
A New Quaternary FPGA Based on a Voltage-mode
Multi-valued Circuit

Cristiano Lazzari
INESC-ID

Lisbon, Portugal
Email: lazzari@inesc-id.pt

Paulo Flores, José Monteiro
INESC-ID / IST, TU Lisbon

Lisbon, Portugal
Email: {pff,jcm}@inesc-id.pt

Luigi Carro
Institute of Informatics - UFRGS

Porto Alegre, Brazil
Email: carro@inf.ufrgs.br

Abstract—FPGA structures are widely used due to early
time-to-market and reduced non-recurring engineering costs in
comparison to ASIC designs. Interconnections play a crucial
role in modern FPGAs, because they dominate delay, power
and area. Multiple-valued logic allows the reduction of the
number of signals in the circuit, hence can serve as a mean to
effectively curtail the impact of interconnections. In this work we
propose a new FPGA structure based on a low-power quaternary
voltage-mode device. The most important characteristics of the
proposed architecture are the reduced fanout, low number of
wires and switches, and the small wire length. We use a set of
FIR �lters as a demonstrator of the bene�ts of the quaternary
representation in FPGAs. Results show a signi�cant reduction on
power consumption with small timing penalties.

I. INTRODUCTION

The large number of components in modern systems on chip
(SoCs) presents new challenges to designers. The high integra-
tion of different systems increases the number and length of
interconnections, hence the overall complexity involving the
connections of these systems.

Moreover, interconnections are becoming the dominant as-
pect of the circuit delay for state-of-the-art circuits due to
the advent of deep sub-micron technologies (DSM). This fact
is becoming even more significant with each new technology
generation [1]. In DSM technologies, the gate speed, density
and power scaling follows Moore’s law. On the other hand, the
interconnection resistance-capacitance product increases with
the technology node, leading to an increase of network delay.
Even after modifications in interconnections, from aluminum
to copper and low-k inter metal dielectric materials, the
problem remains and it is getting more significant [2].

Interconnections play an even more crucial role in Field
Programmable Gate Arrays (FPGA), because they not only
dominate the delay, but they also aggressive impact power
consumption [3] and area [4]. Recent works suggest that in
modern million-gates FPGAs, as much as 90% of chip area is
dedicated to interconnections [5], because of the large number
of wires and switches to select among them.

For FPGAs to reach a larger market, their excessive power
dissipation must be severely reduced. Moreover, if one could
reduce the FPGA area without loosing logic capabilities, one
could enhance the yield and reduce prices, or even increase
the amount of memory available inside the FPGA. To reduce

the area of the FPGA, a reduction in the interconnection is
mandatory, since interconnections take large amount of area.

Multiple-valued logic (MVL) has received increased atten-
tion in the last decades because of the possibility to represent
the information with more than two discrete levels. Represent-
ing data in a MVL system is more effective than the binary-
based representation, because the number of interconnections
can be significantly reduced, with major impact in all design
parameters: less area dedicated to interconnections; more
compact and shorter interconnections, leading to increased
performance; lower interconnect switched capacitance, and
hence lower global power dissipation [6].

The possibility to represent the information using MVL is
not recent. MVL has been successfully accomplished in Flash
memories [7], for example, where a single memory cell can
hold different logic values. Some combinational circuits such
as adders [8] and multipliers [9], as well as programmable
devices [10] were also proposed.

The main drawback of these previous systems is that they
are based on current-mode devices. These circuits present
successful improvements in reducing area, but their exces-
sive power consumption and implementation complexities has
prevented, until now, MVL systems from being a viable
alternative to standard CMOS designs.

Recently, a voltage-mode MVL technique was proposed
in [11], dealing specifically with the power dissipation problem
using a standard CMOS process, and still maintaining the
logic compaction allowed by MVL. The proposed circuits
intend to reduce the number of interconnections present in
existing binary-based systems, without incurring on power
consumption penalties.

The benefits of this new MVL implementation technique
were considered for application in the reconfigurable domain.
A new lookup table (LUT) structure was proposed in [5] where
the information is represented by quaternary values. A new
quaternary logic cell was presented and results demonstrate
interesting area and power reductions in comparison to equiv-
alent binary structures. However, [5] only discusses the LUT,
and not its application to real circuits. In a real reconfigurable
device one must take into account the structure of the whole
configurable logic block (CLB), not only the LUT.

