
An Exact Solution to the Minimum Size Test
Pattern Problem

PAULO F. FLORES, HORÁCIO C. NETO and JOÃO P. MARQUES-SILVA
Technical University of Lisbon, IST/INESC

This article addresses the problem of test pattern generation for single stuck-at faults in com-
binational circuits, under the additional constraint that the number of specified primary input
assignments is minimized. This problem has different applications in testing, including the identi-
fication of “don’t care” conditions to be used in the synthesis of Built-In Self-Test (BIST) logic. The
proposed solution is based on an integer linear programming (ILP) formulation which builds on
an existing Propositional Satisfiability (SAT) model for test pattern generation. The resulting ILP
formulation is linear on the size of the original SAT model for test generation, which is linear on the
size of the circuit. Nevertheless, the resulting ILP instances represent complex optimization prob-
lems, that require dedicated ILP algorithms. Preliminary results on benchmark circuits validate
the practical applicability of the test pattern minimization model and associated ILP algorithm.

Categories and Subject Descriptors: B.8.1 [Performance and Reliability]: reliability, testing, and
fault-tolerance

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Automatic test pattern generation (ATPG), built-in self-test
(BIST), integer linear programming (ILP), propositional satisfiability (SAT), verification and test

1. INTRODUCTION

Automatic test pattern generation (ATPG) for stuck-at faults in combinational
circuits is now a mature field, with an impressive number of highly effective
models and algorithms [Goel 1981; Fujiwara and Shimono 1983; Kirkland and
Mercer 1987; Schulz and Auth 1989; Giraldi and Bushnell 1991; Kunz and
Pradham 1992; Larrabee 1992; Chakradhar et al. 1993; Lee and Ha 1993;
Teramoto 1993; Cox and Rajski 1994; Silva and Sakallah 1994; Stephan et al.
1996]. Furthermore, besides being effective at detecting the target faults, recent
ATPG tools have targeted the heuristic minimization (i.e., compaction) of the
total number of test patterns required for detecting all faults in a circuit [Schulz
and Auth 1989; Niermann and Patel 1991; Pomeranz et al. 1993; Hellebrand
et al. 1995; Chakrabarty et al. 1997]. In general, the degree of test pattern
compaction is expected to be related to the number of unspecified input assign-
ments in each test pattern. In addition, for applications in which testing time

Authors’ address: Technical University of Lisbon, IST/INESC, Rua Alves Redol N9, 1000-029
Lisboa, Portugal, e-mail: {pff, hcn, jpms}@inesc.pt.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists, requires prior specific permission and/or a fee.
C© 2001 ACM 1084-4309/01/1000–0629 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001, Pages 629–644.

630 • P. F. Flores et al.

and fault coverage requirements can only be obtained with dedicated Finite-
State Machine (FSM) controllers, the computation of test patterns with a large
number of unspecified input assignments may allow for significantly smaller
synthesized FSMs. Indeed, if the test set is used as input to a logic synthesis
tool with the purpose of synthesizing BIST logic, then by maximizing the num-
ber of unspecified input assignments, that is, by maximizing the “don’t care” set
of each test pattern, the logic synthesis tool is in general able to yield smaller
synthesized logic. Thus, the maximization of the “don’t care” set of each test
pattern, or conversely, the computation of test patterns of minimum-size, can
have significant practical advantages.

Nevertheless, there exists no model or algorithm in the literature for com-
puting test patterns for which the number of unspecified primary input assign-
ments is maximized. Accordingly, the main objective of this paper is to propose
a first attempt at solving this problem. We start by formalizing the notion of test
pattern minimization. We then develop a new model for test pattern generation,
based on propositional satisfiability (SAT), in the presence of unspecified input
assignments. Next, we derive an integer linear programming (ILP) model for
maximizing the number of unspecified primary input assignments. Afterwards,
we show that the model is indeed correct and analyze some of its limitations.
Finally, we provide preliminary results that justify using the proposed model in
medium-size combinational circuits and describe an ATPG methodology, which
can incorporate the proposed model and supporting algorithm, and which can
also be applied to large-size combinational circuits. Besides its practical ap-
plicability, to our best knowledge this is the first formal non-heuristic model
towards computing minimum size test patterns.

The paper is organized as follows: We start in Section 2 with several defini-
tions regarding combinational circuits, Conjunctive Normal Form (CNF) rep-
resentations of circuits and CNF representations of fault detection problems,
which are used throughout the paper. Afterwards, in Section 3, the CNF models
described in Section 2 are generalized for correctly handling unspecified vari-
able assignments. The next step is to introduce the ILP optimization model for
minimizing test patterns and prove its correctness. Section 5 includes prelim-
inary experimental results on several practical applications of the model. We
conclude in Section 6 with a brief overview of future research work in the area
of test pattern minimization.

2. DEFINITIONS

2.1 Combinational Circuits

We start by introducing unified representations for circuits and fault detec-
tion problems. These representations are used throughout the article. A com-
binational circuit C is represented as a directed acyclic graph C= (VC, EC),
where the elements of VC, that is, the circuit nodes, are either primary inputs
or gate outputs, with |V | =N . The set of edges EC ⊆VC ×VC identifies gate
input–output connections. We shall assume gates with bounded fanin, and so
|EC| =O(|N |). For every circuit node x in V , the following definitions apply:

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 631

Fig. 1. Example circuit, c17, and topological data for node x11.

