
Design of Low-Complexity and High-Speed Digital
Finite Impulse Response Filters

Diego Jaccottet and Eduardo Costa
Universidade Catolica de Pelotas

Pelotas-RS, Brazil

Levent Aksoy
INESC-ID

Lisbon, Portugal

Paulo Flores and José Monteiro
INESC-ID/IST TU Lisbon

Lisbon, Portugal

Abstract—In this paper, we introduce a design methodology to
implement low-complexity and high-speed digital Finite Impulse
Response (FIR) filters. Since FIR filters suffer from a large
number of constant multiplications, in the proposed method the
constant multiplications are replaced by addition/subtraction and
shift operations. Also, based on the design objective, i.e., low-
complexity or high-speed, the addition/subtraction operations
are implemented using Ripple Carry Adder (RCA) or Carry-
Save Adder (CSA) architectures respectively. Furthermore, high-
level algorithms designed for the optimization of the number
of RCA and CSA blocks are used to reduce the complexity
of the FIR filter. Thus, a Computer-Aided Design (CAD) tool
that synthesizes low-complexity and high-speed FIR filters in
a shift-adds architecture is developed. It is observed from the
experimental results on FIR filter instances that the developed
CAD tool can find better FIR filter designs in terms of area and
delay than those obtained using efficient general multipliers.

I. INTRODUCTION

Finite Impulse Response (FIR) filters are widely used in
Digital Signal Processing (DSP) applications due to their
stability and linear-phase property. The multiplier block of the
FIR filter, where the multiplications of filter coefficients by the
filter input are realized as illustrated in Figure 1, has significant
impact on the complexity and performance of the design,
since a large number of constant multiplications are required.
This operation is generally known as the Multiple Constant
Multiplications (MCM) and is also a central operation and
performance bottleneck in many DSP systems, such as Infinite
Impulse Response (IIR) filters, Fast Fourier Transforms (FFT),
and Discrete Cosine Transforms (DCT).

Although area, delay, and power efficient multiplier archi-
tectures, such as Wallace [1], modified Booth [2], and radix-
2m binary array [3] multipliers, have been proposed, the full-
flexibility of a multiplier is not necessary for the constant mul-
tiplications, since filter coefficients are determined beforehand
by the DSP algorithms. Hence, the multiplication of filter co-
efficients with the filter input is generally implemented under a
shift-adds architecture [4], where each constant multiplication
is realized using addition/subtraction and shifting operations.

�

�

� � �� � �

� �

� � �	 � � �


� � �

� � 
��� 
�� � � 
���

Fig. 1. Transposed form of a digital FIR filter implementation.

��

� � � �

� �

� ���

� � 	
 � � 	


� � 	


��

� � 	� � � 	�

� � 	�

� � ��

� � � �

� �

���




� �

�
�




� � �

�

��

� �

� � � � � �

� �

��

� �

� � � � � �

� 


��

� � 	


� � 	
 � � 	
 � � 	


� � 	�

��

� � 	�

� � 	� � � 	� � � 	�

� �

�� �

�� �

Fig. 2. Addition architectures: (a) Ripple carry adder; (b) Carry-save adder.

Furthermore, the implementation of constant multiplications
in a shift-adds architecture enables high-level algorithms [5]–
[10] to obtain significant reductions in area and power dissipa-
tion of the MCM design by sharing the common partial prod-
ucts among the constant multiplications. In these algorithms,
the optimization problem is defined as finding the minimum
number of addition/subtraction operations that implement the
constant multiplications, since shifts can be implemented using
only wires in hardware without representing any area cost.
This optimization problem is known as the MCM problem
and has been proven to be an NP-complete problem in [11].

In high-level algorithms designed for the MCM problem,
an adder/subtracter is assumed to be a two-input operation
that is generally implemented using a Ripple Carry Adder
(RCA) block yielding small area but great latency in the
design of the MCM operation. On the other hand, in high-
speed DSP applications, Carry-Save Adder (CSA) blocks are
preferred to RCA blocks in spite of the increase in area.
The CSA block has three inputs and two outputs, Sum (S)
and Carry (C), that together form the result. An n-bit CSA
block includes n Full Adders (FAs). Since there is no need to
propagate the carry as required in an RCA block, Figure 2(a),
the latency of addition is equal to the gate delay of a full adder,
independently of the data wordlength, Figure 2(b). Note that
to obtain the final sum, a Vector Merging Adder (VMA) that
can be implemented using a faster adder such as Kogge-Stone
adder [12] is required.