In this contribution we show the first steps to tackle the
challenge of low power and high density FPGAs, by proposing

 

 
 
 
 
978-3-9810801-6-2/DATE10 © 2010 EDAA 
 

 



a quaternary CLB. By using quaternary connections one is
able to reduce the number of wires and switches, thus reducing
area and power consuming part of current FPGAs. A complete
arithmetic-oriented CLB is proposed, in which any logic
operation can be implemented through a quaternary LUT. A
fast carry look-ahead propagation unit and a register are also
presented in the proposed CLB.

As case study to validate the proposed CLB we have used
a digital signal processing application focusing on Finite Im-
pulse Filters (FIR) filters. The synthesis of the filters is based
on the work presented in [12]. Only adders/subtractions and
shift operations are used in synthesis of the filters. We choose
filters as the case study because their synthesis, placement
and routing are simple tasks in the FPGA due to their regular
structure. All our experiments were performed with a 45nm
process technology [13].

This paper is organized as follows. Section II discuss the
differences between binary and quaternary implementations
of lookup tables. Section III presents the nquaternary FPGA,
gives details about the new arithmetic-oriented logic block,
and presents comparisons with the binary version. Section IV
discusses FIR filter implementations using Multiple Constant
Multiplications (MCM) as the case study adopted in this work
and exemplifies how filters are deployed in the proposed FPGA
structure. Experimental results are presented in Section V.
Finally, Section VI concludes the paper and outlines future
work.

II. BINARY AND QUATERNARY LUTS OVERVIEW

General Lookup Tables (LUT) are basically memories,
which implement a given logic function. Values are initially
stored in the lookup table structure, and once inputs are
applied, the logic value in the addressed position is assigned
to the output. The capacity of a LUT |C| is given by

|C| = n× bk (1)

where n is the number of outputs, k is the number of inputs
and b is the number of logic values. For example, a 4-input
binary lookup table with one output is able to store 1×24 = 16
Boolean values. For the purpose of this work, only 1-output
LUTs (n = 1) are discussed in this paper.

A. Preliminaries

A binary function implemented by a Binary Lookup Table
(BLUT) is defined as f : Bk → B, over a set of variables X =
(x0, · · · , xi, · · · , xk−1), where each variable xi represents a
Boolean value. The total number of different functions |F |
that can be implemented in a BLUT with k input variables is
given by

|F | = b|C| (2)

where b = |B| (i.e. b = 2 in the binary case). Figure 1a
illustrates a binary function where k = 4. Thus, a lookup table
with 4 inputs can implement one of |F | = 65, 536 different
functions.

Quaternary functions are basically generalizations of binary
functions. A quaternary function implemented by a quaternary

(a) 4-input BLUT. (b) 2-input QLUT.

(c) QLUT function.

Fig. 1: Binary (BLUT) and quaternary (QLUT) lookup tables
and the quaternary function.

lookup table (QLUT) is defined as g: Qk → Q, over a set of
quaternary variables Y = (y0, · · · , yi, · · · , yk−1), where the
values of a variable yi, as the values of the function g(Y ),
can be in Q= {0, 1, 2, 3}. As in the binary case, the number
of possible function in QLUTs is given by (2), where b = 4.
In this case, the number of functions that can be represented
is around 4 × 109 for a QLUT with only two inputs, which
is much larger than the BLUT. Figure 1b illustrates a 2-input
quaternary function implemented in a QLUT.

Note that the function g(Y ) performs exactly the same
function as the two binary BLUTs, f0(Y ) and f1(Y ), as
depicted in Figure 1c, where f0 represents the least significant
Boolean values and f1 represents the most significant ones.

Since a quaternary variable y is capable of representing
twice as much information as a binary variable x, we consider
the cardinality of |Q| = 2× |B| in our experiments. In other
words, we assume that two binary variables can be grouped in
order to represent a quaternary variable. Such procedure aims
at reducing the total number of connections and the number
of gates as well.

B. Lookup Tables Implementation

Binary and quaternary lookup tables were implemented by
a set of multiplexers, such as presented in [5] and illustrated
in Figure 2.

Figure 2a shows a binary 4-BLUT implementation (b =
2, |X| = k = 4, |C| = 16) where xi ∈ X are the inputs,
ci ∈ C form the lookup table configuration and z is the output.
The BLUT is composed of four stages as a consequence of the
number of inputs. Multiplexers are responsible for propagating
configuration values to the BLUT output. The multiplexers are
composed of pass gates, which receive selection signals from
the four BLUT inputs and associated inverters.

