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Abstract— In a recent work on multiple constant 

multiplication (MCM) problem, a fully predictable sub-linear 

runtime heuristic was introduced, called Radix-2r MCM. This 

method shows competitive results in speed, power, and area, 

comparatively with the leading algorithms. In this paper, we 

combine Radix-2r MCM  with an exact common subexpression 

elimination (exact-CSE) algorithm. The resulting algorithm 

denoted Radix-2r-CSE allows a substantial reduction in the 

number of addition/subtraction operations in MCM by 

maximising the sharing of partial terms after an initial recoding 

in Radix-2r MCM. The savings over Radix-2r MCM ranges from 

4.34% up to 18.75% (10% on average) when considering a set of 

14 benchmark FIR filters of varied complexity.   

Index Terms— 0-1 Integer Linear Programming (ILP) Solver, 

Common Subexpression Elimination (CSE), High-Speed and 

Low-Power Design, Multiplierless Single/Multiple Constant 

Multiplication (SCM/MCM), Radix-2r Arithmetic. 

I. BACKGOUND AND MOTIVATION 

he hardware complexity of many linear-time-invariant

(LTI) systems, such as finite impulse response (FIR)

filters, is dominated by the multiplication of a set of constants 
 0 1 2 1, , , , MC C C C   with the same input variable X. This operation 

is known as multiple constant multiplication (MCM). To be 

efficiently designed, instead of using full block multipliers, a 

multiplierless implementation based only on operations of 

addition, subtraction, and left-shift is used. As adders and 

subtractors exhibit the same hardware complexity, we will 

refer to both as adders. Therefore, the MCM problem is 

defined as the process of finding the minimum number of 

additions since left-shifts are costless in hardware. Another 

requirement of MCM is the minimization of the critical path 

across the cascaded adders in order to reduce delay and power. 

The computational complexity of MCM is conjectured to be 

NP-hard [1]. 

Based on the Radix-2r arithmetic, we have developed in a 

previous work [2][3][4][5] a new heuristic called Radix-2r 

MCM. It has the major advantage of being fully predictable in 

the maximum number of additions (upper-bound), in the 

average number of additions, and in the number of cascaded 

adders (adder-depth) forming the critical path. Furthermore, it 

requires sub-linear computational complexity O(M×N/r), 

where M is the number of constants, N is the bit-length of the 

constants, and r is a function of (M, N). This means that 

Radix-2r MCM has no limited applicability regarding the 

complexity of the problem, contrary to most existing 

algorithms [4][5].  

We have demonstrated in [5] that Radix-2r MCM leads to a 

near-optimal solution in adder-depth without sacrificing the 

adder-cost. Furthermore, we have analytically and 

experimentally proved [5] through physical implementation of 

many benchmark FIR filters of different complexities the 

superiority of Radix-2r MCM in handling medium/high order 

filters in comparison to the most area efficient algorithms, 

notably to the cumulative benefit heuristic (Hcub) [6] known 

for its lowest adder-cost. 

In Radix-2r MCM [4], each constant is implemented apart, 

independently from the others. But all constants share the 

same set of nontrivial partial products depending on the used 

radix (2r):   11 ,3 ,5 , , 2 1rX X X X     . However, 

Radix-2r MCM does not handle the sharing of common 

subexpressions neither within each constant separately, nor 

within the set of the whole constants. To make this possible, 

an additional operation of common subexpressions elimination 

(CSE) is necessary.  

Recently, a new heuristic called H-Radix-2r has been 

developed [7] to reduce the adder-cost. This method combines 

Radix-2r MCM with Lefevre's CSE algorithm [8]. However, 

H-Radix-2r has two serious limitations: only the single 

constant multiplication (SCM) version of [4] is used (M=1) 

with just one fixed radix (radix-23). 