The digital FIR filter proposed for high-speed DSP applica-
tions in [13] is illustrated in Figure 3. In this figure, each ad-
dition represents a CSA block and the filter output is obtained
using only one VMA. Also, each constant multiplication is



� �
�
�

� �
�
�

� �

��� �

� �� �

� � 	
 � � 	� � �

�
�


� �

� � ���� ��� � � �������

������

Fig. 3. Transposed form of a digital high-speed FIR filter implementation.

implemented in the shift-adds architecture using CSA blocks.
The high-level algorithms [14]–[16], that aim to maximize the
sharing of partial products generated by the CSA blocks, are
used to find a solution with the fewest number of CSA blocks.

In this paper, we introduce a Computer-Aided Design
(CAD) tool that is capable of designing low-complexity and
high-speed digital FIR filters. The CAD tool initially obtains
the fewest number of addition/subtraction operations that are
required to implement the MCM operation using a high-level
algorithm based on the design objective, i.e., low-complexity
or high-speed. For the low-complexity FIR filter design, a
high-level algorithm designed for the optimization of the
number of operations is used to find the fewest number of RCA
blocks solution in the multiplier block of the FIR filter. For the
high-speed FIR filter design, the complexity of the multiplier
block is optimized by finding the fewest number of CSA
blocks solution with a high-level algorithm. Then, the CAD
tool converts the multiplier block optimized under the RCA
or CSA architectures into a synthesizable description format
and describes the FIR filter at gate-level using this optimized
multiplier block by including additional circuits. Finally, it
uses the Sequential Interactive System (SIS) tool [17] as a
synthesizer to map the gate-level description of the FIR filter
in a sequential circuit using a gate library. In this paper,
we present the CAD tool developed for the design of FIR
filters under RCA and CSA architectures and compare its
results with those of the FIR filters whose multiplier blocks
are designed using an efficient radix-8 array multiplier [3]
and a parallel multiplier generated by the Mullet tool [18].
It is observed that the design of an FIR filter in a shift-adds
architecture using RCA blocks yields the best area results. On
the other hand, the implementation of an FIR filter in a shift-
adds architecture using CSA blocks leads to high-speed FIR
filter designs with respect to those whose multiplier blocks
are realized using efficient multipliers and FIR filters designed
using RCA blocks. It is also observed that the use of high-
level algorithms that optimize the number of RCA or CSA
blocks in MCM reduces the complexity of the FIR filter.

The rest of the paper is organized as follows. Section II
describes the high-level algorithms designed for the optimiza-
tion of the number of RCA and CSA blocks in the multiplier
block of the digital FIR filter. The CAD tool is introduced in
Section III and experimental results are given in Section IV.
Finally, the paper is concluded with Section V.

II. THE HIGH-LEVEL ALGORITHMS

This section presents an overview on the algorithms pro-
posed for the problems of optimization of the number of RCA
and CSA blocks in the multiplier block of a digital FIR filter
given in Figure 1 and 3 respectively.

A. Optimization of the Number of RCA Blocks

For the implementation of constant multiplications using
addition/subtraction and shift operations, a straightforward
way, generally known as the digit-based recoding method [19],
initially defines the constants in multiplications in binary
representation. Then, for each 1 in the binary representation of
the constant, according to its bit position, it shifts the variable
and adds up the shifted variables to obtain the result. As a
simple example, suppose the constant multiplications of 29 and
43 by the variable x, i.e., 29x and 43x. The decompositions
of constant multiplications are given as follows:

29x = (11101)binx = x ¿ 4 + x ¿ 3 + x ¿ 2 + x

43x = (101011)binx = x ¿ 5 + x ¿ 3 + x ¿ 1 + x

where 6 addition operations are required as illustrated in
Figure 4(a). To further improve the solution, one can also
define the constants under Canonical Signed Digit (CSD) rep-
resentation, where each constant has a unique representation
with the minimum number of non-zero digits [20].

