
PC Based Synthesis Tool

Paulo Flores

ESPRIT III Project # 6043 “QuickChips”
Task 1–5.2.4 - Deliverable 10

INESC
Instituto de Engenharia de Sistemas e Computadores

April 1995

PC Based Synthesis Tool 1

Contents

1 Introduction 2

2 Integration in the design environment 3

3 Synthesis Tool 3

3.1 Supported VHDL . 3

3.1.1 Design Units . 5

3.1.2 Objects, Data Types and Attributes 8

3.1.3 Expressions . 9

3.1.4 Sequential Statements . 10

3.1.5 Concurrent Statements . 10

3.2 Description Styles . 13

4 Portability Issues 19

5 Conclusion 24

INESC – QuickChips

PC Based Synthesis Tool 2

1 Introduction

Synthesis is the automatic generation of hardware from an initial description expressed in
an appropriate language, usually a hardware description language (HDL). The use of this
technology has several fundamental advantages over a traditional design methodology.
It eliminates the former gate-level design bottleneck and reduces circuit design time and
errors introduced when hand-translating a specification to gates. The synthesis technology
can also help the designer to explore the design space. Thus, an optimized hardware
implementation that meets the circuit constraints, in terms of area and/or speed, can be
“more easily” found.

The emergence of VHDL as a worldwide standard hardware description language make
it appealing as a formalism to specify the input and output of synthesis applications. How-
ever, VHDL was developed as a language for digital system modeling. As a consequence,
its use for synthesis applications is not straightforward. The designer must take into
account the restrictions imposed by the synthesis tools, in order to be assured that a
description can be synthesized and that the resulting circuit has the desired performance.
Moreover, an unsuitable description style can generate incorrect or non-optimized circuit
implementations, independently of the quality and capability of the synthesis tool used.

The evaluation of the synthesis technology in the QuickChips project has resulted
in the choice of Synopsys synthesis tool, which has been integrated in the QC design
environment. In previous reports we have described the restrictions necessary to impose
to a VHDL description so, it can be synthesized and acceptable quality implementations
can be obtained from this tool.

In order to make accessible the facilities offer by the QuickChips Consortium (specially
the fabrication of integrated circuits) to SMEs, is necessary to offer an affordable set of
tools that allows the project of integrated circuits in-house and can be integrated in the QC
design environment. An entry point in the QC design environment for SMEs has already
been established using OrCad software. Through a traditional design methodology, SMEs
can accomplish to design and describe the circuit at logic level using the OrCad schematic
editor. To extend the use of synthesis technology to SEMs is necessary that low cost and
PC based synthesis tools become available in the QC design environment.

In this report we will evaluate the Viewlogic PC based synthesis tool, vhdldes, and
illustrate how to integrate this tool in the QC CAD system. The synthesizable subset of
constructs supported by the tool is analyzed in some detail and a set of synthesis example
that show a suitable description style for this tools is presented. Using some VHDL
descriptions from the IC-Blocks library [Flores 95] portability issues are discussed in the
last section. Finally some conclusions are drawn about the use of Viewlogic synthesis tool
in the QC CAD system.

INESC – QuickChips

PC Based Synthesis Tool 3

2 Integration in the design environment

In the QuickChips project it was implemented a top-down design methodology based on
synthesis technology. The project design flow enforces this methodology adopting a set of
tasks that the designer must fulfill for a successful circuit design. Each one of the design
tasks is executed by a high performance tool that runs on a workstation. All the tools,
described in [Flores 94a], are integrated in a common design environment - the QC design
environment - as presented in [Abreu 94].

The use of low-cost and PC based tools to execute some of the high level tasks of the
design flow, concede to SMEs the opportunity to design the circuit by themselves. Many
tools are available for the tasks concerning design entry and verification. One important
aspect to consider in the selection of a tool is its capability to be integrated in the existent
design environment, it must have internal or external parsers to read/write some of the
formats in which the different tools communicate [Flores 94b].

The synthesis tool evaluated for this report – vhdldes V2.05 – is integrated in the
Viewlogic design environment - Workview 4.1.3. In this environment it is also provided an
EDIF (Electronic Data Interchange Format) parser - vl2edif2 V4.1.2 - which provide
a way to transfer the synthesized circuit to the main QC design environment. In figure 1
it can be identified the QuickChips “standard” data flow and the supported extension
for the Viewlogic synthesis tool. Having an EDIF representation of the circuit in the
main design environment gives us the opportunity to re-synthesize the circuit for further
optimization and/or to re-map it to a new technology.

3 Synthesis Tool

The VHDL language was developed for the description and simulation of digital circuits.
For this reason, many statements that can be used to model a circuit are related to
a simulation environment and are not generally synthesized. For instance, the VHDL
capability to support floating-point arithmetic and to use files for input/output, are very
convenient and sophisticated for system modeling, but requires unrealistic capabilities
from the synthesis tools [Levitan 89].

Since the VHDL semantic is adapted to simulation, most simulators support the full
language. The ones that do not support all the VHDL constructs just exclude a small
set which is certainly not supported by synthesis tools. Therefore, the VHDL constructs
that can be used in a synthesizable description are mainly limited by the synthesis tools.

3.1 Supported VHDL

The subset of statements supported for synthesis is not yet standardized, despite the
effort that has been developed by the synthesis working group [Harper 92]. Hence, the
synthesizable VHDL subset is dependent on the actual synthesis tool.