—O(x) denotes the fanout nodes of node x, that is, nodes y in VC such that
(x, y)∈ EC.

—O∗(x) denotes the transitive fanout of node x, that is, the set of all nodes y
such that there is a path connecting x to y .

—I (x) denotes the fanin nodes of node x, that is, nodes y in VC such that
(y , x) ∈ EC.

—I∗(x) denotes the transitive fanin of node x, that is, the set of all nodes y such
that there is a path connecting y to x.

—K O (x) denotes immediate fanout cone of influence of x, being defined as
follows:

K O (x) = { y | y ∈ O∗(x) ∨ y ∈ I (w) ∧w ∈ O∗(x)}. (1)

—K I (x) denotes immediate fanin cone of influence of x, being defined as follows:

K I (x) =
 ⋃

y∈O∗(x)

I∗(y)

− (O∗(x) ∪ {x}). (2)

The set of primary inputs can also be referred to as P I , and the set of pri-
mary outputs as PO. Simple gates are assumed: AND, NAND, OR, NOR, NOT
and BUFF. Finally, the number of stuck-at faults in the circuit is M , with
M =O(N), since |EC| =O(|N |), and are numbered 1, . . . , M . The example in
Figure 1 illustrates the previous definitions.

2.2 Conjunctive Normal Form Formulas

A conjunctive normal form (CNF) formula ϕ on n binary variables x1, . . . , xn is
the conjunction (AND) of m clauses ω1, . . . , ωm each of which is the disjunction
(OR) of one or more literals, where a literal is the occurrence of a variable xi or
its complement ¬xi. A formula ϕ denotes a unique n-variable Boolean function
f (x1, . . . , xn) and each of its clauses corresponds to an implicate of f . An as-
signment for a formula ϕ is a set of variables and their corresponding Boolean
values, represented as variable/value pairs; for example, A={(x1, 0), (x7, 1),
(x13, 0)}. Alternatively, assignments can be denoted as A={x1= 0, x7= 1,
x13= 0}.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

632 • P. F. Flores et al.

The CNF formula of a circuit is the conjunction of the CNF formulas for each
gate output, where the CNF formula of each gate denotes the valid input–output
assignments to the gate. For an AND gate, x=AND(w1, . . . , wj) the resulting
CNF formula is [Larrabee 1992; Stephan et al. 1996; Silva and Sakallah 1997],

ϕx =
[j∏

i=1

(wi +¬x)

]
·
(j∑

i=1

¬wi + x

)
. (3)

A complete list of the CNF formulas for simple gates with an arbitrary num-
ber of inputs can be found in Silva and Sakallah [1997]. If we view a CNF
formula as a set of clauses, the CNF formula for the circuit is defined by the set
union of the CNF formulas for each gate with output x, ϕx :

ϕ =
⋃

x∈VC

ϕx . (4)

2.3 Test Pattern Generation

For Automatic Test Pattern Generation (ATPG), the single stuck-at line (SSF)
fault model is assumed, and the following definitions apply.1

Definition 1. We say that a stuck-at fault is detectable if and only if there
exists an assignment of logic values to the circuit primary inputs such that
the effect of the discrepancy caused by the fault (i.e., the error signal) can be
observed on at least one of the circuit primary outputs (i.e., the value in the
good and faulty circuit differ).

When referring to primary input assignments, or test patterns, we may in
general assume that some primary inputs may be unspecified.

Definition 2. We define a test pattern T as an assignment to the pri-
mary inputs, such that some assignments may be unspecified, that is, T =
{(x, v), x ∈ P I ∧ v∈ {0, 1, X }}.

Definition 3. A test pattern T is completely specified whenever T =
{(x, v), x ∈ P I ∧ v∈ {0, 1}}. Otherwise, T is said to be incompletely specified.

In the remainder of this section, we shall assume that test patterns are
completely specified. The generation of incompletely specified test patterns is
addressed in Section 3.

CNF representations of circuits and fault detection problems have been ex-
tensively used and studied in ATPG [Larrabee 1992; Chakradhar et al. 1993;
Stephan et al. 1996; Silva and Sakallah 1997]. In this section, we describe a sim-
ple CNF representation of combinational circuits and fault detection problems,
which will be used throughout the remainder of the article.

In the context of test pattern generation, and for capturing the fault detection
problem, each node x is characterized by three propositional variables:

1See Abramovici et al. [1990] for ATPG definitions used throughout the paper.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 633

—xG denotes the logic value assumed by the node in the good circuit.
—xF denotes the logic value assumed by the node in the faulty circuit.
—xS denotes whether xG and xF assume different logic value [Larrabee 1992].

We shall refer to this variable as the sensitization status of node x.