However, the digit-based recoding techniques do not con-
sider the sharing of partial products among the constant
multiplications that may yield an MCM design with less
number of operations. The algorithms that aim to maximize
the partial product sharing in MCM can be categorized in
two classes: Common Subexpression Elimination (CSE) algo-
rithms [5]–[7] and graph-based (GB) methods [8]–[10]. The
CSE algorithms, also referred to as the pattern search methods,
initially define the constants under a number representation,
namely binary, CSD, or Minimal Signed Digit (MSD), and
then, recursively find the “best” subexpression, generally the
most common, among the constant multiplications. The exact
CSE algorithm [7], that formulates the MCM problem as a
0-1 Integer Linear Programming (ILP) problem, first finds all
possible implementations of the constant multiplications when
constants are defined under a particular number representation
and then, obtains the minimum number of operations solution
using a generic 0-1 ILP solver. Returning to our example,
the exact CSE algorithm of [7] identifies the most common
partial products, 3x = (11)binx and 5x = (101)binx, in
both multiplications when the constants are defined in binary,
obtaining a solution with 4 operations as given in Figure 4(b).

On the other hand, the GB algorithms are not limited to any
particular number representation and consider a large number
of alternative implementations of a constant multiplication,
yielding better solutions than the CSE algorithms as shown
in [9], [10]. The prominent GB heuristics [8], [9] consist of
optimal and heuristic parts. In the optimal part, the constant
multiplications that can be realized using a single operation are
synthesized. If there are still constant multiplications to be im-
plemented, then these algorithms switch to their heuristic parts,
where in each iteration, a constant multiplication is synthesized
using a single operation including a partial product. The exact
GB algorithms that search the minimum number of operations
solution in breadth-first and depth-first manners were proposed
in [10]. For our example, the exact GB algorithm [10] finds



���

���

�

�

���

���

��

���

�
���

�

���

��

���

�� 	 �
 	

���

���

�

�

���

���

��

���

�
���

�

�� ��
��� ���

� �

���

�

�

���

�� 	

���

�

��

�

���

���

Fig. 4. Implementation of 29x and 43x using RCA blocks obtained with:
(a) a digit-based recoding technique [19]; (b) the exact CSE algorithm [7];
(c) the exact GB algorithm [10].

the minimum number of operations solution with 3 operations
as presented in Figure 4(c).

Note that optimizing the number of operations in MCM
directly corresponds to finding a solution with the minimum
number of RCA blocks, since each addition/subtraction oper-
ation is synthesized using a single RCA block.

B. Optimization of the Number of CSA Blocks

In many designs, particularly in DSP systems, performance
is an important and a crucial parameter. Hence, circuit area is
generally expandable in order to achieve a given performance
target. In this work, the delay of the FIR filter design is
reduced by using CSA blocks for the implementation of
constant multiplications in the multiplier block and for the
implementation of addition operations used in computation of
the filter output as illustrated in Figure 3.

The direct way of implementing constant multiplications
with CSA blocks is again to apply a digit-based recoding
method [19]. Returning to our constant multiplications 29x
and 43x, the representation of constants in binary leads to
a solution with 4 CSA blocks1 as given in Figure 5(a). The
prominent algorithms proposed for the problem of finding the
fewest number of CSA blocks in MCM can be again cate-
gorized in two classes as CSE and GB algorithms. The CSE
heuristic of [15] initially defines the constant multiplications
in expressions and then, iteratively extracts all possible three-
term divisors from the expressions, finds the best divisor, i.e.,
the most common divisor, among these divisors, and redefines
the expressions by replacing the best divisor in the expressions
with two terms, i.e., sum and carry outputs of a CSA block.
The exact CSE algorithm of [16] formalizes the problem as
a 0-1 ILP problem and finds the minimum number of CSA
blocks solution when the possible CSA implementations of a
constant multiplication are extracted from the number repre-
sentation of the constant. For the implementation of constant
multiplications 29x and 43x, the exact CSE algorithm [16]
finds a solution with 3 CSA blocks as illustrated in Figure 5(b)
when constants are defined under binary representation.

An approximate algorithm that considers more possible im-
plementations of the constant multiplications using the general

1Recall that a CSA block has three inputs and two outputs, S and C, and
these outputs together indicate the result.

