
Abstract
 For a significant number of electronic systems used in

safety-critical applications circuit testing is performed
periodically. For these systems, power dissipation due to
Built-In Self Test (BIST) can represent a significant per-
centage of the overall power dissipation. One approach to
minimize power consumption in these systems consists of
test pattern sequence reordering. Moreover, a key obser-
vation is that test patterns are in general expected to
exhibit don’t cares, which can naturally be exploited dur-
ing test pattern sequence reordering. In this paper we
develop an optimization model and describe an efficient
algorithm for reordering pattern sequences in the pres-
ence of don’t cares. Preliminary experimental results
amply confirm that the resulting power savings due to pat-
tern sequence reordering using don’t cares can be signifi-
cant.

1. Introduction

Many circuits today include on-chip structures that
enable circuit self-testing, known as built-in self-test
(BIST) [1]. Initially designed to make the testing of the
circuits out of the fabrication line easier, they allow for the
periodic testing of the circuit. This can be especially
important for circuits used in safety-critical or mobile
devices. Clearly the penalty to pay is the extra circuitry
required for BIST. One approach to reduce this overhead
is to use a simple linear feedback shift register (LFSR) to
generate a pseudo-random input sequence, which is run
until a given fault coverage has been achieved [1, 4]. The
disadvantage is that for high fault coverages the run time
may become too long. A different approach is to use an
automated test-pattern generator (ATPG) tool to obtain a
(ideally minimum) set of test patterns necessary for the
desired fault coverage. Then, the BIST structure reduces
to a counter-type finite state machine (FSM) that generates
each of these patterns sequentially [4]. Even though this
latter solution in general requires larger area, it is also
clear that it provides shorter test sequences, thus being the
option of choice for specific applications [1, 4] where
power and not area is the most important design goal.
Moreover, the increased use of periodic testing in safety-
critical devices raises concerns about the power that is
consumed during this process. Consequently, techniques
for reducing the power dissipation during testing are par-
ticularly relevant for these devices.

In this paper we address the problem of power reduc-
tion during testing. Even though solutions for solving this
problem consist of reordering sequences of completely
specified test patterns [5], one might expect the potential
existence of don’t cares in test patterns to help further
reduction in power. The main purpose of this paper is to
propose solutions for this problem and provide compre-
hensive empirical evidence that the existence of don’t
cares in test patterns can in fact play a significant role in
reducing power dissipation during testing.

2. Power Reduction with Completely Speci-
fied Test Patterns

2.1. Power Dissipation Model

It has been shown [6] that during normal operation of
well designed CMOS circuits the switching activity power
accounts for over 90% of the total power dissipation. Thus
power optimization techniques at different levels of
abstraction target minimal switching activity power. The
model for power dissipation for a gatei in a logic circuit is
simplified to:

(1)

where VDD is the supply voltage,f is the frequency of
operation,Ci is the node capacitance andNi is the node
switching activity.

Both simulation-based (e.g., [3]) and probabilistic (e.g.,
[7]) techniques have been proposed for the computation of

. Simulation-based techniques use a logic or timing
simulator. The circuit is simulated with asufficiently large
number of randomly generated input vectors to obtain an
average transition count at every gate in the circuit. Simu-
lation-based techniques can be very efficient for loose
accuracy bounds. Increasing the accuracy may require a
prohibitively high number of simulation vectors.

Given some statistical information of the inputs, proba-
bilistic methods propagate this information through the
logic circuit obtaining statistics about the switching activ-
ity at each node in the circuit. Only one pass through the
circuit is needed thus making these methods potentially
very efficient. Still, modeling issues like correlation
between signals can make these methods computationally
expensive.
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2.2. Model for Completely Specified Test Pat-
terns

For the testing of the circuit, the only requirement is
that all the test-patterns generated by the ATPG are
applied to the circuit. Thus, one degree of freedom that
can be explored is theorder by which these patterns are
applied.

Let  be a given sequence ofcompletely
specified test patterns. The problem of power reduction
during testing can be formulated as the identification of a
permutation  such that the overall power con-
sumption is minimized. This problem can be naturally
reduced to the (euclidean) traveling salesperson problem
(TSP) [9].