Given the definition of variable xS, the following relationship must hold:

[(xG 6= xF)↔ xS] ⇔ (xG +¬xF + xS) · (¬xG + xF + xS)
· (xG + xF +¬xS) · (¬xG +¬xF +¬xS), (5)

which basically states that the logic values of xG and xF differ if and only if xS

assumes logic value 1.
Let ϕx denote the CNF formula associated with gate output x. The notation

ϕG
x denotes the CNF formula for x in the good circuit, that is, using xG variables,

whereas ϕF
x denotes the CNF formula for x in the faulty circuit, that is, using

xF variables. For a stem fault z s-a-v, the CNF representation of the associated
fault detection problem contains the following components:

—CNF formula denoting the good circuit.
—CNF formula denoting the faulty circuit. This formula only needs to contain

the CNF formulas for the nodes that are relevant for detecting the given
fault, that is, nodes in the transitive fanout of node z.

—CNF formulas for defining the sensitization status of every node in the tran-
sitive fanout of the fault site, that is, node z. Hence, for each of these nodes,
ϕS

x , is given by (5), which requires xS= 1 if and only if xG 6= xF.
—Clauses that prevent each node x from being sensitized, by having xS= 0,

whenever x is not in the transitive fanout of z but at least one fanout
node of x is in the transitive fanout of z, that is, x ∈ K O (z)−O∗(z). (Ob-
serve that this condition on a node x also implies xG= xF. Moreover, this
condition permits reducing the number of xF and xS variables that must be
considered.)

—Clauses requiring xG= xF on each node x such that x is not in the transitive
fanout of z but at least one fanout node of x is in the transitive fanout of z,
that is, x is in K O (z)− O?(z). (Observe that this condition and the previous
one permit restricting the number of xF and xS variables that must actually
be used.)

—Clauses capturing conditions for activating the fault, that is, by requiring
zG 6= zF and by forcing a suitable logic value on zG.

—Finally, we guarantee that the fault effect is observed at a primary output by
requiring that for at least one primary output x, xS= 1.

The formula for detecting a fault z s-a-v is summarized in Table I and will
henceforth be referred to as the fault detection formula, ϕD.

The CNF formula for fanout–branch faults can be similarly defined [Silva and
Sakallah 1997]. In addition, the model described above can be improved with
additional clauses which further constrain the problem definition [Larrabee
1992; Chakradhar et al. 1993; Silva and Sakallah 1994; Stephan et al. 1996].

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

634 • P. F. Flores et al.

Table I. Definition of the Fault Detection Problem for the Stem Fault z s-a-v

Sub-formula/Condition Clause Set

Good Circuit ϕG =
⋃

x∈VC

ϕG
x

Faulty Circuit ϕF =
⋃

x∈O∗(z)

ϕF
x

Node Sensitization ϕS =
⋃

x∈O∗(z)

ϕS
x

Propagation Blocking Conditions ϕB = (¬xS) x ∈ K O (z)− O∗(z)

Fault Activation Conditions ϕA =
{

(zS) · (¬zG) · (zF) if v = 1

(zS) · (zG) · (¬zF) if v = 0

Fault Detection Requirement ϕR =
(∑

x∈P O∧x∈O∗(z)

xS

)

Detection of Fault z s-a-v ϕD = ϕG ∪ ϕF ∪ ϕS ∪ ϕB ∪ ϕA ∪ ϕR

3. TEST GENERATION WITH UNSPECIFIED VARIABLE ASSIGNMENTS

The SAT-based test generation model described in the previous section requires
all clauses to be satisfied; hence, most if not all variables must be assigned a
logic value. However, we want to develop a test generation model that properly
handles unspecified variable assignments, since our goal is to compute mini-
mum size test patterns. As a result, in this section, we develop models for circuit
satisfiability and test generation using CNF formulas that can be satisfied in
the presence of unspecified variable assignments.

3.1 Modeling Unspecified Variable Assignments

Given a circuit and its associated CNF formula or a fault f and its associated
fault detection formula, the existence of unspecified assignments implies that
each of the original circuit variables can now be assigned a value in the set
{0, 1, X }. In this situation an assignment x= X indicates that x is unspecified,
or that the value assumed by x is an unspecified assignment.2 This signifies
that an assignment A is now allowed to leave variables unspecified.

With the purpose of deciding CNF formula satisfiability, in the presence of
unspecified variables, a new set of variables is created. This basically consists
of duplicating the number of Boolean variables, which is a common solution

2Note that x ∈ {0, 1} indicates that x is specified, or that the value assumed by x is a specified
assignment.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 635

Table II. Interpretation of
the New Variables Modeling

Unspecified Assignments

x (x1, x0)
0 (0, 1)
1 (1, 0)
X (0, 0)

for capturing unspecified assignments [Pizzuti 1996].3 As a result, we propose
to represent each Boolean variable x with two new variables x0 and x1 having
the interpretation indicated in Table II. For this interpretation, x= X indicates
that x is unspecified. The simultaneous assignment of variables x0 and x1 to 1 is
not allowed, requiring the inclusion of the following constraint in the resulting
CNF formula,

ϕinv,x = (¬x1 +¬x0) (6)

for each node x ∈VC, where VC represents the set of nodes in the circuit.
In addition, for each basic gate type, we need to define the correspond-

ing CNF formula. However, using the ideas above, each gate input and
output must now be replaced by two variables. Let us consider for ex-
ample an AND gate, which will now be denoted by the generalized form
(x0, x1)=U AND(w0

1, w1
1, . . . , w0

j , w1
j), and which allows unspecified assign-

ments to the gate inputs and output. Since the simultaneous assignment of
any pair of variables (x0, x1) to 1 is prevented by (6), then we just need to relate
the remaining assignments. The output variable x1 can only assume value 1
whenever all input variables w1

j also assume value 1. Hence, we can say that
x1=AND(w1

1, . . . , w1
j). In addition, the output variable x0 assumes value 1 pro-

vided at least one input variable w0
j assumes value 1. Hence, we can say that

x0=OR(w0
1, . . . , w0

j). As a result, we obtain from Larrabee [1992] and Silva and
Sakallah [1997],

ϕu,x0 =
[j∏

i=1

(¬w0
i + x0)] ·(j∑

i=1

w0
i +¬x0

)
(7)

ϕu,x1 =
[j∏

i=1

(
w1

i +¬x1)] ·(j∑
i=1

¬w1
i + x1

)
.