������

���

�

� ��� � ���

�

�

������

���

�

� ��� � ���

�

�

���

�

� �

���

��� ��� ���

� ��� � ��� � ��� � ���

�

	
 � 	� �

� ��� � ���� ��� � ��� � ��� � ���

Fig. 5. Implementation of 29x and 43x using CSA blocks obtained with:
(a) a digit-based recoding technique [19]; (b) the exact CSE algorithm [16].

number (GN) representation than the exact CSE algorithm
of [16] was also proposed in [16]. Due to the larger search
space, the approximate algorithm generally obtains better
solutions than the exact CSE algorithm. The GB algorithm
of [14] includes optimal and heuristic parts. In the optimal part,
the constant multiplications that can be implemented using one
CSA block are synthesized. If there exist unrealized constant
multiplications, then in each iteration of the heuristic part,
an unrealized constant multiplication is synthesized with two
CSA blocks or with its minimum number of CSA block im-
plementation obtained from [21] by including partial products.

III. THE CAD TOOL

In this section, we introduce the CAD tool designed for the
implementation of low-complexity and high-speed digital FIR
filters. The FIR filter design process includes three main steps:
i) Obtaining the solutions of high-level algorithms designed for
the optimization of the number of RCA or CSA blocks in the
multiplier block of the FIR filter based on the design objective;
ii) Defining the FIR filter in a synthesizable description
format2 using the optimized multiplier block obtained by the
high-level algorithms; iii) Synthesizing the FIR filter at gate-
level by mapping the synthesizable description in a sequential
circuit.

In the first step of the design process, for the design of low-
complexity and high-speed FIR filters, the multiplier block
of the FIR filter is optimized in terms of the number of
RCA and CSA blocks by a high-level algorithm described in
Section II-A and II-B, respectively.

In the second and third steps of the design process, an inter-
preter is used to define the digital FIR filter in a synthesizable
description format and synthesize the filter at gate-level. The
interpreter takes the solution of a high-level algorithm (i.e., a
set of RCA or CSA blocks that generates the multiplications
of filter coefficients with the filter input), the set of filter
coefficients, and the bit-width of the filter input as inputs.
Then, it generates the description of the digital FIR filter with
the multiplier block optimized for the number of RCA or CSA
blocks and with the registers and addition operations required
to compute the filter output.

2Currently, the CAD tool only supports the Berkeley Logic Interchange For-
mat (BLIF) and will be extended to describe the FIR filter in VHDL (VHSIC
(Very High Speed Integrated Circuit) Hardware Description Language.



A. Design of the FIR Filter using RCAs

In this case, the multiplications of filter coefficients with
the filter input are implemented with partial products that
are generated using RCAs. Initially, each addition/subtraction
operation in the solution of the high-level algorithm is defined
as outi À ri = ini1 ¿ li1 ± ini2 ¿ li2, where r and l
denote the amount of right and left shifts respectively. Each
addition/subtraction operation implementing a constant multi-
plication is described in the RCA architecture as given in [22].
Then, each filter coefficient is defined as hj = ±outk ¿ lk.

As can be also observed from Figure 1, for the first
coefficient multiplication, we include a register block whose
input is the first filter coefficient multiplication. Then, for each
filter coefficient multiplication except the last one, we describe
an adder block to sum the output of the previous register with
the filter coefficient multiplication and a register block to store
the current sum. For the last filter coefficient multiplication,
we only need to include an adder block. Hence, the output of
the last adder block determines the filter output.

B. Design of the FIR Filter using CSAs

In this case, the multiplier block of the FIR filter is
implemented with partial products that are generated using
CSAs. Initially, the interpreter obtains the implementations of
constant multiplications from the solution of the high-level
algorithm. Then, it finds the inputs of the CSA blocks with
the minus sign and generates the 2’s complement of the partial
product by inverting both the sum and carry parts of the
product and adding them together with 1 using a single CSA.
Then, the implementation of CSA blocks generated for the
partial products and the filter coefficient multiplications in
the multiplier block of the FIR filter is realized. If a CSA
block that implements a constant multiplication has a minus
signal in one of its inputs (both sum and carry always have
the same signal, but the other input does not need to have
the same signal), the associated negated input is used. Finally,
the outputs of the multiplier block are defined from the filter
coefficients.