INESC – QuickChips

PC Based Synthesis Tool 4

Schematic
 Entry

P & R
Tools

Fabrication

Test

 Logic
Simulation

EDIF

GDSII

SDF

Verilog

Design Entry

High Level
Simulation

Synthesis

VHDL

TSSI

High Level
Simulation

Design Entry

Synthesis

VHDL

Parser

QuickChips Design Environment

Viewlogic Design

Environment

VLDB

Figure 1: QuickChips “standard” data flow and extension for Viewlogic.

INESC – QuickChips

PC Based Synthesis Tool 5

From the synthesis viewpoint, the VHDL constructs can be divided in three categories:

• Ignored - means that the construct is allowed in the VHDL source, but is ignored
in synthesis.

• Unsupported - means that the construct is not allowed in the VHDL source code.
If unsupported constructs are present in a description, the analyzer will flag them
as errors and the description can not be synthesized.

• Supported - means that the construct can be used in a synthesizable VHDL descrip-
tion. Some restrictions may be imposed if the construct is not fully supported.

The reminder of this section is dedicated to present the support that Viewlogic syn-
thesis tool, vhdldes version V2.05, provides for each VHDL construct [Viewlogic 92b,
Viewlogic 92a].

3.1.1 Design Units

The VHDL language defines design units as the minimal set of instruction that can be
analyzed separately. Each design unit is analyzed to a project library. By default the
project library is denominated WORK. The use of libraries and separate analysis of design
units are not supported.

The design units specified in the VHDL language are presented in the following sub-
sections.

Entities

The VHDL entity is a hardware abstraction that can represent a whole system, a
board, an integrated circuit or just a cell. Each VHDL entity declaration defines its name
and interface to the enclosing design. It represents the external view of a component, the
type and number of inputs and outputs but does not include any functionality description.
Table 1 presents the restrictions imposed on an entity for synthesis.

Architectures

An entity’s architecture body defines its functionality. It describes how the outputs
are obtained from the inputs.

Each architecture body is associated, by name, with one entity declaration. The be-
havior description of an architecture can range from an algorithm (a set of sequential
statements within a process) to a structural netlist (a set of instantiated components).
Although VHDL accepts several architecture associated to the same entity, in this syn-
thesis tool each entity has to have only one associated architecture body. The table 2
shows the architecture support for the Viewlogic synthesis tool.

Configurations

The configuration unit specifies which pair entity/architecture is chosen for the com-
ponents instantiated. This is due to the possibility of existence of several architectures

INESC – QuickChips

PC Based Synthesis Tool 6

entityentity name is

[generic(generic declaration);]
[port(port declaration);]
[entity declarative part]

[begin

entity statement part]
end [entity name];

Item Restrictions
generic declaration Supported, but can not interfere with the synthesis of

the circuit
port declaration Only signal of type vlbit or one-dimensional arrays of

type vlbit, vlbit vector (see section 3.1.2)
entity declarative part Unsupported
entity statement part Unsupported

Table 1: Entity support

architecture architecture name of entity name is

[architecture declarative part]
begin

[statements]
end [architecture name];

Item Restrictions
architecture declarative part Only types, constants, signals, subprograms, com-

ponents declaration or attributes declarations and
specifications.

statements Support as presented in sections 3.1.5 and 3.1.4.

Table 2: Architecture support

for the same entity. So, it is necessary for each entity instantiated, to define which archi-
tecture to use. The Viewlogic synthesis tools does not support configurations

Packages

A package is a library unit (design unit) holding a collection of items that can be used
in other design units. All the items specified in the package declaration are accessible to
other design units either by selection or directly after an appropriate use clause.

The use of packages permits a better organization of circuit description, through the
use of code that can be shared, such as: constants or type definitions, component decla-
rations or subprograms.

INESC – QuickChips

PC Based Synthesis Tool 7

A package can have two parts, the declaration, where the public view of the package is
defined, and the body , where the private information and the subprogram implementations
of the package are included. As shown in table 3, these two views of a package are partial
supported.

package package name is – – package declaration
[package declarative part]

end [package name] ;

package body package name is – – package body
[package body declarative part]

end [package name];

Item Restrictions
package declarative part Only declarations of subprograms, constants,

types, components, attributes, and specifications
attributes.

package body declarative part Only declarations of subprograms, constants,
types and specifications of subprograms bodies.

Table 3: Package support

The IEEE standard package std logic 1164 that defines a nine value logic system
for modeling is not supported. To describe a design using a multi-value logic system, only
the Viewlogic predefined types, vlbit and vlbit vector, explained in the next, section
are allowed.

INESC – QuickChips

PC Based Synthesis Tool 8

3.1.2 Objects, Data Types and Attributes

VHDL objects are containers of data within a model. Each object has a type and a class.
The object class indicates what can be done with its data. There are three classes of
objects: constants, variables and signals. Table 4 describes the how this three classes of
objects are supported.

Object Restrictions

Constants Deferred constants are unsupported
Variables Initial values are unsupported
Signals May only be of type vlbit or one-dimensional array of type vlbit

vlbit vector (see below in this section). register, bus and res-
olution functions are unsupported. Initial values are unsupported.

Table 4: Supported objects

The type of an object determines which are the values that an object can hold. The
four basic scalar types are: integers, floating point, physical and enumerates. Composite
types, like arrays or structures, can be defined using the basic types. Access types and file
types provide a way to access objects of a given type. Subtypes can be defined through
the imposition of restrictions on another type. The types defined in VHDL language are
listed in table 5 with the restrictions imposed by this synthesis tool.