A quaternary lookup table (QLUT) follows the same struc-
ture as the BLUTs. However, Down Literal Circuits (DLCs)
structures determine which configuration value must be propa-



(a) 4-input BLUT.

(b) 2-input QLUT.

Fig. 2: Binary and quaternary lookup tables implementation.

gated to the output [11]. Figure 2b illustrates the implementa-
tion of a 2-input QLUT (b = 4, |Y | = k = 2, |C| = 16). As in
the binary case, ci ∈ C are the lookup table configuration
values, yi ∈ Y are the inputs and w is the output. Due
to the quaternary representation, each multiplexer has four
configuration inputs, therefor only two multiplexer stages are
required.

The DLCs (Gray triangles 1, 2 and 3 in Figure 2b) have
structures similar to inverters (with 1 PMOS and 1 NMOS
transistor). Transistors in each DLC circuit have modified
Vth values in order to allow the switching at different input
voltages. This way, the 3 DLCs circuits work as a thermometer
system. The DLC output values are only ‘0’ (GND) or ‘3’
(VDD), according to the logic value applied to their inputs.
Table I shows the DLC output logic values as function of the
inputs.

Transistors used in the implementation of the DLCs present
different threshold voltages (Vth), to allow the desired behav-
ior. It is important to highlight that standard CMOS technology

TABLE I: Down literal circuits (DLCs) behavior according to
the logic value at the input.

Input 1 (light gray) 2 (gray) 3 (dark gray)
0 3 3 3
1 0 3 3
2 0 0 3
3 0 0 0

is used in the whole QLUT. Only the DLC structures are
composed of 6 transistors with different threshold voltages
(3 PMOS and 3 NMOS). The quaternary multiplexers are
composed of transistors with the same Vth than the ones used
in the binary multiplexers and, for this reason, DLCs produce
2-level output signals.

III. THE QUATERNARY FPGA

Field Programmable Gate Arrays (FPGA) are widely used
in commercial applications due to rapidly prototyping and re-
duced time-to-marked in comparison with Application Specific
Integrated Circuits (ASIC).

In general, FPGAs are basically sets of programmable Con-
figurable Logic Units (CLBs) and interconnections. The CLBs
contain LUTs to implement logic and storage elements [14].
CLBs in the Xilinx Spartan-3 FPGA family are composed by
two independent groups of two slices. A Slice is a logic/storage
unit.

The routing among logic blocks are performed through
programmable switch matrices. The group of switch matrix
and CLBs is called a tile.

A. The FPGA Logic Blocks

In this work we propose a new quaternary logic block
targeting arithmetic functions. Figure 3 illustrates the structure

(a) Binary Logic Block

(b) Quaternary Logic Block

Fig. 3: Binary and Quaternary Logic Blocks



of binary and quaternary logic blocks of the FPGA configured
to implement the sum of variables X and Y . The binary logic
block (Figure 3a) represents two slices of the Xilinx Spartan-3
FPGAs [14].

Carry look-ahead is implemented by propagating the carry
signal through two multiplexers from Cin to Cout. The carry
propagation signal is define by a XOR function implemented
by the BLUT (i.e Xi 6= Yi). Otherwise, the carry is generated
as one of the inputs.

We developed the quaternary logic block following the same
idea, but considering quaternary functions (Figure 3b). The
QLUT implements functions of 2 variables as a generalization
of the 4-input binary LUT. Table II shows the signal S,
implementing the sum of X and Y , and the Cout as function
of the inputs X , Y , S and Cin. Our QLUT implementation is
based on the work proposed in [11] to the 45nm technology
models presented in [13].

TABLE II: The QLUT output S and Cout functions
X Y S Cout X Y S Cout

0 0 0 0 2 0 2 0
0 1 1 0 2 1 3 Cin

0 2 2 0 2 2 0 1
0 3 3 Cin 2 3 1 1
1 0 1 0 3 0 3 Cin

1 1 2 0 3 1 0 1
1 2 3 Cin 3 2 1 1
1 3 0 1 3 3 2 1

The carry propagation/generation in the quaternary element
is defined by a modified multiplexer, in such a way that Cout

is a function of the input signals X , Y and the QLUT output
signal as well. The Quaternary Carry Propagation (QCP) logic
is illustrated in Figure 4 and implements the Cout function
shown in Table II.

The QCP logic is divided in two parts. The first part is the
carry propagation detection (i.e. generation of the function
Cout = Cin). Thus, the same DLC 3 used in the QLUT
(Figure 2b) is used in the QLC to generate the signal S3.
S3 enables the propagation of the carry whenever the QLUT
output S is equal ’3’, which implies S3 =‘0‘. See Table I for
further details.