After the multiplier block of the filter is described, the filter
output is obtained as illustrated in Figure 3. In this case, two
CSA blocks are used to add the filter coefficient multiplication
with the previous sum and carry results and two registers are
used to store the sum and carry parts of the current result.
The filter output is obtained with the VMA block where the
outputs of the final registers are added together using a Kogge-
Stone adder [12]. The Kogge-Stone adder is used in order to
speed-up the carry calculation, since this block represents a
bottleneck in the performance of the filter. The Kogge-Stone
adder is a parallel-prefix adder and this structure appears as a
good alternative, because it introduces a prefix network with
a minimal fan-out of an unit at each node. However, the
reduction of logic depth is achieved at cost of more area.

C. Mapping the FIR Filter at Gate-Level

In the third step of the design process, after the FIR filter is
defined in BLIF, the SIS tool is used to map the filter using a

TABLE I
FIR FILTER SPECIFICATIONS.

Filter pass stop #tap width

1 0.10 0.25 100 10
2 0.15 0.25 40 12
3 0.20 0.25 80 12
4 0.15 0.25 60 14
5 0.15 0.20 60 14
6 0.10 0.15 60 14

gate-library and to obtain the area and delay results of the filter
at gate-level. In the technology mapping process, while the FIR
filter using RCA blocks is synthesized under the minimum area
design strategy, the FIR filter using CSA blocks is mapped
under the minimum delay design strategy. Finally, the power
dissipation in the FIR filter is determined using the Switch
Level Simulator (SLS) tool [23].

IV. EXPERIMENTAL RESULTS

In this section, we present the results of high-level algo-
rithms designed for the optimization of the number of RCA
and CSA blocks in the multiplier block of the FIR filter and
give the gate-level area, delay, and power dissipation results
of filters obtained by the CAD tool. Also, we introduce the
gate-level results of FIR filters when their multiplier blocks are
realized using radix-8 array [3] and Mullet [18] multipliers.

As an experiment set, we used FIR filter instances3 where
filter coefficients were computed with the remez algorithm in
MATLAB. The specifications of filters are presented in Table I
where pass and stop are normalized frequencies that define
the passband and stopband respectively, #tap is the number of
filter coefficients, and width is the bit-width of the coefficients.

The results of high-level algorithms are given in Table II,
where #RCA, #CSA, and step denote the number of RCA
blocks, the number of CSA blocks, and the maximum number
of operations in series, generally known as the number of
adder-steps, respectively. Also, CPU presents the CPU time
required for the high-level algorithms to obtain their solutions
on a PC with Intel Xeon at 2.33GHz and 4GB of memory.
Note that the results of the exact CSE algorithms [7], [16] were
obtained when the filter coefficients were defined under MSD
representation. In the CSE heuristic [15] and the approximate
algorithm [16], the filter coefficients were defined under CSD
and general number (GN) representation respectively.

As can be observed from Table II, the exact GB algo-
rithm [10] obtains significantly better solutions than the exact
CSE algorithm [7] in terms of the number of RCA blocks. This
is simply because the GB algorithm is not restricted to any
particular number representation and considers a larger number
of alternative implementations than the CSE algorithms, in-
creasing the possible sharing of partial products. On the other
hand, the approximate algorithm of [16] that considers the
filter coefficients under general number representation finds
similar or better solutions in terms of the number of CSA
blocks, obtaining better solutions on overall FIR filter in-
stances, than the heuristic [15] and exact [16] CSE algorithms.

3The FIR filter instances are available at http://algos.inesc-id.pt/multicon.



TABLE II
RESULTS OF HIGH-LEVEL ALGORITHMS DESIGNED FOR THE OPTIMIZATION OF THE NUMBER OF RCA AND CSA BLOCKS IN THE MULTIPLIER BLOCK OF

THE FIR FILTER.