Types Restrictions

Integer Infinite-precision arithmetic is unsupported, a maximum
of 32 bits is allowed

Floating point Unsupported.
Physical Ignored.
Enumerates Fully supported.
Array Only integers ranges are supported.
Records Unsupported.
Access Unsupported.
File Unsupported.
Incomplete data types Unsupported.

Table 5: Supported types

The Viewlogic synthesis tool has a predefined type, vlbit, for signal objects. The
vlbit type is an extension to the IEEE type bit. It contains four values: logic-zero
(’0’), logic-one (’1’), high-impedance (’Z’) and don’t-care (’X’)1 The vlbit vector is
defined as unconstraint array of vlbit type.

Attributes describe characteristics about associated entities. Although the language
has a set of predefined attributes it also allows user defined attributes. Since VHDL was

1In simulation ’X’ means unknown.

INESC – QuickChips

PC Based Synthesis Tool 9

developed for simulation, there are some attributes with no meaning for synthesis. The
only supported attributes for synthesis are presented in table 6.

Attributes Class Restrictions

Predefined attributes Only the following attributes are supported:
left, right, high, low, range, reverse range

and length.
User-defined attributes Unsupported.

Table 6: Supported attributes

3.1.3 Expressions

Expressions perform arithmetic or logical computations by applying an operator to one
or more operands. Operators specify the computation to be performed, while operands
are the data for the computation.

Operators

A VHDL operator is characterized by: name, function, number and type of operands,
and result type. It is possible to define new operators, using functions, for any kind
of operand and result type, as well as assigning new functions to the predefined VHDL
operators (operator overloading). The VHDL predefined operators are presented in table 7
along with the restrictions imposed by the synthesis tool.

Class Operators Restrictions

Logical and, or, nand, nor, xor, not Fully supported
Relational =, / =, <, <=, >, >= Fully supported
Adding +, −, & Fully supported
Sign +, −, abs Fully supported
Multiplying ∗, /, mod, rem Supported when both operands are con-

stants or the second operand is a constants
power of 2.

Miscellaneous ∗∗ Unsupported.

Table 7: Operators supported

INESC – QuickChips

PC Based Synthesis Tool 10

Operands

As already mentioned operands determine the data used by the operator to compute
its value. The operands in an expression can include identifiers, names, literals, aggre-
gates, subprograms calls, qualified expressions, type conversions, allocators and another
expressions surrounded by parentheses. The operands supported are presented in table 8.

Operands Restrictions

Identifiers Fully supported.
Selected names Unsupported.
Indexed names Fully supported.
Slice names Null slices are unsupported.
Attribute names Fully supported for the attributes defined in section 3.1.2.
Literals Null literals are unsupported. Physical literals are ignored.
Aggregates Unsupported
Subprograms calls Function conversions on input ports are unsupported.
Qualified expressions Fully supported.
Type conversion Only using predefined functions of Viewlogic.
Allocators Unsupported.
Static expressions Fully supported.
Universal expressions Floating-point expressions are unsupported.

Table 8: Operands supported

3.1.4 Sequential Statements

Sequential statements define the algorithms that express the behavior of design entities.

Sequential statements are encapsulated inside processes or subprograms. They are
executed sequentially, in their order of appearance. Table 9 lists the VHDL sequential
statements and the restrictions imposed.

3.1.5 Concurrent Statements

Concurrency is an important and natural concept in hardware description. Concurrent
statements are used to describe behavior or structure of architectures. Unlike sequential
statements, the order in which the concurrent statements are written does not modify the
description functionality. The support of concurrent statements is presented in table 10.

INESC – QuickChips

PC Based Synthesis Tool 11

Statements Restrictions

wait Supported only on the following forms:
wait until signal = logic value ;

wait until signal’event and signal = logic value ;

wait until (signal’event and signal = logic value)
or sig = l value;

where logic value is ’0’ or ’1’ for synchronization with falling or ris-
ing edge of signal, respectively. sig and l value allow asynchronous
signal to execute the process. Wait statements can not be used in
subprograms and must be the first statement in a process.

Assertions Ignored.
Signal assignment Multiple waveform elements and transport delay in signal assign-

ment statements are unsupported. The after clause is ignored.
Variable assignment Fully supported.
Subprogram call Type conversion on formal parameters is unsupported. Parameter

association is made by position.
If Fully supported.
Case Case choices can not be a range. The choice others is required to

ensure that no value is omitted.
Loops Unsupported.
For loops The loop range must be known at analysis time.
While loops Unsupported.
Next Unsupported
Exit Fully supported.
Return Only supported in a function body, and it must be the last

statement.
Null Fully supported.

Table 9: Sequential statements support

INESC – QuickChips

PC Based Synthesis Tool 12

Statements Restrictions
Block Ports and generics in block statement and guarded blocks are

unsupported.
Process All signals read in a process without a wait statement must be in

the sensitivity list.
Subprogram calls Type conversion on formal parameters is unsupported. Parameter

association is made by position.
Assertions Ignored.
Signal assignment The guarded and transport keywords are unsupported and after

clause is ignored. Multiple waveforms are unsupported. In a se-
lected signal assignment a range choice is not supported.

Component instantiation Type conversion on the formal port of a component specification
is unsupported. Generic map association is made by positional
association.