Furthermore, the CNF formula for an AND gate with output x now becomes,

ϕu,x = ϕu,x1

⋃
ϕu,x0

⋃
ϕinv,x , (8)

which properly models unspecified assignments to the inputs and output of an
AND gate. Similar relations can be derived for the other simple gates. Conse-
quently, the CNF formulas for simple gates given in Silva and Sakallah [1997]

3Observe that since only 3M assignments need to be considered for M variables, the actually
required number of Boolean variables is dlog(3M)e. Nevertheless, considering instead 2M variables
greatly simplifies the proposed model.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

636 • P. F. Flores et al.

Table III. Generalized CNF Formulas for Simple Gates

Gate type Gate function ϕu,xi

AND

x0 = O R
(

w0
1, . . . , w0

j

) [
j∏

i=1

(
¬w0

i + x0
)]
·
(

j∑
i=1

w0
i +¬x0

)

x1 = AN D
(

w1
1, . . . , w1

j

) [
j∏

i=1

(
w1

i +¬x1
)]
·
(

j∑
i=1

¬w1
i + x1

)

NAND

x0 = AN D
(

w1
1, . . . , w1

j

) [
j∏

i=1

(
w1

i +¬x0
)]
·
(

j∑
i=1

¬w1
i + x0

)

x1 = O R
(

w0
1, . . . , w0

j

) [
j∏

i=1

(
¬w0

i + x1
)]
·
(

j∑
i=1

w0
i +¬x1

)

OR

x0 = AN D
(

w0
1, . . . , w0

j

) [
j∏

i=1

(
w0

i +¬x0
)]
·
(

j∑
i=1

¬w0
i + x0

)

x1 = O R
(

w1
1, . . . , w1

j

) [
j∏

i=1

(
¬w1

i + x1
)]
·
(

j∑
i=1

w1
i +¬x1

)

NOR

x0 = O R
(

w1
1, . . . , w1

j

) [
j∏

i=1

(
¬w1

i + x0
)]
·
(

j∑
i=1

w1
i +¬x0

)

x1 = AN D
(

w0
1, . . . , w0

j

) [
j∏

i=1

(
w0

i +¬x1
)]
·
(

j∑
i=1

¬w0
i + x1

)

NOT
x0 = BU F F

(
w1

1

) (
w1

1 +¬x0
)
·
(
¬w1

1 + x0
)

x1 = BU F F
(

w0
1

) (
w0

1 +¬x1
)
·
(
¬w0

1 + x1
)

BUFF
x0 = BU F F

(
w0

1

) (
w0

1 +¬x0
)
·
(
¬w0

1 + x0
)

x1 = BU F F
(

w1
1

) (
w1

1 +¬x1
)
·
(
¬w1

1 + x1
)

can be generalized by following the same approach used for deriving (7). These
generalized CNF formulas are given in Table III. As a result, and as done in
Section 2.2, we can now create the CNF formula for the circuit in which unspec-
ified variable assignments are allowed. In Figure 2, we illustrate the outcome of
applying an incompletely specified assignment to the primary inputs of c17. As

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 637

Fig. 2. Example of unspecified assignments for c17.

can be seen, the assignments x1= 0 and x2= 0 represent a sufficient condition
for the assignment x22= 0 to be observed.

3.2 Test Pattern Generation with Unspecified Input Assignments

We can now generalize the test pattern generation model of Section 2.3 so
that unspecified variable assignments are allowed. Each circuit node x is still
characterized by three variables:

—xG denoting the value in the good circuit. This variable can be unspecified,
and so we use two new variables to characterize its value, xG,0 and xG,1, with
the semantic definition given earlier.

—xF denoting the value in the faulty circuit. This variable can also be unspeci-
fied, and so we use two new variables to characterize its value, xF,0 and xF,1,
with the semantic definition given earlier.

—xS denoting the sensitization status of each node. As we justify in this article,
the sensitization status of each node needs not be unspecified, and so its value
is always either 0 or 1.

Modeling unspecified assignments in test generation requires a detailed
characterization of the propagation conditions of the fault effect. Hence, the
sensitization status xS of a node can only assume value 1 when both values
of node in the good and faulty circuits are specified and assume different logic
values. Moreover this requirement also causes the value of a node in the faulty
circuit to be specified only when the value of that node in the good circuit is
also specified. These constraints indicate that propagation of the fault effect to
a node can only be guaranteed when the values in the good and faulty circuit
are specified for that node.