The main purpose of this work is to further reduce the 

adder-cost by developing an MCM heuristic that copes with 

the appropriate radix (2r) in conformity with the complexity 

(M, N) of the problem. The higher the complexity, the higher 

the radix. The proposed solution is a mixture of the Radix-2r 

MCM [4] and the exact-CSE algorithm introduced in [9]. The 

resulting algorithm is denoted Radix-2r-CSE.  

After an initial recoding of the constants in Radix-2r MCM, 

we apply the exact-CSE to maximize the sharing of partial 

products terms. We model this problem into a 0-1 integer 

linear programming (ILP) problem [10] with a cost function to 

minimize, and some constraints to satisfy. The solution 

corresponding to the minimum number of operations is 

provided by the generic 0-1 ILP solver tool available in [11]. 

This paper is organized as follows. Section II gives an 

overview of Radix-2r and exact-CSE algorithms.  Section III 

presents the new Radix-2r-CSE algorithm. Results are 

discussed in Section IV. Finally, Section V provides some 

concluding remarks and suggestions for future work. 
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II. OVERVIEW OF RADIX-2r MCM AND                                    

EXACT-CSE ALGORITHMS 

We summarize hereafter the basic theoretical background 

behind the two combined algorithms. 

A. Radix-2r MCM 

A nonnegative N-bit constant C is expressed in Radix-2r as  
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where 01  Ncc  and *r .     

In (1), the two’s complement representation of C is split 

into   rN /1
 
slices (

jQ ), each of r+1 bit length [4]. Each 

pair of two contiguous slices has one overlapping bit.  A digit-

set  rDS 2  corresponds to (1), such as
 

   1111 2,12,...,1,0,1,...,12,22   rrrrr

j DSQ .                        
 

The sign of the Qj term is given by the crj+r–1 bit,               

and j
k

j mQ j  2 , with  1210  r,...,,,k j
 and    1,02 r

j OMm  , 

where    12,...,7,5,32 1  rrOM .  rOM 2  is the set of odd 

positive digits in Radix-2r recoding, with   122 2  rrOM . 

 We have proved in [4][5] exact analytic formulas for MCM 

in terms of upper-bound in adder-cost (Upb), average cost 

(Avg), and adder-depth (Ath). These metrics are included in 

Table I. To the best of our knowledge, they are the unique 

exact analytic bounds known so far for MCM. 

B. Exact-CSE algorithm 

Exact-CSE [9] computes the minimum number of addition 

operations by maximizing the sharing of partial terms in SCM/ 

MCM. It runs in four main consecutive steps as follows: 

1. All possible implementations of the constants are 

extracted   from the non-zero digits defined in binary, 

minimum signed digit (MSD) [12], or canonical signed 

digit (CSD) [13] representations.  

2. The constants implementations are represented in a 

Boolean network formed only of AND and OR gates.  

3. The MCM problem is formalized as a 0-1 ILP problem 

with an adder-cost objective-function to minimize, and a 

number of constraints to comply with.  

4. Finally, the solution with minimum number of operations 

is obtained using a generic ILP solver [11]. 

III. RADIX-2r-CSE ALGORITHM 

Four main steps are involved in Radix-2r-CSE. The first one 

consists in finding the Radix-2r recoding with a minimum 

adder-cost of the target constants to be implemented. The 

Radix-2r MCM solutions are given by the online version 

available in [14] allowing three options: 1) adder-cost 

optimization; 2) adder-depth optimization; 3) trade-off 

between adder-cost and adder-depth by specifying the radix 

(fixed value of r). As example, let us consider the constant 

(19125)10, whose bit-length is N=15. Since M=1 (one 

constant), the formula of r in Table I that optimizes Upb gives  

ropt=4. Therefore, the Radix-2r recoding is 

19125 = 5<<12 – 5<<8 – 5<<4 + 5<<0 with 5 = 1<<2 + 1. 

The “<<” denotes a left-shift (a<<b=a×2b). Note that Radix-2r 

solution yields 4 additions. 