Moreover, the power consumption between every pos-
sible input-vector pair  can be heuristically
approximated by the Hamming distance between the input
vectors. The argument is that by minimizing the switching
activity at the inputs we will also be minimizing the
switching activity on internal nodes in the circuit.
Although this is not always true (one transition in a given
input may cause many transitions in internal nodes,
whereas several inputs changing may cause fewer transi-
tions), it is a good approximation for typical circuits, as
confirmed by the results presented in Section 6.

Finally, we note that even though the euclidean travel-
ing salesman problems is NP-hard, several efficient poly-
nomial-time approximation algorithms exist [9].

3. Reordering Test Patterns with Don’t Cares

In general, ATPG algorithms attempt to generate test
patterns with a maximal number of don’t cares, so that
compaction of test patterns becomes facilitated. Hence,
power reduction techniques for circuit testing should
address the potential advantages of exploiting the don’t
cares in the test set. We have resorted to two different
ATPG algorithms, ATALANTA [12] and MTP [8]. ATAL-
ANTA heuristically generates test patterns with don’t
cares, whereas MTP implements a formal model for the
computation of test patterns with the maximum number of
don’t cares.

The existence of test pattern with don’t cares implies
that the Hamming distances between test patterns become
conditional, and depend on the final assignments of the
unspecified bits. Let us consider the following test set

.
Depending on the values specified to the don’t care bits,
the Hamming distance from  to  can range from 1 to
3.

In the next section we propose a formal optimization
model for reducing the sum of the Hamming distances in
pattern sequences, hence with clear potential application
to minimizing power during BIST. However, the proposed
optimization model denotes a complex optimization prob-
lem, and consequently we then propose heuristic algo-
rithms for approximating the solution to this problem.
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4. A Formal Model for Pattern Sequence
Reordering Using Don’t Cares

In this section we derive a formal integer linear optimi-
zation model for pattern reordering under the assumption
that patterns exhibit don’t cares, which is also valid for
completely specified patterns. The cost function assumed
is given by the sum of the Hamming distances between
each pair of patterns, which will be henceforth referred to
as theHamming cost for the pattern sequence. As empiri-
cally confirmed in Section 6, we assume that a reduction in
the sum of the Hamming distances accurately measures
the reduction in power associated with the sequence of
patterns.

For the case where the patterns are fully specified we
can always map an instance of the TSP into an instance of
integer linear programming (ILP), in particular into one
where the variables assume binary values (i.e., 0-1
ILP) [14]. Consequently, our goal is to modify this model
in order to also capture don’t care conditions. The result-
ing model basically allows for conditional weights (i.e.,
conditional Hamming distances) between each pair of ver-
tices (i.e., patterns). We start by reviewing a 0-1 ILP model
for the TSP, following [14], and then proceed to develop
an optimization model in the presence of don’t cares.

4.1. A 0-1 ILP Model for the TSP

Let  and  denote
two patterns, and let  denote the Hamming distance
between  and . Further, let  denote a Boolean vari-
able such that  provided  immediately follows

 in the sequence of patterns, and  otherwise.
Finally, let  denote a set of vertices where
eachi is associated with pattern . Consequently, from
[14], the resulting instance of TSP can be polynomially
formulated as follows,

(2)

subject to the following constraints,

(3)

where the constraints  guarantee that
no subtours will be selected, and where each variable  is
a real number. Hence, only complete tours satisfy the con-
straints. (An elegant proof of this fact can be found
in [14]).

4.2. An ILP Model for Pattern Reordering Using
Don’t Cares

Assuming that each pattern can exhibit don’t care bits
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then, as mentioned in Section 3, the distance  between
test patterns is a conditional number, whose final value is
imposed by how the don’t care bits are actually assigned.
Hence, we modify the cost function to consider the condi-
tional costs,

(4)

Next we show how each conditional cost  is defined.
We start by introducing a Boolean variable,

(5)

wherek denotes each of the possible bit positions. We note
that  assumes value 1 if and only if  follows  in
the pattern sequence and bitk in  differs from bitk in

. In addition, this condition can be represented in CNF
format [15] as follows,

(6)

Moreover, and using the straightforward mapping of [8],
these clauses can be written as linear inequalities,

(7)

For each test pattern , if bit  is a don’t care, then
 is one of the problem variables. Otherwise,

the value of  is specified by pattern . We can now
redefine the integer-valued cost  between  and  as
follows,

(8)

where clearly . This definition of  as
well as the above constraints complete the formulation of
the model. Using (3), (7) and (8) the resulting ILP model
becomes,

(9)

where the variables  were replaced by their definition in
(8), and where  denotes that  is an unassigned
bit for pattern .