The carry generation is defined by S3 = 0 and one of other
two conditions K1 and K2. K1 and K2 are generated by
quaternary logic gates. These conditions determine Cout =’1’

Fig. 4: Quaternary Carry Propagation (QCP) Logic

or Cout =’0’. First, K1 defines Cout =’1’ when X =’3’ or
Y =’3’ and second, K2 defines Cout =’1’ when X ≥’2’ and
Y ≥’2’. Otherwise, Cout =’0’.

Note the Sum output is generated directly from the S signal
if Cin = 0. In cases where there is a carry (i.e. Cin = ’1’),
the output Sum is S incremented by ’1’. This is done using
quaternary multiplexers as shown in Figure 3b.

Table III shows the power consumption and the propagation
delay for the binary and quaternary CLBs presented in Fig-
ure 3. The power consumption of the quaternary CLB is 20%
smaller while the propagation delay is around 8.5% slower.
Note that one expects to have a better power delay product
characteristics in the quaternary FPGA because the quaternary
representation allows reduced fanout, small bus width and,
consequently, reduced wire length.

TABLE III: Power consumption and propagation delay for the
Binary and quaternary CLBs.

Power (uW ) Delay (ps)
Binary 2.4 836
Quaternary 1.9 913

A D-type Flip�op (FF) is also presented in the quaternary
logic block. The FF is composed by quaternary inverters.
Table IV shows the setup time Tsetup and the CLK → Q
delay for the binary and quaternary �ip�ops. Tsetup in the
quaternary FF is smaller than the binary one due to the elec-
trical characteristics of the quaternary transistors. Otherwise,
CLK → Q delay is similar for both binary and quaternary
FFs.

TABLE IV: Binary and quaternary D-FF setup time Tsetup

and CLK → Q delay.
Tsetup (ps) CLK → Q (ps)

Binary 70 88
Quaternary 380 85

We refer the reader to verify the work published in [11]
for further details about the behavior of the quaternary CMOS
transistors and the quaternary logic gates, as well.

B. Interconnections

As previously discussed, the FPGA structure is composed
by a fully programmable network connecting CLBs, IOs, and
other FPGA components. In order to increase the efficacy of
the FPGA routing, four types of interconnects are present in
the Xilinx Spartan-3 FPGAs [14]: long lines, hex lines, double
lines and direct lines.

Modeling and analysis of FPGA interconnects are presented
in [15], [16]. We model the FPGA interconnections as dis-
tributed RC networks on the Predictive Technology Model
(PTM) parameters [13]. Based on the work proposed in [16],
we consider two different types of wires according to the two
different sets of physical parameters presented in table V.



TABLE V: Physical parameters used in the simulations.
Technology 45nm
FPGA Tile Size 0.08mm
Line types∗ (A, B) (C, D)
Design parameters:

Wire width (µm) 0.12 0.2
Wire spacing (µm) 0.12 0.2
Line thickness (µm) 0.3 0.3
Line-ground spacing (µm) 0.3 0.3

Physical parameters:
Resistance (Ohm/mm) 611.11 366.66
Capacitance (fF/mm) 329.91 244.18

∗A) Direct lines, B) Double lines, C) Hex lines and D) Long lines.

C. Tile Size

The size of the tile (i.e. CLB + switch matrix) was defined
taking into account the work presented in [16], and scaling to
a 45nm technology. In respect to CLB sizes, we have a binary
CLB with 180 transistors, considering the whole structure, and
166 transistors to the quaternary version. Anyway, considering
we do not work at layout level and, as a consequence, design
rules are not being taken into account, it is reasonable to
assume the same tile size for both binary and quaternary
structures. Note that considering identical tile sizes we also
are able to evaluate the effects of the interconnections on the
FPGA performance with more accuracy.

IV. FIR AS A CASE STUDY

In several computationally intensive operations, notably
Finite Impulse Response (FIR) filters, the same imput is
multiplied by a set of constant coefficients. This operation
is called Multiple Constant Multiplications (MCM). MCMs
are commonly used in Digital Signal Processing (DSP) ap-
plications and are an important choice for reduce the power
consumption due to the high level of sharing of operations
and the possibility to implement multiplications by using only
adders/subtractions and shifts.

For the purpose of this work, we choose filters as the case
study because the synthesis, placement and routing are simple
tasks in the FPGA structure due to their regular structure,
and they would give us a first idea about the viability of our
quaternary device.