Consequently, the relationship between the value of xS and the possible val-
ues of xG and xF is shown in Table IV. Entries with a “−” denote invalid value
assignments, for which the CNF formula for xS must assume value 0. Similarly
to the model for completely specified assignments, xS assumes value 1 if and
only if xG and xF assume opposing logic values, provided that both xG and xF

are specified. The simplification of the truth Table IV yields the following CNF

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

638 • P. F. Flores et al.

Table IV. Truth Table for
the Sensitization Status

xG xF xS

X X 0
0 0 0
0 1 1
1 0 1
1 1 0
1 X 0
0 X 0
X 0 −
X 1 −

formula for the sensitization status of node x, xS:

ϕS
u,x = (xG,1 + xG,0 +¬xS) · (xF,1 + xF,0 +¬xS) · (xF,1 + xG,1 +¬xS)

· (¬xG,1 +¬xF,1 +¬xS) · (xG,1 +¬xF,1 + xS) · (xG,0 +¬xF,0 + xS). (9)

The next step is to describe the modifications to the CNF formula used for
computing the faulty values, which for completely specified assignments are
equivalent to the CNF formula for the good value. For incompletely specified
assignments, the same holds true but, as justified above, we introduce the addi-
tional constraint that an unspecified good value implies and unspecified faulty
value

(xG = X)⇒ (xF = X). (10)

Let us assume that the CNF formula for the faulty value of a node x with
completely specified assignments is given by

ϕF
x =

j∏
i=1

ωi. (11)

As a result of (10), the CNF formula for the faulty circuit, in the presence of
incompletely specified assignments, is defined by

ϕF
u,x = (¬xF,0 + xG,0 + xG,1) · (¬xF,1 + xG,0 + xG,1)

·
j∏

i=1

(ωi +¬xG,0 · ¬xG,1) (12)

= (¬xF,0 + xG,0 + xG,1) · (¬xF,1 + xG,0 + xG,1)

·
j∏

i=1

[(ωi +¬xG,0) · (ωi +¬xG,1)].

Hence, the faulty value of a node x is computed by its original formula pro-
vided the good value is specified (i.e., xG,0+ xG,1= 1). In contrast, if the good
value is unspecified (i.e., xG,0+ xG,1= 0), then the faulty value is forced to also
be unspecified.

The formulas for ϕS
u,x and for ϕF

u,x are defined so that an unspecified good value
immediately implies an unspecified faulty value and xS= 0. Thus, propagation

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 639

Table V. Definition of the Fault Detection Problem for the Stem Fault z s-a-v

Sub-formula/Condition Clause Set

Good Circuit ϕG
u =

⋃
x∈VC

ϕG
u,x

Faulty Circuit ϕF
u =

⋃
x∈O∗(z)

ϕF
u,x

Node Sensitization ϕS
u =

⋃
x∈O∗(z)

ϕS
u,x

Propagation Blocking Conditions ϕB
u = (¬xS) x ∈ K O (z)− O∗(z)

Fault Activation Conditions ϕA
u =

{
(zS) · (¬zG,1) · (zG,0) · (zF,1) · (¬zF,0) if v = 1

(zS) · (zG,1) · (¬zG,0) · (¬zF,1) · (zF,0) if v = 0

Fault Detection Requirement ϕR
u =

(∑
x∈P O∧x∈O∗(z)

xS

)

Detection of Fault z s-a-v ϕD
u = ϕG

u ∪ ϕF
u ∪ ϕS

u ∪ ϕB
u ∪ ϕA

u ∪ ϕR
u

of the error signal is only permitted in the presence of properly specified values
for the good circuit variables.

4. COMPUTING MINIMUM SIZE TEST PATTERNS

In this section, we develop the optimization model for computing minimum-size
test patterns. This optimization model is based on test pattern generation in
the presence of incompletely specified primary input assignments. Moreover,
stem faults are assumed throughout, even though the same approach is readily
applied to fanout–branch faults.

4.1 The Complete Optimization Model

The main objective of test pattern minimization is to identify the minimum
number of primary input assignments that detect the fault. Hence, our goal is
to minimize the number of specified primary input assignments such that the
given fault is still detected. As a result, we obtain the following optimization
model

minimize
∑
x∈P I

(x0 + x1)

(13)
subject to ϕD

u ,

which basically requires that the total number of assigned input variables be
minimized under the constraint that the fault be detected. (Observe that we
have 0≤ x0+ x1≤ 1 given (6), which implies an upper bound on the value of

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

640 • P. F. Flores et al.

Fig. 3. Minimum-size test pattern for which no propagation path exists.

the cost function of |P I |.) Given the mapping between CNF clauses and linear
inequalities [Pizzuti 1996] we immediately conclude that (13) corresponds to an
integer linear program, and so different integer linear optimization packages
can be used for solving the test pattern minimization problem. Nevertheless,
the constraints of (13) are tightly related with propositional satisfiability.
Consequently, and as shown in Manquinho et al. [1997], SAT-based ILP solvers
are preferable for solving ILPs for which the constraints correspond to CNF
formulas. For the experimental results given in Section 5, the SAT-based ILP
solver of Manquinho et al. [1997] was used.