It can be showed that the solution to ILP (9) denotes an
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assignment to the don’t care bits and a reordering of the
pattern sequence which minimizes the overall sum of
Hamming distances in the selected ordering of patterns.

The proposed model denotes a complex optimization
problem, clearly no easier than TSP. Consequently, and in
order to evaluate the practical usefulness of pattern
sequence reordering in the presence of don’t cares, we
propose in the next section different heuristic algorithms
for computing approximated solutions to the pattern reor-
dering problem.

5. Power Reduction Algorithms

As described in Section 2.2, for completely specified
test patterns, the straightforward representation of the
power reduction problem as an instance of the TSP prob-
lem immediately yields a wealth of approximation
algorithms [9]. Our approach is to modify an existing
approximation algorithm for the TSP instead of solving
the model proposed in the previous section with an ILP
solver. We choose to adapt the 2-opt [9] local search
approximation algorithm for the TSP, that is described
below. The resulting algorithm is organized as follows:

1. Use a dedicated algorithm for computing a test set
where each test pattern contains don’t cares. Either
MTP [8] or ATALANTA [12] can be used.

2. Apply a heuristic procedure for identifying an initial
tour. Several different heuristics are described below.

3. Use a modified 2-opt local-search approximation
algorithm for the TSP to reorder the test patterns.
Repeat this step while the tour cost can be reduced.

The following initial ordering heuristics have been
implemented (which will henceforth be referred to asH1
throughH5):

1. Randomly order the test patterns.
2. Order test patterns by decreasing order of don’t cares

in each test pattern. By choosing for the first test
patterns those with more don’t cares one can expect
that the distances between the first test patterns be the
lowest possible.

3. This heuristic starts by applying heuristic 2.
Afterwards, greedily select the next test pattern as one
that minimizes the distance from the current test
pattern. This heuristic goes one step further in
minimizing the distances between the first test patterns
by choosing the second best test pattern, and then the
third best, and so on.

4. In this heuristic for each bit position the don’t care bits
are set to the bit that occurs more often. By using this
approach the test patterns are expected to become
more similar between each other. Next an ordering is
made that approximates Gray coding. This approach
attempts to order the test patterns in such a way that the
average distances between test patterns is minimized.

5. The last heuristic sets the don’t cares in the same
manner in the heuristic 4. Afterwards, with all the test
patterns specified, the Christofides TSP approximation
algorithm is used for defining the initial tour. This



heuristic permits using a TSP approximation
algorithm in a tour where the test patterns are expected
to be similar to each other.

After having the initial tour of the test patterns the fol-
lowing modified 2-opt [9] is applied:

1. Evaluate the tour cost by specifying the don’t care bits
which minimize the distance between consecutive test
patterns.

2. Reverse the action taken in Step 1 by getting the test
patterns with don’t cares.

3. For every pair of test patterns (  and ), cut the link
between those test patterns and the next ones (
and ), and link  with  and  with .
For this new ordering obtain the tour cost as in Step 1.

4. If thelowest tour cost found in Step 3 is lower than the
initial tour cost then keep the order for that lowest tour
cost and repeat Step 1 for that ordering. Otherwise the
algorithm terminates.

Finally, the test sequence considered by the power esti-
mator is given by the result of the modified 2-opt with the
don’t care bits specified in such a way that the Hamming
distance between consecutive test patterns is minimized.

6. Experimental Results

This section includes results of applying the algorithm
described in the previous section to the MCNC benchmark
circuits [10] and to the ISCAS benchmark circuits [2]. The
ATPG tool ATALANTA [12] was used on all the experi-
ments. ATALANTA was used to generate both completely
and incompletely specified test patterns.

The experimental procedure consisted of first generat-
ing a set of completely-specified test patterns and subse-
quently reordering them such that the Hamming cost was
minimized. For this minimization procedure, the Christo-
fides approximation algorithm [9] was used. All the results
in this paper are compared to the Hamming cost and
power consumption under this input pattern sequence.

Afterwards, the set of incompletely specified test pat-
terns was generated. The algorithm described in the previ-
ous section was used to generate the best ordering and
don’t-care assignment for the different initial ordering
heuristics proposed.