Objective Optimization of #RCA blocks Optimization of #CSA blocks
Algorithm Exact CSE [7] Exact GB [10] CSE Heuristic [15] Exact CSE [16] Approximate GN [16]

Filter #RCA step CPU #RCA step CPU #CSA step CPU #CSA step CPU #CSA step CPU

1 18 3 0.01 17 3 0.09 15 3 0.04 14 4 0.01 14 3 0.12
2 16 3 0.01 15 4 0.28 16 3 0.02 16 4 0.03 15 4 1.53
3 29 4 0.01 28 3 0.14 30 3 0.05 27 4 0.08 25 4 0.17
4 22 3 0.01 20 4 0.20 25 3 0.04 21 5 0.19 21 5 2.23
5 34 3 0.01 29 4 0.30 36 3 0.06 34 4 0.22 34 3 9.58
6 33 4 0.03 28 6 0.54 36 3 0.07 32 4 0.28 32 4 4.19

Total 152 20 0.08 137 24 1.55 158 18 0.28 144 25 0.81 141 23 17.82

TABLE III
GATE-LEVEL DESIGN RESULTS OF FIR FILTERS OBTAINED WITH THE SOLUTIONS OF ALGORITHMS DESIGNED FOR THE OPTIMIZATION OF THE NUMBER

OF RCA AND CSA BLOCKS GIVEN IN TABLE II.

Objective Optimization of #RCA blocks Optimization of #CSA blocks
Algorithm Exact CSE [7] Exact GB [10] CSE Heuristic [15] Exact CSE [16] Approximate GN [16]

Filter area delay power area delay power area delay power area delay power area delay power

1 134.1 208.4 808.3 131.8 205.1 772.2 274.7 35.8 873.0 273.4 37.2 870.6 274.9 35.9 872.0
2 75.1 106.4 521.8 74.7 105.7 814.0 161.6 38.6 564.0 160.3 38.4 546.2 161.4 36.7 596.6
3 157.2 229.1 1187.5 159.3 231.2 1188.3 367.5 40.0 1301.2 366.5 40.5 1307.7 364.8 40.2 1366.4
4 108.2 154.1 865.4 104.6 147.0 1057.2 237.1 40.0 883.7 234.5 43.4 919.6 234.8 44.4 941.4
5 132.3 170.3 1172.8 128.2 170.3 1318.9 298.2 38.1 1139.9 298.2 38.9 1171.1 298.5 39.2 1154.4
6 132.5 170.0 1335.6 130.8 171.3 2197.7 304.0 40.3 1266.3 302.7 40.9 1286.5 301.4 43.6 1315.2

Total 739.4 1038.3 5891.4 729.4 1030.6 7348.3 1643.1 232.8 6028.1 1635.6 239.3 6101.7 1635.8 240.0 6246.0

TABLE IV
GATE-LEVEL DESIGN RESULTS OF FIR FILTERS USING GENERAL MULTIPLIERS.

Multiplier Radix-8 [3] Mullet [18]
Strategy Minimum Area Minimum Delay Minimum Area Minimum Delay #mul

Filter area delay power area delay power area delay power area delay power

1 193.8 210.3 1325.3 264.9 64.8 1192.0 187.9 210.3 1119.0 254.0 54.8 1049.1 17
2 127.3 108.2 1129.0 170.8 63.3 1006.0 121.9 108.2 949.5 161.1 57.0 893.6 14
3 260.0 229.1 2139.0 350.0 62.3 1880.2 249.4 229.1 1833.9 330.3 56.3 1573.3 28
4 186.7 154.0 1778.7 249.1 65.7 1591.4 175.1 154.0 1430.8 230.0 56.5 1238.3 20
5 247.4 172.5 2432.3 325.2 66.7 1094.7 230.3 172.5 1988.4 297.8 57.2 1671.9 29
6 252.9 169.6 2683.3 332.5 67.0 2452.3 233.5 169.6 2181.1 301.2 57.3 1868.0 28

Total 1268.1 1043.7 11487.6 1692.5 389.8 9216.6 1198.1 1043.7 9502.7 1574.4 339.1 8294.2 136

Also, observe from Table II that the solutions of the high-level
algorithms are obtained using a little computational effort.

Table III presents the gate-level area, delay, and power
dissipation results of the FIR filters whose multiplier blocks
are optimized for the number of RCA and CSA blocks by
the algorithms given in Table II. Note that in the SIS tool,
each filter designed using RCA and CSA blocks is synthesized
under the minimum area and the minimum delay design
strategy respectively. In this table, area (mm2), delay (ns), and
power (mW) denote the area, delay, and power dissipation of
the filter at gate-level respectively. The sis.genlib gate library
of the SIS tool was used during the technology mapping and
the gate-level results were obtained when the bit-width of the
filter input was 16. Also, the power dissipation results were
determined when 10,000 random input vectors were applied.