Furthermore, we note that the optimization model of (13) can be viewed as a
formalization of guided pseudo-exhaustive ternary simulation on the primary
inputs of a combinational circuit, with the objective of minimizing the number of
specified primary inputs assignments, and given the constraint that the fault is
detected. The proposed model casts this basic idea into an ILP formulation, thus
providing a formal framework for describing the problem and allowing a signif-
icant number of algorithms and theoretical results from integer optimization to
be used. The validity of the proposed optimization model is formally establish
in Flores et al. [2000].

4.2 Limitations of the Model

In general, there may exist faults for which it is possible to identify test patterns
with a smaller number of specified assignments, but which do not uniquely iden-
tify a set of sensitizable paths. Let us consider the example circuit in Figure 3.
Let the target fault be x s-a-1. From the circuit, it is clear that any assignment to
the selection variables s permits detecting the fault. Hence, a valid test pattern
is T ={(X , 0)}, since any assignment to the remaining variable permits detect-
ing the fault. However, observe that T by itself does not yield any sensitization
path for the fault to be detected. Only the additional assignment to the remain-
ing primary input allows the fault effect to propagate to the primary outputs.
Consequently, any test generation model based on the D-calculus [Abramovici
et al. 1990] or any of its derivations is by itself unable to identify such test pat-
terns, since for some cases propagation does not actually take place and only
the propagation conditions are implicitly validated. As a result, our proposed
model yields the minimum-size test patterns that guarantee, given the specified
assignments, propagation of the fault effect to a primary output by explicitly
defining one or more sensitizable paths.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 641

Table VI. Experimental Results for the IWLS’89 Benchmarks (Allowing 1000 Conflicts per
Faults)

ATALANTA MTP
time/

Circuit #PI #G #F #R #A %X #R #A %X 1 %Opt fault

9symml 9 157 752 2 0 1.4 2 0 8.9 7.5 100 2.04
cht 47 209 820 0 0 93.6 0 0 94.4 0/8 100 0.64
cm138a 6 26 124 0 0 16.7 0 0 16.7 0.0 100 0.02
cm150a 21 62 232 0 0 68.4 0 0 71.0 2.6 100 1.55
cm163a 16 54 220 0 0 70.7 0 0 72.8 2.1 100 0.28
cmb 16 54 248 0 0 29.6 0 0 30.0 0.4 100 0.07
comp 32 105 480 1 0 24.0 1 0 39.6 15.6 2 10.64
comp16 35 221 960 0 0 30.7 0 0 32.9 2.2 4 13.66
cordic 23 74 342 0 0 30.7 0 0 40.2 9.5 37 6.28
cu 14 51 262 7 0 53.0 7 0 57.1 4.1 100 0.14
majority 5 12 54 0 0 8.5 0 0 8.5 0.0 100 0.01
misex1 8 52 224 0 0 49.8 0 0 54.4 4.6 100 0.17
misex2 25 84 422 0 0 73.5 0 0 75.8 2.3 100 0.20
misex3 14 533 2590 7 0 24.4 7 0 37.7 13.3 76 25.29
mux 21 47 202 0 0 67.3 0 0 75.8 8.5 100 0.94
pcle 19 76 328 0 0 73.3 0 0 74.9 1.6 99 0.45
pcler8 27 94 400 0 0 78.1 0 0 79.2 1.1 98 1.97
term1 34 155 708 6 0 72.2 6 0 74.42 2.2 86 4.35
too large 38 234 1132 15 0 54.9 15 0 62.2 7.3 20 18.27
unreg 36 103 448 0 0 90.6 0 0 91.7 1.1 86 0.93

5. EXPERIMENTAL RESULTS

The model described in the previous section has been integrated in a test pattern
generation framework for the computation of minimum size test patterns re-
ferred to as Minimum Test Pattern generator (MTP), which uses the SAT-based
ILP algorithm bsolo [Manquinho et al. 1997] and the fault simulator provided
with ATALANTA [Lee and Ha 1993]. The results included below were obtained
with the IWLS’89 benchmark suite [IWLS 1989] and with the ISCAS’85 bench-
mark suite [Brglez and Fujiwara 1985]. In all cases, MTP was run with a bound
on the amount of allowed search (i.e., the total number of conflicts). This per-
mits MTP to identify acceptable solutions, which in some cases may not be
necessarily optimal. Moreover, in order to speed up convergence to the optimal
solutions, MTP can use the solution computed by ATALANTA (or by any other
ATPG tool) as the startup assignment. These assignments provide an initial up-
per bound on the value of the optimal solution. If ATALANTA aborts the fault,
then TG-GRASP [Silva and Sakallah 1997] is used for computing a startup test
pattern.

Table VI contains the results for the IWLS’89 benchmarks for both
ATALANTA and MTP. ATALANTA is an ATPG tool that can generate test
patterns with don’t cares. For each benchmark all faults were targeted in order
to allow for a meaningful comparison between the two algorithms. Columns
#PI, #G, #F, #R and #A denote, respectively, the number of primary inputs,
gates, faults, redundant faults and aborted faults. %X denotes the percentage
of don’t care bits on all test patterns;1 denotes the variation in percentage from

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

642 • P. F. Flores et al.

