of the two slices is equal to N+2.  

A digit-set ( )rDS 2  corresponds to (3), such as 

( ) { }11

0 2,12,...,1,0,1,...,12,22 −− −−+−−=∈ rrrrrDSQ    and  

( ))1(

1 2 −−∈ rNDSQ , where r is variable, and },...,2,1{ Nr∈ .  

TABLE I.  RADIX-2r
 SCM FOR A NONNEGATIVE N-BIT CONSTANT 
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W: Lambert function;   : Ceiling function. 

The sign of 0Q  and 1Q  terms is given by the 
1−rc and Nc bits, 

respectively. The two terms 
0Q and 1Q  can be written as:    

00
02 mQ

k ×=  and 
11

12 mQ
k ×= , with }1,...,2,1{0,0 −∈ rk , 

},...,2,1{0,1 rNk −∈ , ( ) { }1,020 U
rOMm ∈ , ( ) { }1,02 )1(

1 U
−−∈ rNOMm , 

where ( ) { }12,...,7,5,32 1 −= −rrOM . ( )rOM 2  is the set of odd 

positive digits in RADIX-2
r
-VAR recoding, with 

( ) 122 2 −= −rrOM . Finally, the constant C can be expressed as    

101 2)1(2)1( 10

krckc
mmC Nr +××−+××−= −            

101 22)1( 10

krkc mmr +×+××−= − .                                             (4) 

The main objective is to decrease Avg without increasing 
Upb and Ath as in RADIX-2

r
. As shown in the pseudo-code 

given in Fig. 1, the RADIX-2
r
-VAR algorithm is divided into 

two parts. The first part of the algorithm consists in 
constructing (off-line) a table containing the recoding with an 
optimized adder cost for all partial products that can be 
produced during the different partitioning of the constant. This 
table is built only one time and saved. In this part, we apply the 

A-operation [16] to optimize the recoding of the terms 0Q  and 

1Q , so that they can be expressed as 
hel vuQ 2)1(2 ××−+×= ,  

where l, h ≥ 0 are integers denoting left shifts, and {0,1}e∈  

represents the sign that indicates if an addition or a subtraction 
operation is to be performed. Using the new expression of Q, 
the equation (4) can be rewritten in more details as   

[ ]+××−+××−= − 0001 2)1(2)1( 00

helc vuC r [ ] rhel
vu 22)1(2 111

11 ×××−+× ,   (5) 

where, { }12,...,5,3,1,0, 1)2/( −∈ −rvu , { }1,...,2,1,0 −∈ rl , { }1,0∈e , 

and { }1)2/(,...,2,1,0 −∈ rh . 

For the same value of Q, the quintuplet (u, l, e, v, h) is not 
unique. Therefore several valid combinations may exist. For 

instance 25=Q  can be expressed as 25=3×2
3
+1×2

0
, or 

25=5×2
2
+5×2

0
, or  25=7×2

2−3×2
0
.              

For each odd |Q| varying from 1 to 2
r−1−1, we exhaustively 

explore all (u, l, e, v, h) possibilities and select the least adder 
consumer combination according to the following priority 
ordering: (u,v)=(u,0); (u,v)=(1,1); (u,±1×2

0
); (u,v)=(1,3) or 

(3,1); (u,v)=(3,3); (u,v)=(1,5) or (5,1); (u,v)=(5,5); (u, v)= (1,7) 
or (7,1); (u,v)=(7,7);  (u,v)= (3,5) or (5,3); (u,v)=(3,7) or (7,3); 
(u,v)=(5,7) or (7,5).  

 



 
Fig. 3. Partitioning of (571113)10 in RADIX-2r-VAR. 

This ordering reduces the number of additions in the whole 
recoding of the constant C by maximizing the occurrences  of 
the digit “1”, then of “3”, etc, and minimize the occurrences of 
those requiring a high number of adders [6].  

The second part consists in finding the recoding (brec) that 
ensures the minimum cost (bc). We split the constant into two 

TCS (4), calculate the values of 0Q  and 1Q , and then check the 

recoding of 0Q  and 1Q  in the table of partial product recoding. 

We start with two slices of bit-length of 2 and N+1 for the slice 
1 and 2, respectively. The process repeats in the same way, 
increasing the bit length of the first slice by one and decreasing 
the second slice by one until we reach a bit length of N+1 and 2 
for the slice 1 and 2, respectively. Fig. 2(a) depicts all possible 
partitionings of the constant C= (455)10. 