Figure 5 illustrates the implementation of a filter with 4
taps, in which the sharing of partial terms can be verified.
The input x is multiplied by the constants 117, 100, 13 and
36.

Fig. 5: An example of FIR Filter with 4 taps.

(a) (b)

Fig. 6: Sharing partial terms for the computation of 7x and
11x. a) no sharing and b) sharing the partial term 3x.

A. Synthesis & Mapping

The synthesis of the filters is performed by describing
synthesis problem as Integer Linear Programming based on
the algorithm proposed in [12]. For each set of constant coef-
ficients there are a wide range of possible mapping solutions,
such as illustrated in Figure 6. In this example, instead of using
two adders per coefficient (Figure 6a), the adder that generates
the value 3x is shared in order to reduce the number of adders
as in Figure 6b.

B. Placement and Routing (P&R)

The placement & routing of the filters is very simple
to implement in FPGAs. Operators are placed in the CLB
columns in order to take advantage of the fast carry look-
ahead chain. Horizontally, CLBs are placed according to the
succession of operators.

Fig. 7: Placement for the filter shown in figure 5.

Figure 7 illustrates one possible placement of the filter
exemplified in Figure 5. Light gray rectangles represent the
available CLB columns in the FPGA, while dark gray rectan-
gles represent the used CLBs. Connections among operators
are represented by left-to-right arrows and up arrows represent
the shift of the operands. Note that the shift of operands does
not use extra logic hardware, but only connections that are
rearranged.

The routing of operators is done according to the distance
between two connected CLBs. A greedy algorithm evaluates
all the available options among the four types of lines and
selects the best option according to the distance among CLBs.
After routing, connections are converted to RC networks, as
explained in Section III-B.



TABLE VI: Experimental results of some filters in the binary and quaternary FPGAs.
# Binary Quaternary Gain (%)

Taps CLBs Area Power Freq WL Sw CLBs Area Power Freq WL Sw Area Power Freq WL Sw
10 333 2.1 168.6 5.8 10.3 1,105 216 1.4 138.3 5.0 4.9 602 33.3 18.0 -13.8 52.5 45.5
15 510 3.2 218.8 2.7 11.8 1,467 324 2.0 166.9 2.5 5.6 871 37.5 23.7 -7.4 52.5 40.6
20 731 46.7 157.0 1.5 16.4 2,365 487 31.1 144.2 1.3 7.5 1,188 33.4 8.2 -13.3 54.2 49.8
30 1,288 8.3 961.7 2.23 19.8 3,901 931 5.9 824.8 2.0 10.5 2,315 28.9 14.2 -10.0 46.8 40.7

Average Gain 33.3 16.0 -11.1 51.5 44.1
Units are Area in mm2, Power in µW , Maximum frequency (Freq) in MHz and Wire length (WL) in mm.

V. EXPERIMENTAL RESULTS

Table VI shows the experimental results, obtained from
the comparison between binary and quaternary FPGAs. Our
experiments were realized with some filters with 8-bit random
coefficients. Once circuits were generated, the P&R was
performed as explained in Section IV. Results are obtained
through Cadence UltraSim [17] simulation.

Results shown an important reduction of 16% on power
consumption (PWR) with a small penalty on timing (Freq).
The operation frequency is slower in the quaternary imple-
mentation due to the number of CLBs in the critical path. In
binary implementations of the filters, the number of bits may
increase only by one from one adder to the next one. Hence,
only a slice (not a complete CLB) is inserted in the critical
path. For the quaternary version, the critical path is increased
by the delay of the full CLB, because it cannot be separated
in two as in the binary case.

Wire length (WL) and the number of switches (Sw) used in
the routing are the most import data in the results. Quaternary
circuits present important gains due to the smaller bus width,
but also because shift operations can be performed with re-
duced vertical connections. This way, the overall performance
can be increased, since less switches will be present in the
critical path.

VI. CONCLUSION

This work presents important advances on the development
of multi-valued circuits through the implementation of a
transistor level arithmetic-oriented quaternary FPGA structure.
Results show that the proposed quaternary FPGA is compet-
itive with the binary one because of the important reductions
on the connection sizes and number of switches, and its effects
on the power consumption and circuit performance.

It is important to highlight that this work presents the first
approach to develop competitive quaternary circuits, in which
the application of filters is taken as a case study. Filters are an
interesting case study because the placement and routing are
simple to implement in the FPGA due to the regular structure.