Table VII. Experimental Results for the ISCAS’85 Benchmarks (Allowing 100 Conflicts per
Fault)

ATALANTA MTP
time/

Circuit #PI #G #F #R #A %X #R #A %X 1 %Opt fault

c432 36 160 524 3 1 56.2 4 0 60.8 4.6 0 3.21
c499 41 202 758 8 0 17.1 8 0 18.7 1.6 0 4.35
c880 60 383 942 0 0 82.2 0 0 83.8 1.6 12 2.54
c1355 41 546 1574 8 0 13.3 8 0 13.7 0.4 0 9.12
c1908 33 880 1878 8 0 44.7 8 0 48.4 3.7 0 9.61
c2670 233 1193 2746 97 20 92.0 117 0 92.4 0.4 23 10.99
c3540 50 1669 3425 134 0 74.6 134 0 77.3 2.7 15 16.81
c5315 178 2307 5350 59 0 92.6 59 0 92.9 0.3 14 9.34
c6288 32 2416 7744 34 387 22.2 34 0 25.1 2.9 1 36.65
c7552 207 3512 7550 77 181 86.9 131 0 86.9 0/0 4 17.46

ATALANTA to MTP; %Opt denotes the percentage of faults for which MTP was
able to find the actual minimum-size test pattern. Finally, time/fault denotes
the average time in seconds spent solving the ILP for each fault.4

From these results several conclusions can be drawn. First, MTP allows
validating the heuristics used in ATALANTA for computing test patterns with
“don’t cares.” Indeed for several benchmarks, ATALANTA already identifies the
minimum-size test patterns for all faults. Nevertheless, for other benchmarks,
the test patterns computed by ATALANTA can be far from the minimum-size
test patterns. For these cases the percentage of “don’t cares” computed with
MTP can be as much as 15% above the values computed by ATALANTA. Finally,
we observe that for medium-size circuits MTP is able to compute the actual
minimum-size test patterns for all faults in the circuit in a reasonable amount
of time per fault. For larger circuits, MTP finds solutions that are better than
those computed by ATALANTA, but which are not guaranteed to be optimal.

Table VII contains the results for the ISCAS’85 circuits.5 For these bench-
marks a smaller search effort (i.e., 100 conflicts) was allowed. This leads to
smaller run times and, consequently, less optimal results. Once more we can
conclude that MTP is able to improve over the ATALANTA results, but in this
case the improvements are in general smaller, since it becomes harder for the
ILP solver bsolo to find optimal solutions. (As can be concluded the percentage of
optimal solutions found ranges from 0 to 20 percent.) For some of these circuits,
we run MTP with a larger number of allowed conflicts (i.e., 1000 conflicts). The
obtained results are shown in Table VIII. As can be observed, a larger percent-
age of unspecified input assignments is obtained at the cost of a larger search
effort per fault. Accordingly, the time per fault also increases.

From the previous experimental results for the IWLS’89 and ISCAS’85
benchmarks, we can draw the following conclusions:

4Note that even though the time per fault for ATALANTA is not shown, the average time observed
was 0.1 second for the benchmarks considered.
5Observe that ATALANTA aborts some faults for several benchmarks. For those cases, MTP uses
TG-GRASP as the start-up ATPG tool, and consequently does not abort any fault.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

An Exact Solution to the Minimum Size Test Pattern Problem • 643

Table VIII. Experimental Results for Some of the ISCAS’85 Benchmarks (Allowing 1000
Conflicts per Fault)

ATALANTA MTP
time/

Circuit #PI #G #F #R #A %X #R #A %X 1 %Opt fault

c432 36 160 524 3 1 56.2 4 0 64.1 7.9 2 27.04
c499 41 202 758 8 0 17.1 8 0 19.5 2.4 0 33.71
c880 60 383 942 0 0 82.2 0 0 85.6 3.4 40 22.34
c1355 41 546 1574 8 0 13.3 8 0 15.2 1.9 0 64.86
c1908 33 880 1878 8 0 44.7 8 0 60.0 15.3 1 73.44
c2670 233 1193 2746 97 20 92.0 117 0 93.0 1.0 25 83.46

—For some circuits the heuristics used by ATALANTA, as well as by other
structural ATPG algorithms, are extremely effective and MTP can be used
to formally prove this result.

—Whenever the main goal is maximizing the number of “don’t care” bits, then
MTP can be run on top of ATALANTA (or any other ATPG algorithm); thus,
in general allowing for an increased number of unspecified bit assignments.
The improvements obtained by MTP are related to the amount of allowed
search effort, and MTP is always guaranteed to produce results that are no
worse than the startup tool (in our case ATALANTA or TG-GRASP).

6. CONCLUSIONS

In this article, we introduce a SAT-based integer linear programming model for
computing minimum-size test patterns. The applicability of the model has been
illustrated by computing minimum size test patterns for several benchmark
circuits. The next step of this work is to study the application of minimum-size
test patterns to the synthesis of BIST logic, with the objective of evaluating the
reduction in size of the synthesized logic obtained by using MTP.

Additional research work involves further constraining the ILP formulation
so that larger problem instances can be solved optimally. Furthermore, the
trade-offs between minimum-size test pattern computation, fault simulation
and fault compaction need to be studied. Finally, a long-term objective of this
work is the integration of the proposed model in a complete testing environment,
thus enabling the use of minimum-size test patterns for different purposes,
such as the validation of test pattern minimization heuristics or the synthesis
of reduced-size FSMs for BIST in specific target applications.