As can be observed from Tables II and III, the reduction
of the number of RCA blocks in the multiplier block of the
FIR filter results in the reduction of area of the FIR filter
at gate-level. The same situation generally occurs when the
number of CSA blocks is reduced in the multiplier block
of the FIR filter by the high-level algorithms, as can be
clearly observed when the results of CSE heuristic [15] are
compared with the results of the exact CSE and approximate
algorithms of [16] on overall instances. On the other hand, the
design of FIR filters using RCA blocks yields low-complexity

implementations compared to the FIR filter designs using CSA
blocks. In this case, the area improvement on overall instances
between the results of the exact GB algorithm [10] and the
CSE heuristic [15] is 55.6%. However, the design of FIR
filters using CSA blocks leads to high-speed implementations
with respect to FIR filter designs using RCA blocks. In this
case, the delay improvement on overall instances between
the CSE heuristic [15] and the exact CSE algorithm [7] is
77.6%. Although one can easily tune on the traditional tradeoff
between area and delay of the design during the technology
mapping, we observed that the delay results of FIR filter
designs using CSA blocks were always better than those of
designs using RCA blocks mapped under the minimum delay
design strategy and the area results of FIR filter designs using
RCA blocks were always better than those of designs using
CSA blocks mapped under the minimum area design strategy.

Table IV presents the gate-level area, delay, and power
dissipation results of the FIR filters whose multiplier blocks
are realized using radix-8 array [3] and Mullet [18] multipliers
(the FIR filters were also designed using the modified Booth
multipliers [2], but they lead to the worst results in terms of
area and delay with respect to these multipliers). In this case,
the FIR filters are designed as illustrated in Figure 1, where the
multiplier block is implemented using general multipliers. We
note that as done in the design of FIR filters using RCA and



CSA blocks, in the design of the multiplier block of the FIR
filter using general multipliers, we initially convert the filter
coefficients to positive and odd numbers and then, implement
the filter coefficient multiplications without a repetition. Thus,
the number of required multipliers in the multiplier block of
the FIR filter is equal to the number of unrepeated positive
and odd filter coefficients denoted by #mul in the last column
of Table IV. In order to find out the pareto-optimal points
of the design and compare the FIR filter designs with those
given in Table III, we present the gate-level design results
of FIR filters when they are mapped under both minimum
area and delay design strategies. Note that the redundancy
in the general multipliers implementing the multiplications
of constant filter coefficients with the filter input is removed
during the technology mapping. The experimental settings
used in the design of these FIR filters are the same as those
used in the design of the FIR filters given in Table III.

As can be easily observed from Tables III and IV, under the
minimum area design strategy, the design of FIR filters using
RCA blocks yields FIR filter designs with significantly better
area and also delay results than those obtained using all kind of
multipliers given in Table IV on overall instances. On the other
hand, under the minimum delay design strategy, the design
of FIR filters using CSA blocks yields better delay designs
with respect to FIR filter designs obtained using each type of
multiplier given in Table IV. Also, this design methodology
yields better area designs than FIR filters whose multiplier
block is designed using radix-8 array multipliers on overall
instances. Furthermore, observe from Tables III and IV that
the use of shift-adds architecture in the design of FIR filters
and the use of high-level algorithms for the optimization of
the number of RCA and CSA blocks lead to low-power digital
FIR filter designs.

V. CONCLUSIONS

In this paper, we introduced a CAD tool that can synthesize
low-complexity and high-speed digital FIR filters based on
a design objective. The most crucial property of the tool
is that in the implementation of the multiplier block of
the filter, it replaces each multiplication by a constant with
addition/subtraction and shifting operations. While the low-
complexity design of the filter is realized using RCA blocks,
the high-speed design of the filter is achieved using CSA
blocks. Furthermore, to reduce the complexity of the design,
the developed CAD tool incorporates high-level algorithms
that find a solution with the minimum number of RCA or
CSA blocks required to generate the filter coefficient multipli-
cations. It is observed that while the use of RCA blocks leads
to a low-complexity filter design, the use of CSA blocks yields
a high-speed filter. Also, the use of high-level algorithms in
the design of the multiplier block has significant impact on the
complexity of the filter. It is shown that the proposed design
methodology yields low-complexity and high-speed FIR filters
with respect to those whose multiplier blocks are designed
using general multipliers.