Generate Unsupported.

Table 10: Concurrent statements support

INESC – QuickChips

PC Based Synthesis Tool 13

3.2 Description Styles

VHDL definition is mainly oriented towards simulation applications, and its use for syn-
thesis raises many issues. These problems encompass all aspects of synthesis and module
generation, including functional and timing aspects as well as technology-dependent is-
sues.

Describing a circuit using the synthesizable subset of a tool, as enumerated in the
previous sections, does not guarantee to a designer that a hardware implementation can
be synthesized from it. Or, if it can, that the resulting circuit has the desire perfor-
mance. Only knowing the description style accepted by the synthesis tool allows to write
descriptions that can be synthesized and, at the same time, getting the most from the
tool.

It is also of great importance to understand how descriptions are mapped to gates.
For instance, the synthesis of the sequential statement if-then-else inside a process
generates circuit that implements a multiplexer. In this multiplexer the selection input is
dependent on the if condition, as shown in figure 2.

entity examp is
 port(a, b, sel_a: in vlbit;
 z: out vlbit);
end examp;

architecture ifthenelse of examp is
begin
 process(sel_a, a, b)
 begin
 if sel_a = ’1’ then -- if instruction
 z <= a;
 else -- else branch
 z <= b;
 end if;
 end process;
end ifthenelse;

SEL_A

A

AND2

Z

OR2NOR2

INVB

Figure 2: Synthesis of an if-then-else inside a process.

If the signal assignment is only done in one branch of the if instruction, then a memory
element is synthesized. This memory element is necessary to hold the signal value for the
cases in which the if condition is false. As shown in the figure 3, the synthesis of an if

instruction results in a latch that it is enabled by the if condition.

The use of the wait instruction allows the description of circuits that are synchro-

INESC – QuickChips

PC Based Synthesis Tool 14

entity examp is
 port(a, selection: in vlbit;
 z: out vlbit);
end examp;

architecture ifthen of examp is
begin
 process(selection, a)
 begin
 if selection = ’1’ then -- if instruction
 z <= a; -- without else branch
 end if;
 end process;
end ifthen;

Z

D

L

Q

LD

A

SELECTION

Figure 3: Synthesis of an if without the else branch.

nized with some signal, usually the clock of the circuit. Although most of the synthesis
tools agree with this style of description for synchronous circuits, problems arise in the
description style adopted for initialization of the circuit.

Figure 4 presents the synthesis of a flip-flop with synchronous reset through the use
of an wait and if statement. In this description the instructions in any branch of the if

statement are only executed on the positive transition of the clock signal.

For the cases that an asynchronous initialization is required, the description in figure 5
can be used. In this description the wait statement hold the execution of the process until
either a clock impulse occur or the reset signal became active. Then, an if statement
determines the asynchronous or synchronous behavior of the description.

Finite state machines are commonly used in the project of digital circuits. Its de-
scription in VHDL using a synthesizable style requires the use of two process. One is
responsible for the description of the sequential behavior of the machine and its syn-
chronous and/or asynchronous initialization. The other, describes the combinational part
of the machine, the transitions between states and the generation of the outputs values.

Figure 6 describes a Moore finite state machine for the detection of "111" input
sequence. Table 11, that defines the state transitions of the machine, is specified in the
combinational process of the VHDL description (process with the label comb). In this
process, using a case controlled by the present state of the machine, the next state and
the outputs are assigned. If a Mealy machine is required, the assignment of the outputs
variables should be done in the branches of the if statements. In that case the outputs
will depend both on the state of the machine and the present values of the inputs.

The process with the label sync of figure 6 is responsible for asynchronous initialization
of the machine and the update of its state on each clock cycle. Therefore, it is in this

INESC – QuickChips

PC Based Synthesis Tool 15

entity circuit is
 port(data, clock, reset: in vlbit;
 z: out bit);
end circuit;

architecture async_rst of circuit is
begin
 process
 begin
 wait until clock’event and clock = ’1’ ;
 if reset = ’1’ then
 z <= ’0’; -- synchronous reset
 else
 z <= data; -- synchronous operation
 end if;
 end process;
end sync_rst;

Z

C

D

Q

FD

CLOCK

NOR2

INVDATA

RESET

Figure 4: Synthesis of a flip-flop with synchronous reset.

entity circuita is
 port(data, clock, reset: in vlbit;
 z: out bit);
end circuita;

architecture async_rst of circuita is
begin
 process
 begin
 wait until (clock’event and clock = ’1’) or reset = ’1’ ;
 if reset = ’1’ then
 z <= ’0’; -- asynchronous reset
 else
 z <= data; -- asynchronous operation
 end if;
 end process;
end async_rst;

CLOCK

Z

C

D

Q

RD

FDRD

RESET

DATA

Figure 5: Synthesis of a flip-flop with asynchronous reset.

process that the sequential behavior of the circuit is specified. This process is needed

INESC – QuickChips

PC Based Synthesis Tool 16

both for Moore and Mealy finite state machine descriptions.

Present Next State Output
state data in = 0 data in = 1 sequence

zero zero one 0
one zero two 0
two zero three 0

three zero three 1

Table 11: Transition table of the finite state machine.