To further improve the sharing of partial products, the 

search space can be extended to all possibilities using the 

"trade-off" option available in [14]. This allows finding all 

implementations of the constants by varying the value of r 

from 2 up to ropt + 2. For 19125, r varies from 2 up to 4+2=6. 

In the second step, the entire set of implementations of the 

target constants issued by Radix-2r MCM solution is 

represented in a unique Boolean combinational network based 

only on AND and OR gates. The latter presents the following 

features: 

1. The primary input of the network is the input value (or its 

shifted versions) to be multiplied with the constants. 

2. A two-input AND gate in the network represents an 

addition/subtraction operation of two partial products and 

generates a given partial term.  

3. An OR gate in the network represents a target constant or 

a partial term and combines all possible implementations 

of the constant. 

4. The primary outputs of the network are the OR gate 

outputs associated with the target constants in the MCM 

problem. 

The Boolean network generated for the target constant 

19125 implemented with Radix-2r MCM algorithm is given in 

Figure 1, where equivalent cases are omitted. The network 

represents all possible additions/subtractions between partial 

terms of the target constant 19125.  

In the conversion of the MCM problem to a 0-1 ILP 

problem, we need to include optimization variables in the 

Boolean network, so that the cost function can be minimized, 

i.e., the linear function of the optimization variables can be 

constructed. To this end, the optimization variables are 

associated with the operations that are required for the 

implementations of target constants and partial terms. Thus, 

we add a third input denoting an optimization variable to each 

AND gate that represents an operation in the network. 

TABLE I 
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Metrics Equations 

Adder  

cost 
 

1
2

0

1
2 1

M
ri

i

N
Upb r M

r






 
     


     

[4] 

Adder  

depth  
 max 1

/ 2 2iN
Ath r r

r

 
     
 

    
with i=0..M1      [4] [5]                                  

 

 

Average 

cost 
 

 

  21 2r

pp om ppM Avg Avg Avg r M Avg         

    

 with 

 
1

0

1
1 2 ,

M
r i

pp

i

N
Avg

r






 
     

    

1

2
0

1
1

2 1

0 1

1 ,

M
i

r
i

N

r

j

om jk jk

j k

Avg P m P m






 
 

  

 


 

     
 

   

 

 

1

2

1

2
log

2 1

2

r

jk r

k
P m





 
   

 . 
 
[4]

 

     
1

0

2 1 2 / 2
M

i

i

r W N log log




  
         

 ; W: Lambert function;   : Ceiling

 

 

Auto-generated PDF by ReView IET Circuits, Devices & Systems

ManuscriptMay052020.pdfMainDocument IET Review Copy Only 3



  

TABLE II 

RADIX–2r MCM RECODING FOR THE VALUE OF r VARYING FROM 2 TO 6. 

r Constants Odd-multiples Adder-cost 

  2 
571113 = +1<<0 +1<<3 –1<<5 –1<<8 –1<<11 –1<<14 +1<<16 +1<<19 
61161 = +1<<0 +1<<3 –1<<5 –1<<8 –1<<12 +1<<16 

17847 = –1<<0 –1<<3 –1<<6 –1<<9 +1<<11 +1<<14 

None 

 

17 

  3 
571113 = +1<<0 –3<<3+1<<8+3<<9+3<<12+1<<15 +1<<19 
61161=+1<<0–3<<3–1<<8–1<<12+1<<16 

17847=–1<<0 –1<<3–1<<6+3<<9+1<<14 

 

3=1<<1 +1 

 

15 

  4 

(ropt) 

571113=–7<<0–1<<4+7<<8–5<<12–7<<16 +1<<20 
61161 = –7<<0 –1<<4 –1<<8 –1<<12 +1<<16 

17847 = +7<<0 –5<<4 +3<<9 +1<<14 

7=1<<3–1 
5=1<<2+1 

3=1<<1+1 

 

15 

  5 
571113=9<<0–9<<5 +7<<11–15<<15+1<<20 
61161=9<<0–9<<5+15<<12 

17847=– 9<<0+7<<6 –15<<10+1<<15 

9=1<<3+1 
7=1<<3–1 

15=1<<4–1 

 