REFERENCES

ABRAMOVICI, M., BREUER, M. A., AND FRIEDMAN, A. D. 1990. Digital Systems Testing and Testable
Design. IEEE Press, New York.

BRGLEZ, F., AND FUJIWARA, H. 1985. A neutral list of 10 combinational benchmark circuits and a
target translator in FORTRAN. In Proceedings of the IEEE International Symposium on Circuits
and Systems.

CHAKRABARTY, K., MURRAY, B. T., LIU, J., AND ZHU, M. 1997. Test width compression for built-in self
testing. In Proceedings of the International Test Conference (Nov.).

CHAKRADHAR, S. T., AGRAWAL, V. D., AND ROTHWEILER, S. G. 1993. A transitive closure algorithm for
test generation. IEEE Trans. Comput.-Aided Des. 12, 7 (July), 1015–1028.

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

644 • P. F. Flores et al.

COX, H., AND RAJSKI, J. 1994. On necessary and nonconflicting assignments in algorithmic test
patterns generation. IEEE Trans. Comput.-Aided Des. 13, 4 (Apr.), 515–530.

FLORES, P., NETO, H., AND MARQUES-SILVA, J. 2000. On computing minimum size test patterns.
Tech. Rep. RT/008/2000 (Sept.). INESC, Lisbon, Portugal.

FUJIWARA, H., AND SHIMONO, T. 1983. On the acceleration of test generation algorithms. IEEE
Trans. Comput. 32, 12 (Dec.), 1137–1144.

GIRALDI, J., AND BUSHNELL, M. L. 1991. Search state equivalence for redundancy identification
and test generation. In Proceedings of the International Test Conference, pp. 184–193.

GOEL, P. 1981. An implicit enumeration algorithm to generate tests for combinational logic cir-
cuits. IEEE Trans. Comput. 30, 3 (Mar.), 215–222.

HELLEBRAND, S., REEB, B., TARNICK, S., AND WUNDERLICH, H.-J. 1995. Pattern generation for deter-
ministic BIST scheme. In Proceedings of the International Conference on Computer-Aided Design.

IWLS. 1989. Test benchmark suite. International Workshop on Logic Synthesis 1989. Available
from http://www.cbl.ncsu.edu/pub/Benchmark dirs/LGSynth89/.

KIRKLAND, T., AND MERCER, M. R. 1987. A topological search algorithm for atpg. In Proceedings of
the Design Automation Conference, pp. 502–508.

KUNZ, W., AND PRADHAM, D. K. 1992. Recursive learning: An attractive alternative to the decision
tree for test generation in digital circuits. In Proceedings of the International Test Conference,
pp. 816–825.

LARRABEE, T. 1992. Test pattern generation using Boolean satisfiability. IEEE Trans. Comput.-
Aided Des. 11, 1 (Jan.), 4–15.

LEE, H. K., AND HA, D. S. 1993. On the generation of test patterns for combinational circuits.
Tech. Rep. 12 93, Department of Electrical Engineering, Virginia Polytechnic Institute and State
University.

MANQUINHO, V., FLORES, P., MARQUES-SILVA, J., AND OLIVEIRA, A. L. 1997. Prime implicant computa-
tion using satisfiability algorithms. In Proceedings of the IEEE International Conference on Tools
with Artificial Intelligence (Nov.). IEEE Computer Society Press, Los Alamitos, Calif.

NIERMANN, T. M., AND PATEL, J. H. 1991. HITEC: A test generation package for sequential circuits.
In Proceedings of European Conference on Design Automation (Feb.).

PIZZUTI, C. 1996. Computing prime implicants by integer programming. In Proceedings of the
IEEE International Conference on Tools with Artificial Intelligence (Nov.). IEEE Computer Soci-
ety Press, Los Alamitos, Calif.

POMERANZ, I., REDDY, L. N., AND REDDY, S. M. 1993. COMPACTEST: A method to generate compact
test sets for combinational circuits. IEEE Trans. Comput.-Aided Des. Integ. Circ. Syst. 12, 7 (July),
1040–1049.

SCHULZ, M. H., AND AUTH, E. 1989. An improved deterministic test pattern generation with ap-
plications to redundancy identification. IEEE Trans. Comput.-Aided Des. 8, 7 (July), 811–816.

SILVA, J. P. M., AND SAKALLAH, K. A. 1994. Dynamic search-space pruning techniques in path
sensitization. In Proceedings of the Design Automation Conference, pp. 705–711.

SILVA, J. P. M., AND SAKALLAH, K. A. 1997. Robust search algorithms for test pattern generation,.
In Proceedings of the Fault-Tolerant Computing Symposium (June 1997).

STEPHAN, P. R., BRAYTON, R. K., AND SANGIOVANNI-VINCENTELLI, A. L. 1996. Combinational test gen-
eration using satisfiability. IEEE Trans. Comput.-Aided Des. 15, 9 (Sept.), 1167–1176.

TERAMOTO, M. 1993. A method for reducing the search space in test pattern generation. In
Proceedings of the International Test Conference, pp. 429–435.

Received February 1999; accepted June 2001

ACM Transactions on Design Automation of Electronic Systems, Vol. 6, No. 4, October 2001.