In radix-2
r
 representation, the slices (10), (110), (1110), and 

(11…10) are the same and equal to -1. Note that the “0” was 
added and is not part of the original number. Likewise, the 
slices (01) and (0…01) are the same and equal to 1. We apply 
these two equivalences to reduce the number of operations in 
our algorithm by eliminating the groups which gives the same 
value. Thus, instead of varying the partitioning of the constant 
by incrementing the bit-size of the slices 1 by one, the 
partitioning is realized whenever there is a transition from 1 to 
0 or from 0 to 1. Fig. 2(b) depicts all possible partitionings 
defined by the transition from 1 to 0 and from 0 to 1 of the 
constant C= (455)10. 

A. Illustrative Example 

To illustrate RADIX-2
r
-VAR algorithm, let us consider   

C= (571113)10, which in TCR is represented as 
(010001011011011101001)2. Thus, the constant bit-size is N+1 
(20+1=21 bits for 571113). 

We scan all possible bit-length combinations of the two 
slices Q1 and Q2. For each value of Q1 and Q2 we check in the 
table of recoding, calculate the adder cost, and finally take the 
minimum. Depending on the choice of grouping, several 
solutions of recoding for the constant C are obtained, for 
example C can be written as: 

 
 

 

 

 

 

 

 

 

571113=71389<<3+1, with 71389=279<<8–35, 279=9<<5–9, 

35=1<<5+3, 9=1<<3+1, and 3=1<<1+1. Which gives an adder 

cost of 6.  

571113=35695<<4–7, with 35695=35<<10–145, 145=9<<4+1, 

35=1<<5+3, 9=1<<3+1, 7=1<<3–1, and 3=1<<1+1. Which 

gives an adder cost of 7.  

571113=17847<<5 +9, with 17847=35<<9 –73, 73=9<<3+1, 

35=1<<5+3, 9=1<<3+1, and 3=1<<1+1. Which gives an adder 

cost of 6. 

571113=2231<<8–23, with 2231=35<<6–9, 35=1<<5+3, 

23=3<<3–1, 9=1<<3+1, and 3=1<<1+1. Which gives an adder 

cost of 6. 

The recoding that ensures a minimum adder cost (Fig. 3) is 
C=279×2

11
–279=571113, with 279=9×2

5
-9 and 9=1×2

3
+1. 

This recoding involves the pre-computation of two Partial 
Products (PPs) only {279×X, 9×X}. It has to be noted that the 
adder cost and the adder depth for C=571113 are 3 and 3, 
respectively. Note that RADIX-2

r
 and CSD recodings of  

C=571113 requires both 7 additions, where RADIX-2
r
-VAR 

needs only 3. A saving of 4 additions is achieved. Compared to 
RADIX-2

r 
algorithm that has a sublinear runtime complexity 

O(N/r), RADIX-2
r
-VAR algorithm improves the number of 

additions at the cost of small increase in execution time O(N). 
For more improvement in average number of additions, the 
RADIX-2

r
-VAR algorithm is combined to RADIX-2

r
 

algorithm. Here for each constant we execute the two 
algorithms RADIX-2

r
 and RADIX-2

r
-VAR and choose the 

minimum adder cost. 

IV. EXPERIMENTAL RESULTS 

The average number of additions (Avg) of both algorithms 
(RADIX-2

r
-VAR and combined RADIX-2

r
-VAR with 

RADIX-2
r
) has been calculated exhaustively for each C 

varying from 0 to 2
N−1−1, with N=8, 16, and 24. For N=32, we 

have calculated Avg using constant sets with 10
4
, 10

5
, 10

6
, and 

10
7
 uniformly distributed random values of C. The Avg value 

oscillates around 7.985 additions for the pure RADIX-2
r
-VAR 

and 7.716 additions for the combined RADIX-2
r
-VAR with 

RADIX-2
r
. Note that the difference between the average 

obtained results for different sizes of the constant sets is 
insignificant (<10

–3
). 

    
                              (a)                                                      (b) 
     Fig. 2. Partitioning of (455)10 in RADIX-2r-VAR. (a) all cases, (b) with  

     transition from 1-0 and 0-1. 

 RADIX-2
r
-VAR(C) 

     N: bit length of C 

     bc: best cost 

     brec: best recoding 

     n: number of transitions 

     OM_Table: optimal recoding of odd multiples 

     begin 

       1: TCR(C) // two’s complement representation of C 

       2: Determine vector V containing 0 to 1 and 1 to 0 transitions  

       3: for i = 2 to n do 

               J = V(i). 