12 

 
 

  6 

 
571113 = –23<<0 +7<<8 +11<<12 +1<<19 

61161 = –23<<0 –1<<8 +15<<12 

17847 = –9<<0 +23<<6 +1<<14 

7= 1<<3–1 
9=1<<3+1 

11=9+1<<1 
15=1<<4–1 

23=15+1<<3 

 
 

12 

 

Once we have added the optimization variables to the 

Boolean network, some network simplifications are applied 

for minimizing the number of operations and partial terms in 

the Boolean network [9]. 

In the third step, the MCM problem is formalized as a 0-1 

ILP problem. After the Boolean network is constructed, the 

conversion of the MCM problem into a 0-1 ILP problem is 

then straight-forward. The cost function is formed as a linear 

function of optimization variables where the cost value of each 

optimization variable is set to 1. The constraints of the 0-1 ILP 

problem are obtained by finding the conjunctive normal form 

(CNF) of each gate in the network and expressing each clause 

in CNF format [15]. For example, a 3-input AND gate, 

d=a^b^c, is translated to CNF as  

( ) ( ) ( ) ( ).a d b d c d a b c d        
   

 

 Each clause is converted into a 0-1 ILP constraint using the 

straight-forward mapping presented in [10]. The three-input 

AND gate is described by the following set of restrictions: 

0,a d  0,b d  0,c d  2,a b c d      with 

,  ,  ,    {0,  1}.a b c d   

Once we have added the optimization variables to the 

Boolean network, some network simplifications are applied 

for minimizing the number of operations and partial terms in 

the Boolean network [9]. 

In the third step, the MCM problem is formalized as a 0-1 

ILP problem. After the Boolean network is constructed, the 

conversion of the MCM problem into a 0-1 ILP problem is 

then straight-forward. The cost function is formed as a linear 

function of optimization variables where the cost value of each 

optimization variable is set to 1. The constraints of the 0-1 ILP 

problem are obtained by finding the conjunctive normal form 

(CNF) of each gate in the network and expressing each clause 

in CNF format [15]. For example, a 3-input AND gate, 

d=a^b^c, is translated to CNF as  

( ) ( ) ( ) ( ).a d b d c d a b c d        
   

 
 Each clause is converted into a 0-1 ILP constraint using the 

straight-forward mapping presented in [10]. The three-input 

AND gate is described by the following set of restrictions: 

0,a d  0,b d  0,c d  2,a b c d       with  

,  ,  ,    {0,  1}.a b c d   

In the last step, the obtained model serves as an input to the 

generic 0-1 ILP solver [11] to find the solution with minimum 

number of operations. As a result, the algorithm with the 

additional CSE step induces the following recoding for the 

constant 19125:  

19125 = 75<<8 – 75<<0, with 75 = 5<<4 – 5, 5 = 1<<2 + 1. 

Therefore, Radix-2r-CSE yields only 3 additions for 19125, 

while it produces 4 with Radix-2r. This is a simple illustrative 

SCM case, but the saving can be much more substantial in  

MCM applications as shown hereafter with the following 

MCM problem:  571113, 61161, 17847 . The Radix-2r MCM 

solution given by [14] corresponds to ropt=4 as follows: 

571113 = –7 – 1<<4 + 7<<8 – 5<<12 – 7<<16 + 1<<20, 

61161 = –7 – 1<<4 – 1<<8 – 1<<12 +1<<16, 

17847 = 7<<0 – 5<<4 + 3<<9 + 1<<14, 

with 3 = 1<<1 + 1, 5 =1<<2 + 1, 7 = 1<<3 – 1.  

Applying on it the CSE step gives: 

571113 = –23 – 73<<8 – 7<<16 + 1<<20, 

61161 = –23 – 1<<8 – 1<<12 + 1<<16, 

17847 = –73 + 3<<9 + 1<<14, 

with 3 = 1<<1 + 1, 5 = 1<<2 + 1, 7 = 1<<3 – 1,  

23 = 7 + 1<<4, 73 = 5<<4 – 7. 