In some circuits the use of a two-value logic system (logic-one, ’1’, and logic-zero, ’0’)
is not sufficient for its correct specification. In such circuits, which contain references to
high-impedance or don’t-care values, the use of multi-value logic is required. The version
evaluated of the Viewlogic synthesis tool does not yet support the standardized package
from IEEE for multi-logic values - std logic 1164. So, the predefined types vlbit and/or
vlbit vector, that support in the Viewlogic tool a multi-logic value, should be used.

When the circuit outputs are not completely specified for all the inputs combinations,
a don’t-care value, ’X’, should be assigned to them. In this way it is possible for the
synthesis tool to generate a better circuit using this information during the logic opti-
mization phase. For circuits that need three-state lines the high-impedance value ’Z’ can
be used, so that the synthesis tool provides three-state drivers.

The example of figure 7 describes a BCD to 7-segments decoder with three-state
output. The use of the vlbit vector type allows the assignment of the output to a
vector of don’t-cares , for input values from "1010" to "1111", and force all outputs to
high-impedance when the decoder is not enabled. For the Viewlogic tool the synthesis of
three-state drivers is only possible if the assignment of the “high-impedance” value to the
outputs is done in a conditional signal assignment, as presented in figure 7.

INESC – QuickChips

PC Based Synthesis Tool 17

entity fsm is
 port(data_in, clock, reset: in bit;
 sequence: out bit);
end fsm;

architecture Moore of fsm is
 type states is (zero, one, two, three); -- enumerat type for
 signal present_state, -- the state variables
 next_state: states;
begin

 comb: process(data_in, present_state) -- combinational logic
 begin
 case present_state is
 when zero =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= one;
 else
 next_state <= zero;
 end if;
 when one =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= two;
 else
 next_state <= zero;
 end if;
 when two =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= three;
 else
 next_state <= zero;
 end if;
 when three =>
 sequence <= ’1’;
 if data_in = ’1’ then
 next_state <= three;
 else
 next_state <= zero;
 end if;
 end case;
 end process;

 sync: process -- synchronous behavior
 begin
 wait until (clock’event and clock = ’1’) or reset = ’1’ ;
 if reset = ’1’ then
 present_state <= zero;
 else
 present_state <= next_state;
 end if;
 end process;

end Moore;

NOR2

INV

NOR2 NOR2

C

D

Q

RD

FDRD

NOR2

C

D

Q

RD

FDRD

AND2

CLOCK

INVDATA_IN

RESET

SEQUENCE

Figure 6: Moore state machine to detect the sequence "111".

INESC – QuickChips

PC Based Synthesis Tool 18

entity bcd_7seg is
 port(data_in: in vlbit_vector(3 downto 0);
 enable: in vlbit;
 data_out: out vlbit_vector(6 downto 0));
end bcd_7seg;

architecture combinational of bcd_7seg is
 signal data_out_temp : vlbit_vector(6 downto 0);
begin

 data_out <= data_out_temp when enable = ’1’
 else "ZZZZZZZ"; -- three-state output

 process (data_in)
 begin
 case data_in is --abcdefg
 when "0000" => data_out_temp <= "1111110";
 when "0001" => data_out_temp <= "1100000";
 when "0010" => data_out_temp <= "1011011";
 when "0011" => data_out_temp <= "1110011";
 when "0100" => data_out_temp <= "1100101";
 when "0101" => data_out_temp <= "0110111";
 when "0110" => data_out_temp <= "0111111";
 when "0111" => data_out_temp <= "1100010";
 when "1000" => data_out_temp <= "1111111";
 when "1001" => data_out_temp <= "1110111";
 when others => data_out_temp <= "XXXXXXX"; -- don’t-care output
 end case;
 end process;
end combinational;

INV

NAND3

OR2

NOR2

OR3

AND2

NOR3

ENABLE
INV

OBUFZ

DATA_OUT1

OBUFZ

DATA_OUT5

OR2

INVDATA_IN2

NOR2

INV

NOR2

OR3 OBUFZ

DATA_OUT4

OR2

DATA_IN1 INV

OR2

NOR2

AND2

INV

NOR2

AND2

NOR2 NOR3

OR4 OBUFZ

DATA_OUT6

NOR2

NOR2

OR2

DATA_IN3

NOR2

INV

DATA_IN0

NOR2

NOR2
NOR2

OBUFZ

DATA_OUT3

OR2

OR2 OBUFZ

DATA_OUT0

OR2 OBUFZ

DATA_OUT2

Figure 7: The use of multi-value logic values.

INESC – QuickChips

PC Based Synthesis Tool 19

4 Portability Issues

To guarantee the portability of a description between synthesis tools, it is necessary to use
a common subset of VHDL constructs and a compatible description style. Even if these
restrictions may be difficult to maintain between some tools, there are some constructs
that should not be used in a portable description, such as:

• Specific attributes that are just recognized by one synthesis tool. The synthesis
package under development by the IEEE synthesis working group addresses this
problem, defining a set of attributes for synthesis that will become an IEEE stan-
dard.

• Synthetic comments2 that allow incorporation in the VHDL description of com-
mands for the synthesis tool. An example of a synthetic comment that most tools
support, but differently, is the one which allows to cancel or re-initialize the analysis
of specific portions of code.

• Functions or procedures described in packages which are integrated in the tool. For
these only the package declaration exists, but the body has no VHDL representation
because it is embedded in the tool.

It should be noticed that to get the most from the synthesis tool it maybe necessary
to use some of this constructs at the cost of getting a non-portable description.