              Q0 = (Cj...0) // calculate Q0 value and make it odd and positive. 

              Q1 = (CN...Cj) // calculate Q1 value and make it odd and positive. 

              Rec // check Q0 and Q1 recoding in OM_Table 

              Cost // calculate the cost 

              if i = 2 begin 

                brec = rec 

                bc = cost 

             elseif cost < bc begin 

                brec = rec 

                bc = cost 

          end // for 

      return brec and bc 

Fig. 1. The RADIX-2r-VAR algorithm. 
 



TABLE II.          RADIX-2r-VAR VERSUS CSD:  AVG  

N (bits) CSD RADIX-2r-VAR Saving % 

8 2.111 2.001   5.210 

16 4.777 3.995 16.370 

24 7.444 5.891 20.862 

32 10.111 7.985 21.026 

 

TABLE IV.       COMBINING RADIX-2r
 WITH RADIX-2r-VAR  VERSUS 

RADIX-2r: Avg 

N (bits) RADIX-2r 
COMBIN. RADIX-2r 

& RADIX-2r-VAR 
Saving % 

8 2.001 2.001 0.000 

16 4.130 3.929 4.866 

24 6.165 5.752 6.699 

32 8.165 7.716 5.499 

 

The results of comparison between the RADIX-2
r
-VAR 

algorithm and the CSD representation are reported in Table II. 
For N=24 and N=32, we achieved a savings of 20.862% and 
21.026% additions over CSD, respectively. Table III shows a 
comparison between RADIX-2

r
-VAR and RADIX-2

r
 

algorithms. For N equals 16, 24, and 32 bits, RADIX-2
r
-VAR 

uses 3.268%, 4.444%, and 2.204% less additions than RADIX-
2

r
, respectively. Results of the combined RADIX-2

r
-VAR to 

RADIX-2
r
 are reported in Table IV. We have obtained better 

savings: 4.866%, 6.699%, and 5.499% for N=16, N=24, and 
N=32, respectively.  

The results show that RADIX-2
r
-VAR algorithm has higher 

capability to find better solutions when compared to CSD and 
RADIX-2

r
 algorithms. The combination of RADIX-2

r
 with 

RADIX-2
r
-VAR helps to further improve the adder cost. 

Another performance indicator of the recoding is the 
smallest value that requires q additions, for q varying from 1 to 
the upper-bound of the recoding. The results are reported in 
Table V for a 32-bit constant (24-bit constant only for the 
RADIX-2

r
-VAR). Note that starting from q=4, higher values 

are obtained by RADIX-2
r
-VAR when compared to CSD. 

V. CONCLUSION AND FUTURE WORK 

Based on radix-2
r
 arithmetic, we have developed a new 

algorithm (RADIX-2
r
-VAR) for single constant multiplication 

with a variable radix. The latter improved the average number 
of additions over RADIX-2

r
 algorithm and CSD recoding. 

Further improvements are achieved combining RADIX-2
r
-

VAR and RADIX-2
r
. The average number of additions has 

been improved at the cost of a small increase in execution time.  

Our on-going work deals with the application of RADIX-
2

r
-VAR algorithm to the multiple constant multiplication 

(MCM) problem. 
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TABLE V.          RADIX-2r-VAR  VERSUS RADIX-2r , CSD  AND 

EXHAUSTIVE SEARCH: SMALLEST VALUES UP TO A 32-BIT CONSTANT 

Number of 
additions (q) 

CSD RADIX-2r 
RADIX-
2r-VAR 

Exhaustive 
search [9] 

1 3 3 3 3 

2 11 11 11 11 

3 43 43 43 43 

4 171 339 343 683 

5 683 2387 2347 14709 

6 2731 18605 14635 699829 

7 10923 148825 158153 171398453 

8 43691 1186451 898219 – 

9 174763 9521325 6994263 – 

10 699051 143739053 NA – 

11 2796203 2291222701 NA – 

12 11184811 – – – 

13 44739243 – – – 

14 178956971 – – – 

15 715827883 – – – 

16 2863311531 - - - 

NA: Not available 

 

TABLE III.            RADIX-2r-VAR VERSUS RADIX-2r:  Avg 

N (bits) RADIX-2r RADIX-2r-VAR Saving % 

8 2.001 2.001 0.000 

16 4.130 3.995 3.268 

24 6.165 5.891 4.444 

32 8.165 7.985 2.204 

 