Note that the Radix-2r MCM solution requires 15 additions, 

while the Radix-2r-CSE needs 13. With an extra runtime, the 

adder-cost is drastically reduced by extending the search space 

to all Radix-2r MCM solutions for r varying from 2 up to 

ropt+2=6 (Table II). Note that r=5 and r=6 yield better 

solutions (12 additions) than ropt (15 additions). This is normal 

since ropt ensures an upper-bound (Upb) in number of 

additions regarding the bit-lengths of the constants (see Table 

I), independently of their values. Nevertheless, according to 

the many statistical tests we performed, in no case the optimal 

solution of Radix-2r MCM goes beyond ropt±2. Consequently, 

the Radix-2r-CSE solution comprises only 6 additions as 

shown hereafter: 

571113 = 279<<11 – 279, 

61161 = 15<<12 – 279, 

17847 = 279<<6 – 9, 

with 15 = 1<<4 – 1, 9 = 1<<3 + 1, 279=9<<5 – 9. 
 

 
  Fig. 1. Boolean network corresponding to the target constant 19125 in  

  Radix-2r representation with ropt=4 only. 
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TABLE IV 

RADIX-2r-CSE VERSUS RADIX-2r: POST-LAYOUT IMPLEMENTATION RESULTS OF A NUMBER OF MCM BLOCKS IN 65nm CMOS TECHNOLOGY. 

Filter 
Delay* (ns) Power+ (mw) Area# (µm2) Delay 

Saving (%) 

Power 

Saving (%) 

Area 

Saving (%) Radix-2r-CSE Radix-2r [6] Radix-2r-CSE  Radix-2r [6] Radix-2r-CSE  Radix-2r [6] 

Low order filters 

FIR_25_13_12 [4] 11.416 11,438 0.1729 0.1734 3708.360 3750.840 0.19 0.28 1.13 

FIR4_30_14_13 [16] 10.891 10,747 0.1784 0.1934 3645.000 4023.720 −1.33 7.75 9.41 

FIR3_30_14_13 [16] 11.126 10,985 0.1813 0.1902 3657.600 4139.280 −1.28 4.67 11.63 

FIR1_40_19_12 [16] 11.643 10,376 0.2336 0.2434 4914.720 5532.840 −12.21 4.02 11.17 

FIR2_40_19_13 [16] 10.695 11,699 0.2363 0.2631 5342.760 6492.960 −8.58 10.18 17.71 

FIR7_40_19_14 [16] 11.547 11,941 0.2853 0.2866 5811.840 6091.560 3.29 4.53 4.59 

Average  −3.32 5.23 9.27 

Medium order filters 

FIR6_60_29_14 [16] 12.989 13,297 0.4070 0.3933 7767.000 7947.720 2.31 −3.48 2.27 

FIR8_80_36_14 [16] 13.201 14,022 0.5075 0.5353 9072.720 9892.080 5.85 5.19 8.28 

FIR5_80_39_15 [16] 13.751 13,470 0.6994 0.7662 10030.320 11881.080 −2.08 8.71 15.57 

Average  2.02 3.47 8.70 

High order filters 

FIR_279_140_24 [17] 16.212 16.709 3.7492 3.8475 48509.280 48670.560 2.97 2.55 0.33 

FIR_418_208_22 [17] 16.714 17,405 4.9044 5.4010 62349.840 63387.360 3.97 9.19 1.63 

FIR_516_256_24 [17] 17.514 19,546 6.8994 7.3457 74817.000 74090.160 10.39 6.07 −0.98 

FIR_631_313_23 [17] 16.054 16,363 8.0107 7.8197 83276.640 82598.040 1.88 −2.44 −0.82 

FIR_695_345_24 [17] 16.216 18,012 8.9159 9.1470 96746.400 89929.440 9.97 2.52 −7.58 

Average  5.83 3.57 −1.48 

*: Minimum clock period. +: Total dynamic power dissipation. #: Total area. 