As presented is section 3.1 and 3.2 the Viewlogic synthesis tool has more limitations,
regarding the supported subset and description style, than the Synopsys tool, which was
the one selected for the QuickChips design environment [Flores 94a]. Thus, to port a
description into the Viewlogic synthesis tool is necessary to perform, at least, some basic
changes to the code:

1. Change the standard types std logic and std logic vector to the Viewlogic cor-
respondent multi-value logic types, vlbit and vlbit vector, respectively. Remove
all references to the IEEE libraries.

2. Identify the all the sequential processes of the description and change them in ac-
cordance with the style described in table 9.

3. Transform all signal assignments to high-impedance logic values into conditional
signal assignments.

4. Change (or eliminate) the generic values if in the synthesized circuit a value different
form the default ones is wanted or they are assigned to a signal. In this case replace
the generic by the desired value.

2Comments in which the first word has a especial meaning to force the tool to interpret the rest of

the line as a command.

INESC – QuickChips

PC Based Synthesis Tool 20

To exemplify how to port a VHDL description to the Viewlogic synthesis tool, we
selected a some circuits from the IC-Blocks library [Flores 95]. As examples of combina-
tional circuits we selected an adder and a decoder.

Figure 8 shows the original VHDL code of the adder from IC-Blocks library. Figure 9
shows this description changed according to the above basic rules and the synthesized
result of four bit adder. Note that in this description only the rules 1 and 4 were applied
because it is a pure combinational description without any assignments to high-impedance
logic value.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_signed.all;

entity ADD is
 generic(WIDTH: integer := 8);
 port(A: in std_logic_vector(WIDTH - 1 downto 0);
 B: in std_logic_vector(WIDTH - 1 downto 0);
 CIN: in std_logic;
 SUM: out std_logic_vector(WIDTH - 1 downto 0);
 COUT: out std_logic);
end ADD;

architecture BEHAVIORAL of ADD is
begin
 process (A,B,CIN)
 variable a_aux, b_aux : std_logic_vector(WIDTH downto 0);
 variable sum_aux : std_logic_vector(WIDTH downto 0);
 begin
 a_aux := ’0’ & A;
 b_aux := ’0’ & B;

 sum_aux := a_aux + b_aux;
 sum_aux := sum_aux + CIN;

 SUM <= sum_aux(WIDTH - 1 downto 0);
 COUT <= sum_aux(WIDTH);
 end process;
end BEHAVIORAL;

Figure 8: VHDL code of the ADD component from IC-Blocks library.

INESC – QuickChips

PC Based Synthesis Tool 21

entity ADD is
 generic(WIDTH: integer := 4);
 port(A: in vlbit_vector(WIDTH - 1 downto 0);
 B: in vlbit_vector(WIDTH - 1 downto 0);
 CIN: in vlbit;
 SUM: out vlbit_vector(WIDTH - 1 downto 0);
 COUT: out vlbit);
end ADD;

architecture BEHAVIORAL of ADD is
begin
 process (A,B,CIN)
 variable a_aux, b_aux : vlbit_vector(WIDTH downto 0);
 variable sum_aux : vlbit_vector(WIDTH downto 0);
 begin
 a_aux := ’0’ & A;
 b_aux := ’0’ & B;

 sum_aux := a_aux + b_aux;
 sum_aux := sum_aux + CIN;

 SUM <= sum_aux(WIDTH - 1 downto 0);
 COUT <= sum_aux(WIDTH);
 end process;
end BEHAVIORAL;

SUM0

CIN

OR2

INV

NOR2

AND2
NAND2

A0

OR2

INV

NOR2

NOR2

INVB0

B3

INVNAND2
NOR2

AND2

SUM1

B2

A3

INV
OR2

NOR2

INV NOR2
NOR2

OR2

A2 INV

OR2

NOR2

COUT

AND2

OR2

NOR2
OR2

AND2AND2

AND2

INV

INV

NOR2

INV

AND2

AND2

OR2
OR2

NAND2

NAND2

INV

NOR2

SUM3

OR2

NOR2

AND2

OR2

AND2 AND2

INV
INV

NAND2

OR2
NOR2

OR2
NOR2

AND2 AND2
OR2

SUM2

AND2

B1

NOR2 OR2INV

A1

NOR2

INV

Figure 9: Synthesized adder description for Viewlogic tool and its implementation.

In some cases changing a description using only the basic rules is not enough to make
it synthesizable by this synthesis tool. Figure 10 describe a decoder with parameterizable
width and parameterizable values for active and inactive outputs. To synthesize this
combinational description, all generic values had to be substituted by specific values and
all the redundant code eliminated. Figure 11 shows the resulting VHDL description and
the synthesized circuit, for the following case: three inputs, active output set to logic-one
(’1’) and inactive outputs set to logic-zero (’0’).