6.1. MCNC Benchmarks

We first present in Table 1 results for the MCNC bench-
mark circuits on the reduction of the Hamming cost by
exploiting the don’t cares in the incompletely specified set
of test patterns, which is the figure of merit that we are tar-
geting directly. For each of the different heuristics, the per-
centage savings relative to the optimal sequence of
completely specified pattern sequence is shown. It can be
observed that for many of the examples significant reduc-
tions in the Hamming cost is obtained. Still in Table 1 we
give the CPU time in seconds used by the ordering and
assignment algorithm under the different heuristics on a
Sun Ultra I with 384MB of main memory.

The results for power reduction in test sequences for

Ti Tj
Ti 1+

Tj 1+ Ti Tj 1+ Tj Ti 1+

the same circuits are shown in Table 2. The columns
labeledcompletely specified indicate the percentage power
savings that result from ordering a sequence of completely
specified test patterns (#PR), and the number of computed
test patterns (#TP). The columns labeledincompletely
specified indicate the power savings from exploiting the
don’t cares in incompletely specified test patterns over an
already ordered sequence of completely specified test pat-
terns. In all cases a power estimator tool integrated in SIS
was used for estimating the actual power dissipation from
applying the test sequences [7].

As can be readily concluded, large power savings rang-
ing from 30% to 60% are achieved in most cases. This is
particularly significant since these results measure the per-
centage power savings over the already ordered sequence
of test patterns. Finally, we note that the number of test
patterns (#TP) does not change significantly (especially
for usage in BIST) from completely specified to incom-
pletely specified test patterns. In addition, the results from
Table 1 and Table 2 indicate that the measured reduction
in power dissipation correlates well in most circuits with
the achieved reduction in Hamming cost.

6.2. ISCAS Benchmarks

The results in the previous section validate the pro-
posed approach for reducing power dissipation for
medium-size circuits. For the ISCAS benchmarks we
noticed that the proposed (and non-optimized) 2-opt algo-
rithm would take a couple of hours of CPU time for the
examples with a larger number of test patterns, and would
take more than 24 hours of CPU time for C7552. As a

Circuit
H1 H2 H3 H4 H5

% CPU % CPU % CPU % CPU % CPU

9symml 7.7 17.3 10.5 17.9 16.1 2.0 14.7 18.4 14.7 4.1

alu4 24.3 153.1 22.7 156.9 30.5 16.2 22.7 129.0 29.0 47.6

cht 59.0 0.0 60.3 0.0 59.7 0.0 59.0 0.0 59.0 0.0

cm138a 18.0 0.0 16.0 0.0 16.0 0.0 16.0 0.0 14.0 0.0

cm150a 61.4 1.4 65.5 1.5 65.5 0.2 64.7 1.0 71.3 1.0

cm163a 40.5 0.0 48.6 0.0 43.2 0.0 45.9 0.0 48.6 0.0

cmb 32.6 0.1 32.6 0.0 32.6 0.0 32.6 0.0 32.6 0.0

comp 67.2 12.3 67.9 13.0 70.7 4.8 67.2 12.5 65.8 5.0

comp16 50.8 131.0 59.3 98.7 61.7 11.8 50.3 98.1 60.7 22.1

cordic 56.2 3.9 61.1 3.1 61.1 0.7 59.2 3.5 61.1 0.7

cu 48.3 0.2 48.3 0.1 52.6 0.1 50.5 0.1 50.5 0.0

majority 14.0 0.0 16.0 0.0 14.0 0.0 16.0 0.0 14.0 0.0

misex1 43.4 0.0 39.1 0.0 47.8 0.0 47.8 0.0 43.4 0.0

misex2 72.9 1.6 96.0 1.46 96.0 0.4 76.5 1.9 74.4 0.7

misex3 27.0 815.1 24.1 744.5 35.8 67.6 25.8 667.7 28.7 309.2

mux 67.9 1.2 66.2 1.3 69.5 0.5 68.7 1.2 67.9 0.6

pcle 47.6 0.0 49.5 0.0 47.6 0.0 49.5 0.0 49.5 0.0

pcler8 59.7 0.2 58.7 0.2 59.7 0.1 60.8 0.2 61.9 0.1

term1 71.3 3.7 73.0 4.2 74.7 2.3 74.4 4.5 74.4 2.5

too_large 57.7 817.1 60.8 745.8 63.3 217.5 58.6 604.9 63.3 335.5

unreg 64.1 0.0 63.2 0.0 63.2 0.0 64.1 0.0 63.2 0.0

Table 1: Hamming cost reduction and CPU times for the MCNC benchmark
circuits



result, we modified the 2-opt algorithm so that only 500
links were examined at each iteration of the 2-opt algo-
rithm (instead of a number that is quadratic in the number
of test patterns). The results obtained with this modified 2-
opt algorithm are shown in Table 3. As can be concluded,
once again, large power savings can be obtained by gener-
ating test pattern with don’t cares, reordering the test sets
and specifying the unassigned bits so that the dissipated
power is minimized.