 

TABLE III 

 Radix-2r-CSE VERSUS Radix-2r:  ADDER-COST. 

Filter 
Lower bound [19] Hcub [6] Radix-2r [4]  Radix-2r-CSE Cost saving (%) 

 / Radix-2r 

Depth increase 

/ Radix-2r Cost Depth Cost Depth Cost Depth Cost Depth 

Low order filters 

FIR_25_13_12 [4] 14 3 16 7 22 3 21 3 4.54 0 

FIR4_30_14_13 [16] 14 3 18 7 23 3 22 3 4.34 0 

FIR3_30_14_13 [16] 14 3 19 7 27 3 22 3 18.51 0 

FIR1_40_19_12 [16] 20 3 23 7 33 3 29 3 12.12 0 

FIR2_40_19_13 [16] 20 3 24 6 36 3 31 3 13.88 0 

FIR7_40_19_14 [16] 20 3 24 7 35 3 31 4 11.42 1 

Medium order filters 

FIR6_60_29_14 [16] 29 3 32 10 47 4 43 4 8.51 0 

FIR8_80_36_14 [16] 37 3 38 5 51 4 45 4 11.76 0 

FIR5_80_39_15 [16] 40 3 42 8 64 4 52 4 18.75 0 

High order filters 

FIR_279_140_24 [17] 141 4 158 26 239 4 224 5 6.27 1 

FIR_418_208_22 [17] 208 4 212 9 310 5 285 5 8.06 0 

FIR_516_256_24 [17] 256 4 259 9 362 5 333 5 8.01 0 

FIR_631_313_23 [17] 313 4 315 6 403 5 370 6 8.18 1 

FIR_695_345_24 [17] 345 4 348 6 444 5 416 6 6.30 1 

Average  10.04 0.28 

The lower bound in cost and depth are given by  2 min 1 / 2 1ilog N M          
and

 
 2 max 1 / 2ilog N      

, respectively. 

 IV.   EXPERIMENTAL RESULTS 

In this section, Radix-2r-CSE is confronted to Radix-2r in 

terms of adder-cost and adder-depth through a set of 

benchmark FIR filters taken from [4][16][17][18]. Note that 

we deal with the transposed form of FIR filters. We adopt the 

following nomenclature: FIR_L_M_N, where L is the number 

of coefficients (H set) of the filter, M is the number of unique 

positive odd integer coefficients (Hmin set) to be solved in 

MCM, and N is the maximum bit length of the coefficients of 

Hmin set. The solutions of Radix-2r were obtained using the 

online version available in [14] with the “adder-cost” option. 

The comparison results are reported in Table III.  

The results in adder-cost show that Radix-2r-CSE algorithm 

achieves a saving over Radix-2r varying between 4.34% and 

18.75% (10.04% on average). While the adder-depth remains 

the same, or at worse increased by one addition (0.28% on 

average) as a result of cost minimization effort. Nevertheless, 

the adder-depth remains near-optimal, too much lower (5) in 

comparison to  Hcub’s that yields 26 for FIR_279_140_24. 

The MCM block of each benchmark filter in Table III was 

coded in Verilog with an input data word length (Xb) fixed to 

16 bits. All MCM blocks of generated filters were mapped to 

UMC 65nm standard-cell library (with AND area equal to 

1.44μm2) using Cadence RTL compiler (RC-14 version). The 

synthesis tool was constrained to a relaxed constraint of 50 ns, 

using only the worst case library (108◦C and 1.08Volt). The 

place and route was performed with Cadence SoC Encounter 

(EDI-14 version) using multi-corner multi-mode techniques, 

including both the worst and best (−40◦C and 1.32 Volt) cases 

library. Dynamic power consumption was evaluated with 2000 

random input samples at 25 MHz frequency, since all circuits 

after place and route were able to run at most up to 50 Mhz. 