INESC – QuickChips

PC Based Synthesis Tool 22

library ieee;
use ieee.STD_LOGIC_1164.all;
use ieee.STD_LOGIC_unsigned.all;

entity DECOD is
 generic(WIDTH_DECOD: integer := 3;
 INACTIVE_OUT: integer range 0 to 2 := 0;
 ACTIVE_OUT: integer range 0 to 2 := 1);
 port(DATA_IN: in STD_LOGIC_VECTOR(WIDTH_DECOD-1 downto 0);
 DATA_OUT: out STD_LOGIC_VECTOR(2**WIDTH_DECOD - 1 downto 0));
end DECOD;

architecture behavioral of DECOD is
begin
 process (DATA_IN)
 variable data_aux: STD_LOGIC_VECTOR(2**WIDTH_DECOD -1 downto 0);
 variable index: integer range 0 to 2**WIDTH_DECOD-1;
 begin
 index := CONV_INTEGER(DATA_IN);
 lp: for i in DATA_OUT’range loop
 if i /= index then
 case INACTIVE_OUT is
 when 0 =>
 DATA_OUT(i) <= ’0’;
 when 1 =>
 DATA_OUT(i) <= ’1’;
 when 2 =>
 DATA_OUT(i) <= ’Z’;
 end case;
 else
 case ACTIVE_OUT is
 when 0 =>
 DATA_OUT(i) <= ’0’;
 when 1 =>
 DATA_OUT(i) <= ’1’;
 when 2 =>
 DATA_OUT(i) <= ’Z’;
 end case;
 end if;
 end loop lp;
 end process;
end behavioral;

Figure 10: VHDL code of the DECODER component from IC-Blocks library.

INESC – QuickChips

PC Based Synthesis Tool 23

entity DECOD is
 port(DATA_IN: in VLBIT_VECTOR(2 downto 0);
 DATA_OUT: out VLBIT_VECTOR(7 downto 0));
end DECOD;

architecture behavioral of DECOD is
begin
 process (DATA_IN)
 variable data_aux: VLBIT_VECTOR(7 downto 0);
 variable index: integer range 0 to 7;
 begin
 index := DATA_IN;
 lp: for i in DATA_OUT’range loop
 if i /= index then
 DATA_OUT(i) <= ’0’;
 else
 DATA_OUT(i) <= ’1’;
 end if;
 end loop lp;
 end process;
end behavioral;

DATA_OUT1

NOR3

DATA_IN1 INV

DATA_OUT2

NOR3

DATA_IN0 INV

NOR3

DATA_OUT3

DATA_OUT0

NOR3

AND3

DATA_OUT7

DATA_IN2 INV NOR3

DATA_OUT5

NOR3

DATA_OUT4

NOR3

DATA_OUT6

Figure 11: Synthesized decoder description for Viewlogic tool and its implementation.

As an example of a sequential circuit the component REGFF from the IC-Blocks
library was selected. This component is a register bank, made of D type flop-flops, with
parameterizable width, synchronous initialization value, asynchronous initialization value
and outputs values when the register bank is not selected. Figure 12 presents the VHDL
description of this component in IC-Blocks library.

To obtain the synthesizable description of figure 13 it was necessary to change it
according to all the four rules presented above. All reference to IEEE standards were
removed and the Viewlogic supported types were used. The synchronization and initial-
ization of the process that describes this sequential circuit was changed according to the
coding style, using a wait statement. The attribution of high-impedance values (’Z’) to
outputs was accomplish using a conditional signal assignment statement. Some generic

INESC – QuickChips

PC Based Synthesis Tool 24

declarations were eliminated and the generic references replaced by the actual values.
The synthesized circuit, also presented in figure 13, is a 8 register data bank with asyn-
chronous initialization to "00000000", synchronous initialization to "11111111" and with
three-state output drivers.

To port a VHDL description from the Viewlogic synthesis environment to the QC
design environment minor changes are necessary. Actually, in most of the cases it should
be enough to change the Viewlogic predefined types to the IEEE standard types. This
results from fact the QC selected tool3 for the synthesis task has a more flexible description
style and supports a larger subset of the language.

5 Conclusion

The use of synthesis technology allows to obtain “automatically” a logic implementation
of a circuit, mapped in cells of a given technology and satisfying a set of constraints
(for example, area and/or delay), from a specification written in a hardware description
language. The use of this technology in the project of integrated circuits can significantly
reduce the overall design turnaround time.

In order to make accessible the synthesis technology to SMEs it was necessary to
create an interface, in the QuickChips design environment, to a low-cost, commercially
available, PC-based synthesis tool.

In this report we evaluated the PC version of the Viewlogic synthesis tool, vhdldes
V2.05. It was explained how to integrate this tool in the QC design flow, through the use
of one of the design environment selected languages, EDIF. For a fast design process is very
important to know the supported synthesizable VHDL subset and the description style
adopted by the synthesis tool. Only then, the advantages of using synthesis technology are
significant to improve the design process. So, we describe in detail the VHDL constructs
supported by Viewlogic tool and presented a suitable description style for synthesis using
some basic examples.

Although being VHDL a standard language for modeling, its use for synthesis is not
standard. Each synthesis tool support a subset of the language and has its own allowed
description style. In this report some considerations were made about code portability
and a set of rules to import a description form the main QC design environment was
given. Some descriptions from the IC-Blocks library, have been ported to the Viewlogic
tool, and synthesized, to illustrate the presented rules.

3design compiler from Synopsys Inc.