Furthermore, we noticed that the percentage power sav-
ings in general increases as the size of the circuit and num-
ber of test patterns increases. Hence, for large circuits we
expect the proposed power reduction algorithm to lead to
similar or greater power savings. Regarding the heuristics
proposed in Section 5 for constructing the initial tour, the
results do not identify a clear best heuristic, even though
the greedy heuristicH3 performs better in most cases.

7. Conclusions

In this paper we propose an optimization model for
reducing the Hamming cost in pattern sequences, and
describe a heuristic algorithm for obtaining approximated
solutions. This algorithm is then applied to reducing the
power dissipation during testing by exploiting don’t cares
in test pattern sequences. We provide experimental evi-
dence that exploiting don’t cares in test sequences can lead
to very significant savings in dissipated power. In designs
where periodic testing is required, these power reduction
techniques may play a key role in the design of BIST hard-
ware.

Circuit

Completely
specified

Incompletely specified versus ordered completely
specified

# TP % PR # TP
% PR (power reduction)

H1 H2 H3 H4 H5

9symml 78 43.9 80 3.8 7.2 15.3 11.1 17.1

alu4 100 29.0 128 12.2 11.7 18.3 13.7 20.4

cht 17 5.6 10 25.3 27.9 24.7 17.9 23.0

cm138a 12 36.3 12 20.9 20.7 11.0 16.2 17.5

cm150a 34 16.5 39 38.6 46.2 53.6 42.4 45.3

cm163a 15 15.6 14 31.2 34.7 40.0 35.4 42.7

cmb 30 43.2 27 16.9 17.7 21.9 13.8 15.1

comp 56 27.1 60 57.0 56.9 60.6 58.7 57.7

comp16 72 38.9 99 40.6 47.6 44.2 46.6 42.3

cordic 43 36.6 47 49.3 56.2 61.5 54.0 59.4

cu 27 35.6 26 23.4 34.3 36.4 13.1 30.3

majority 11 36.1 11 9.6 15.9 5.1 10.9 4.6

misex1 18 14.3 17 36.2 26.5 24.9 26.7 33.0

misex2 47 20.5 37 41.7 48.7 52.6 52.5 51.6

misex3 154 38.3 178 21.0 24.6 27.9 19.1 24.5

mux 35 20.5 38 28.7 31.2 36.9 41.4 32.0

pcle 17 16.6 20 28.1 37.1 47.2 31.2 42.7

pcler8 19 20.4 21 35.4 23.7 43.2 27.5 37.8

term1 43 14.4 43 43.6 49.5 47.2 39.6 46.9

too_large 103 32.1 146 36.1 41.2 49.9 42.1 46.3

unreg 15 15.8 10 12.4 12.5 12.0 11.2 17.2

Table 2: Power reduction results for the MCNC benchmarks
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Circuit

Completely
specified

Incompletely specified versus ordered completely
specified

# TP % PR # TP
% PR (power reduction)

H1 H2 H3 H4 H5

c432 58 10.4 75 48.4 45.9 49.0 45.1 51.3

c499 60 30.5 61 5.3 5.9 7.8 5.7 5.1

c880 51 27.4 79 33.5 38.6 49.6 35.5 48.5

c1355 94 14.2 96 58.1 64.5 68.6 63.2 66.9

c1908 128 18.7 175 20.3 21.7 42.4 30.8 43.4

c2670 117 16.9 156 37.2 40.7 44.9 35.2 45.6

c3540 159 28.9 253 13.5 8.1 18.8 14.2 20.1

c5315 116 11.0 158 47.5 45.5 51.2 44.8 51.5

c6288 25 18.6 54 54.0 54.9 55.6 56.3 50.9

c7552 217 15.1 347 39.7 49.6 64.1 52.7 67.8

Table 3: Power reduction results with modified 2-opt algorithm