VI. ACKNOWLEDGMENT

This work was partially supported by the Portuguese Foun-
dation for Science and Technology (FCT) under the re-
search project Architectural Optimization of DSP Systems with
Multiple Constants Multiplications (Multicon) PTDC/EIA-
EIA/103532/2008 and by FCT (INESC-ID multiannual fund-
ing) through the PIDDAC Program funds.

REFERENCES

[1] C. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Transactions on
Electronic Computers, vol. 13, no. 1, pp. 14–17, 1964.

[2] W. Gallagher and E. Swartzlander, “High Radix Booth Multipliers using
Reduced Area Adder Trees,” in Proc. of Asilomar Conference on Signals,
Systems and Computers, 1994, pp. 545–549.

[3] E. Costa, S. Bampi, and J. Monteiro, “A New Architecture for Signed
Radix 2m Pure Array Multipliers,” in Proc. of IEEE International
Conference on Computer Design, 2002, pp. 112–117.

[4] H. Nguyen and A. Chatterjee, “Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis,” IEEE Tran. on VLSI, vol. 8, no. 4, pp. 419–424, 2000.

[5] R. Hartley, “Subexpression Sharing in Filters using Canonic Signed Digit
Multipliers,” IEEE TCAS II, vol. 43, no. 10, pp. 677–688, 1996.

[6] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis Based on Minimal
Signed Digit Representation,” in Proc. of DAC, 2001, pp. 468–473.

[7] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and Approximate
Algorithms for the Optimization of Area and Delay in Multiple Constant
Multiplications,” IEEE TCAD, vol. 27, no. 6, pp. 1013–1026, 2008.

[8] A. Dempster and M. Macleod, “Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters,” IEEE TCAS II, vol. 42, no. 9, pp. 569–
577, 1995.

[9] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[10] L. Aksoy, E. Gunes, and P. Flores, “Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate,” Elsevier
Journal on Microprocessors and Microsystems, vol. 34, pp. 151–162,
2010.

[11] P. Cappello and K. Steiglitz, “Some Complexity Issues in Digital
Signal Processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037–1041, 1984.

[12] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient So-
lution of a General Class of Recurrence Equations,” IEEE Transactions
on Computers, no. 8, pp. 786–793, 1973.

[13] R. Hawley, B. Wong, T.-J. Lin, J. Laskowski, and H. Samueli, “Design
Techniques for Silicon Compiler Implementations of High-Speed FIR
Digital Filters,” IEEE Journal of Solid-State Circuits, vol. 31, no. 5, pp.
656–667, 1996.

[14] O. Gustafsson, A. Dempster, and L. Wanhammar, “Multiplier Blocks
using Carry-Save Adders,” in Proc. of ISCAS, 2004, pp. 473–476.

[15] A. Hosangadi, F. Fallah, and R. Kastner, “Optimizing High Speed
Arithmetic Circuits using Three-Term Extraction,” in Proc. of DATE,
2006, pp. 1294–1299.

[16] L. Aksoy and E. Gunes, “Area Optimization Algorithms in High-Speed
Digital FIR Filter Synthesis,” in Proc. of SBCCI, 2008, pp. 64–69.

[17] Sequential interactive system webpage. [Online]. Available: http:
//embedded.eecs.berkeley.edu/pubs/downloads/sis/index.htm

[18] K. Tsoi and P. Leong, “Mullet - A Parallel Multiplier Generator,” in
Proc. of FPL, 2005, pp. 691–694.

[19] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[20] A. Avizienis, “Signed-digit Number Representation for Fast Parallel
Arithmetic,” IRE Transactions on Electronic Computers, vol. EC-10,
pp. 389–400, 1961.

[21] O. Gustafsson, H. Ohlsson, and L. Wanhammar, “Minimum-Adder
Integer Multipliers using Carry-Save Adders,” in Proc. of ISCAS, 2001,
pp. 709–712.

[22] K. Johansson, O. Gustafsson, and L. Wanhammar, “Bit-Level Optimiza-
tion of Shift-and-Add Based FIR Filters,” in Proc.of ICECS, 2007, pp.
713–716.

[23] Switch-level simulator webpage. [Online]. Available: http://www.space.
tudelft.nl/