The total power was evaluated in both static and dynamic 

power, including leakage, switching, and internal power of the 

design collected from gate simulation level. The post-layout 

results in speed, power, and area are reported in Table IV. 

The results show that for the low-order filters, Radix-2r-

CSE is better than Radix-2r in area and power with an average 

saving of 9.27% and 5.23%, respectively. However, for the 
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speed the opposite is rather true. Radix-2r is slightly better 

than Radix-2r-CSE with an average saving of 3.32%.  In 

medium-order filters, Radix-2r-CSE yields better results than 

Radix-2r in all cases, with an average saving of 8.70%, 3.47%, 

and 2.02% in area, power, and speed, respectively. In high-

order filters, Radix-2r-CSE is better than Radix-2r in speed 

and power with an average saving of 5.83% and 3.57%, 

respectively. For the area, Radix-2r is slightly better than 

Radix-2r-CSE with an average saving of 1.48%.  

As summarized in Table V, the experimental comparison 

showed that Radix-2r-CSE is better than Radix-2r in area, 

speed, and power for all complexities of benchmark FIR filters 

except in two cases. The first case is speed in low order filters. 

Note that the delay as shown in [5] is tightly related to adder-

depth (Ath): an increase in Ath increases the delay. But since 

there is no increase in Ath except for FIR7_40_19_14, the only 

explanation for the increased delay is the longer routing as a 

consequence of the increased sharing of partial terms which 

breaks the placement regularity of the cells in the array. The 

delay corresponding to small order filters is more sensitive to 

the slightest increase in routing than in medium/high order 

filters. This is a negative CSE effect on speed. The second 

case is area in high order filters. In this case the sharing of 

partial terms with Radix-2r-CSE leads to a solution that 

employs less adder blocks, but with a much larger bit-lengths 

due to an increased overhead () in terms of bit-level full-

adders (FAs). The term  is the number of extra FAs that must 

be concatenated to the basic Xb FAs to form a complete adder 

(+Xb FAs), where Xb is the bit-length of the input data X. 

This is also another negative effect of CSE. Reader is referred 

to Section IV in [5] for an in-depth analysis of this critical 

issue, which has been reported by many papers [20] insisting 

on the fact that fewer number of additions does not necessarily 

lead to fewer number of FAs. For instance, although the Hcub 

solution for  FIR_279_140_24 yields less additions (158) than 

Radix-2r-CSE (224), the latter occupies less area (48509.28 

µm2) than Hcub (55152.36 µm2), which gives a saving of 

12.04 %. See similar comparison between Hcub and Radix-2r 

in [5]. 

Radix-2r-CSE with extended search space (r varying from 2 

up to ropt+2) runs in a reasonable amount of time (few hours) 

on an Intel core i3 computer for the high order filters included 

in Table IV. These filters are the largest filters that we can find 

in the benchmark FIRsuite database [18] either in terms of 

number (up to 695) or bit-length (up to 24 bits) of coefficients. 

V. CONCLUSION AND FUTURE WORK 

We have combined Radix-2r recoding to an exact CSE 

algorithm to decrease the adder-cost. The resulting algorithm 

Radix-2r-CSE achieves 10% saving over Radix-2r on average.   

We have also proved through circuit implementation of 

several benchmark MCM blocks that Radix-2r-CSE performs 

better than Radix-2r in speed, power, and area in most 

complexity cases, especially in medium-order filters.  

We are currently exploring the possibility to decrease the 

density of nonzero digits in Radix-2r recoding to further 

reduce the adder-cost. 
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TABLE V 

ALGORITHM UTILIZATION VERSUS SIZE OF THE FILTER. 

 Speed Power Area 

Low Order Filters Radix-2r Radix-2r -CSE 

Medium Order Filters Radix-2r -CSE 

High Order Filters Radix-2r -CSE Radix-2r 
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