In this paper we have successfully shown that significant
power reduction can be achieved by a quaternary device.
Increased frequency can be also obtained by implementing
random logic in the quaternary LUT due to the possibility to
reduce the number of CLBs without increasing the number of
CLBs in the critical path.

The quaternary representation applied to the random logic
will allow, not only the reduction of the number and size of the
connections, but most important, the reduction of the fanout

and the load applied to the logic blocks. For this reason, we are
developing logic synthesis and technology mapping algorithms
focused on quaternary representation.

REFERENCES

[1] A. K. Gupta and W. J. Dally, “Topology optimization of interconnection
networks,” IEEE Comput. Archit. Lett., vol. 5, no. 1, p. 3, 2006.

[2] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3-D ICs: a novel chip
design for improving deep-submicrometer interconnect performance and
systems-on-chip integration,” Proceedings of the IEEE, vol. 89, no. 5,
pp. 602–633, May 2001.

[3] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and
characteristics of field programmable gate arrays,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 24,
no. 11, pp. 1712–1724, Nov. 2005.

[4] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering for area
and power reduction in FPGAs,” in FPGA '02: Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable
gate arrays. New York, NY, USA: ACM, 2002, pp. 59–66.

[5] R. da Silva, C. Lazzari, H. Boudinov, and L. Carro, “CMOS voltage-
mode quaternary look-up tables for multi-valued FPGAs,” Microelec-
tronics Journal, vol. 40, no. 10, pp. 1466 – 1470, 2009.

[6] E. Dubrova, “Multiple-valued logic in vlsi: Challenges and opportuni-
ties,” in Proceedings of NORCHIP'99, 1999, pp. 340–350.

[7] T.-S. Jung, Y.-J. Choi, K.-D. Suh, B.-H. Suh, J.-K. Kim, Y.-H. Lim,
Y.-N. Koh, J.-W. Park, K.-J. Lee, J.-H. Park, K.-T. Park, J.-R. Kim,
J.-H. Yi, and H.-K. Lim, “A 117-mm2 3.3-v only 128-mb multilevel
NAND �ash memory for mass storage applications,” IEEE Journal of
Solid-State Circuits, vol. 31, no. 11, pp. 1575–1583, Nov 1996.

[8] A. Gonzalez and P. Mazumder, “Multiple-valued signed digit adder
using negative differential resistance devices,” IEEE Transactions on
Computers, vol. 47, no. 9, pp. 947–959, Sep 1998.

[9] T. Hanyu and M. Kameyama, “A 200 MHz pipelined multiplier using
1.5 v-supply multiple-valued mos current-mode circuits with dual-rail
source-coupled logic,” IEEE Journal of Solid-State Circuits, vol. 30,
no. 11, pp. 1239–1245, Nov 1995.

[10] Z. Zilic and Z. Vranesic, “Multiple-valued logic in FPGAs,” Aug 1993,
pp. 1553–1556 vol.2.

[11] R. Cunha, H. Boudinov, and L. Carro, “A novel voltage-mode cmos qua-
ternary logic design,” IEEE Transactions on Electron Devices, vol. 53,
no. 6, pp. 1480–1483, June 2006.

[12] L. Aksoy, E. da Costa, P. Flores, and J. Monteiro, “Exact and approx-
imate algorithms for the optimization of area and delay in multiple
constant multiplications,” Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, vol. 27, no. 6, pp. 1013–1026, June
2008.

[13] W. Zhao and Y. Cao, “New generation of predictive technology model
for sub-45nm design exploration,” International Symposium on Quality
Electronic Design, pp. 585–590, 2006.

[14] Xilinx Inc., “Spartan-3 fpga family
data sheet,” 2008. [Online]. Available:
http://www.xilinx.com/support/documentation/data sheets/ds099.pdf

[15] T. Sakurai, “Closed-form expressions for interconnection delay, cou-
pling, and crosstalk in vlsis,” Electron Devices, IEEE Transactions on,
vol. 40, no. 1, pp. 118–124, Jan 1993.

[16] T. Mak, C. D’Alessandro, P. Sedcole, P. Y. K. Cheung, A. Yakovlev, and
W. Luk, “Global interconnections in fpgas: modeling and performance
analysis,” in SLIP '08: Proceedings of the 2008 international workshop
on System level interconnect prediction. New York, NY, USA: ACM,
2008, pp. 51–58.

[17] Cadence Design Systems Inc., “Virtuoso ultrasim simulator user guide,”
2009. [Online]. Available: http://www.cadence.com