INESC – QuickChips

PC Based Synthesis Tool 25

library IEEE;

use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_arith.all;

entity REGFF is
 Generic (WIDTH : INTEGER := 8;
 AINITIAL : integer := 0;
 SINITIAL : integer := 0;
 NO_READ : integer range 0 to 3 := 2);
 Port (CLK : In STD_LOGIC;
 DATA_IN : In STD_LOGIC_VECTOR (width-1 downto 0);
 LOAD : In STD_LOGIC;
 READ : In STD_LOGIC;
 AINIT: In STD_LOGIC;
 SINIT: In STD_LOGIC;
 DATA_OUT : out STD_LOGIC_VECTOR (width-1 downto 0));
end REGFF;

architecture BEHAVIORAL of REGFF is
 signal data_out_dummy: STD_LOGIC_VECTOR(width-1 downto 0);
begin
 process (READ, data_out_dummy)
 begin
 if READ = ’1’ then
 data_out <= data_out_dummy;
 else
 case NO_READ is
 when 0 =>
 data_out <= (others => ’0’);
 when 1 =>
 data_out <= (others => ’1’);
 when 2 =>
 data_out <= (others => ’Z’);
 when 3 =>
 data_out <= (others => ’-’);
 end case;
 end if;
 end process;
 process(AINIT, clk)
 begin
 if AINIT = ’1’ then
 data_out_dummy <= CONV_STD_LOGIC_VECTOR
 (CONV_UNSIGNED(AINITIAL,WIDTH),WIDTH);
 elsif clk’event and clk = ’1’ then
 if SINIT = ’1’ then
 data_out_dummy <= CONV_STD_LOGIC_VECTOR
 (CONV_UNSIGNED(SINITIAL,WIDTH),WIDTH);
 else
 if LOAD = ’1’ then
 data_out_dummy <= data_in;
 else
 data_out_dummy <= data_out_dummy;
 end if;
 end if;
 end if;
 end process;
end BEHAVIORAL;

Figure 12: VHDL code of the REGFF component from IC-Blocks library.

INESC – QuickChips

PC Based Synthesis Tool 26

entity REGFF is
 Generic (WIDTH : INTEGER := 8);
 Port (CLK : In VLBIT;
 DATA_IN : In VLBIT_VECTOR (width-1 downto 0);
 LOAD, READ : In VLBIT;
 AINIT, SINIT: In VLBIT;
 DATA_OUT : out VLBIT_VECTOR (width-1 downto 0));
end REGFF;

architecture BEHAVIORAL of REGFF is
 signal data_out_dummy: VLBIT_VECTOR(width-1 downto 0);
begin
 data_out <= data_out_dummy when READ = ’1’
 else "ZZZZZZZZ"; -- three-state output
 process
 begin

wait until (clk’event and clk = ’1’) or AINIT = ’1’;
 if AINIT = ’1’ then
 data_out_dummy <= "00000000";
 else
 if SINIT = ’1’ then
 data_out_dummy <= "11111111";
 else
 if LOAD = ’1’ then
 data_out_dummy <= data_in;
 else
 data_out_dummy <= data_out_dummy;
 end if;
 end if;
 end if;
 end process;
end BEHAVIORAL;

CLK

AINIT

C

D

Q

RD

FDRD

INV

LOAD

READ

INV

OBUFZ

DATA_OUT6

DATA_IN6

AND2

OR3

NOR2

SINIT

INV

NOR2 OR3

C

D

Q

RD

FDRD

AND2

DATA_IN7

OBUFZ

DATA_OUT7

DATA_OUT5

OBUFZ

DATA_IN5

AND2

DATA_OUT0

OBUFZ

C

D

Q

RD

FDRD

OR3NOR2

INV

INV

NOR2

OR3

C

D

Q

RD

FDRD

AND2

DATA_IN4

OBUFZ

DATA_OUT4

DATA_OUT1

OBUFZ

DATA_OUT3

OBUFZ

DATA_OUT2

OBUFZ

INV

NOR2

C

D

Q

RD

FDRD

OR3

AND2

DATA_IN1

INV

NOR2

C

D

Q

RD

FDRD

OR3

AND2

DATA_IN0

INV

NOR2

C

D

Q

RD

FDRD

OR3

AND2

DATA_IN3

C

D

Q

RD

FDRD

OR3

AND2

NOR2

DATA_IN2

INV

Figure 13: Synthesized register description for Viewlogic tool and its implementation.

INESC – QuickChips

PC Based Synthesis Tool 27

References

[Abreu 94] José Pedro Abreu. Alpha Version of the CAD System. Technical report,
Project ESPRIT 6043, April 1994.

[Flores 93] Paulo Flores. Especificação funcional de Sistemas Electrónicos Digitais
em Ambiente de Śıntese. Master’s thesis, Instituto Superior Técnico,
June 1993.

[Flores 94a] Paulo Flores. Demonstration of Tools. Technical report, Project ESPRIT
6043, May 1994.

[Flores 94b] Paulo Flores. Selected Languages and Formats. Technical report, Project
ESPRIT 6043, May 1994.

[Flores 95] Paulo Flores. IC Blocks Reference Manual. Technical report, Project
ESPRIT 6043, April 1995.

[Harper 92] P. Harper and K. Scott. Towards A Standard VHDL Synthesis Package.
In Proceedings of European Design Automation Conference / Proceedings
of Euro-VHDL, September 1992.

[Levitan 89] S. Levitan, A. Martello, R. Owens, and M. Irwin. Using VHDL as a
Language for Synthesis of CMOS VLSI Circuits. In Proceedings of the
Ninth IFIP Symposium on Computer Hardware Description Languages
and their Applications, June 1989.

[Viewlogic 92a] Viewlogic Systems, Inc. VHDL Designer User’s Guide and Tutorial, Jan-
uary 1992. Version F.

[Viewlogic 92b] Viewlogic Systems, Inc. VHDL Reference Manual for Synthesis, January
1992. Version A.

INESC – QuickChips

