
Set of Synthesis Tools

Paulo Flores

ESPRIT III Project # 6043 “QuickChips”
Task 1–5.2.4 - Deliverable 9

INESC
Instituto de Engenharia de Sistemas e Computadores

November 1993

Set of Synthesis Tools 1

Contents

1 Introduction 2

2 Synthesis design process 2

3 Synthesis Tools 4

3.1 Supported VHDL . 5

3.1.1 Design Units . 5

3.1.2 Objects, Data Types and Attributes 8

3.1.3 Expressions . 9

3.1.4 Sequential Statements . 9

3.1.5 Concurrent Statements . 12

3.2 Description Styles . 12

4 Code Portability 17

5 Conclusion 19

INESC – QuickChips

Set of Synthesis Tools 2

1 Introduction

The project of an integrated circuit usually begins with a high-level specification of its
behavior and a set of restrictions to be met (for example, maximum area of the circuit,
minimum or maximum delays of some signals). The synthesis process of an digital circuit
pretends to get from its high-level representation the optimal circuit, mapped in a specific
technology library, that assures the imposed restriction.

The representation of the circuit in a hardware description language is the first step
of a project in a synthesis environment. The use of a powerful language, such as the
VHDL (IEEE standard), requires that the designer has a deep knowledge of the language
to take advantage of all its features. Moreover, the designer must take into account the
restrictions imposed by the synthesis tools, in order to be assured that a description can be
synthesized and that the resulting circuit has the desired performance. The description of
circuits in an unsuitable style for synthesis, usually generates incorrect or non-optimized
circuits, independently of the quality and capability of the synthesis tool used.

Earlier in this project an evaluation of synthesis technology has result in the choice
of Synopsys synthesis tools. This report describes the design flow used in the synthesis
environment. It emphasizes the steps needed to obtain a gate-level representation of the
circuit and the iterative/interactive nature of the process. The fundamental issue of iden-
tifying a synthesizable VHDL subset is analyzed in some detail, focusing on the language
constructs supported by the Synopsys synthesis tool, Design Compiler [Synthesis 92], and
giving some attention to the questions of description portability between tools from dif-
ferent vendors. Examples that shows a suitable description style for this tool are also
presented. Additional portability issues are discussed in the last section before conclu-
sions.

2 Synthesis design process

The synthesis process to produce a gate-level netlist from a high-level description is not
done in a single step. The design flow typically used in a synthesis environment involves
the following four steps (see figure 1):

1. The VHDL description of the circuit. This description should be done in an ab-
straction level such that the designer is liberated from the implementation details,
but at the same time it can be used with current synthesis tools.

2. The validation of the VHDL circuit description through the use of a VHDL sim-
ulator. This design step assures that the desired functionality is present in the
description.

3. The logic synthesis of the circuit to produce a gate level representation mapped in
a specific technology that fulfills a set of constraints imposed by the designer.

4. The verification of the synthesized circuit performance, using a gate-level simulator.

INESC – QuickChips

Set of Synthesis Tools 3

Editor

(VHDL)
Models Library

Components Libraries

Specification

Implementation

VHDL
Description

Function
Validation

Translation

Optimization

Technology
Mapping

VHDL
Simulator

Synthesis
Tool

Gate-level
Simulator

Performance
Verification

Figure 1: Synthesis design flow.

INESC – QuickChips

Set of Synthesis Tools 4

Every time a new description of the circuit is obtained, it is necessary to verify its
functionality through a simulation. When the simulation results do not verifies all of the
designer constraints, it is necessary to go back to a previous step, and after some changes
repeat the remaining steps. This iterative process can be done in three levels:

• At language level: while the description of the circuit does not met the desired
functionality or it can not be synthesized, it will be necessary to rewrite the VHDL
code.

• At the synthesis tool level: when the changes to the circuit result from modifications
of parameters on the synthesis tools, so that the constraints imposed by the designer
are satisfied.

• At global level: if the gate-level simulation does not demonstrate the functionality
or the performance desired for the circuit. In this case it could be necessary to
rewrite the VHDL code and repeat all design steps again.

The global level iteration should not be necessary if the synthesis tools could generate
circuits with correct timing and functionality. However, there are two reasons that justify
the gate-level simulation after the synthesis. Firstly, because differents semantic mean-
ings could be given by the VHDL simulator and the synthesis tool to some constructs.
Secondly, because only after technology mapping it is possible to simulate the circuit with
realist timings.

The design flow shown is iterative as well as interactive. This means that during the
synthesis step the designer has to “guide” the tools so that it can obtain circuits of an
acceptable quality. This process consists in the characterization of the circuit and imposi-
tion of restrictions. The former supplies to the synthesis tool additional information about
the environment in which the circuit will be used (timing and electrical information), the
latter establishes a set of objectives to be accomplished by the synthesis tool.

The libraries that allow the representation of the circuit at differents levels have dis-
tinct features according to their target. The model library is written in VHDL, in a
technology independent way, and has the purpose to help the designer to write and test
their circuits. An example of a synthesizable model library can be found in [Sim oes 93].
The component libraries have a representation of each cell belonging to a technology
through a description of its functionality and a set of parameters which differs from tool
to tool. For the synthesis tools both the area and timing of each cell are important, for
the simulation tools only the timing is meaningful. The use of a non-coherent set of com-
ponent libraries can increase the number of iterations or even make the synthesis process
impossible.

3 Synthesis Tools

The VHDL language was developed for the description and simulation of digital circuits.
For this reason, many statements that can be used to model a circuit are related to

INESC – QuickChips

Set of Synthesis Tools 5

a simulation environment and are not generally synthesized. For instance, the VHDL
capability to support a floating-point arithmetic and to use files for input/output, are very
convenient and sophisticated for system modeling, but requires unrealistic capabilities to
the synthesis tools [Levitan 89].

Since the VHDL semantic is adapted to simulation, most of simulators support the
full language. The ones that do not support all VHDL constructs just exclude a small set
which are certainly not supported by synthesis tools. Therefore, the VHDL constructs
that can be used in a synthesizable description are mainly limited by the synthesis tools.

3.1 Supported VHDL

The subset of statements supported for synthesis is not yet standardized, despite the
effort that has been developed by the synthesis working group [Harper 92]. Hence, the
synthesizable VHDL subset is actually dependent on the synthesis tool.

From the synthesis viewpoint, the VHDL constructs can be divided in three categories:

• Ignored - means that the construct is allowed in the VHDL source, but is ignored
in synthesis.

• Unsupported - means that the construct is not allowed in the VHDL source code.
If unsupported constructs are present in a description, the analyzer will flag them
as errors and the description can not be synthesized.

• Supported - means that the construct can be used in a synthesizable VHDL descrip-
tion. Some restrictions may be imposed if the construct is not fully supported.

The reminder of this section is dedicated to present the support that Synopsys syn-
thesis tool do for each VHDL constructs [CRM 92].

3.1.1 Design Units

The VHDL language defines design units as the minimal set of instruction that can be
analyzed separately. Each design unit is analyzed to a project library. By default the
project library is denominated WORK. The use of libraries and separate analysis of design
units are fully supported.

The design units specified in the VHDL language are presented in the following sub-
sections.

Entities

The VHDL entity is a hardware abstraction that can represent a whole system, a board,
an integrated circuit or just a cell. Each VHDL entity specifies the interface between the
block it represents and the environment in which it will be used. The declaration of
an entity defines the type and the number of inputs and outputs, but does not include

INESC – QuickChips

Set of Synthesis Tools 6

entityentity name is

[generic(generic declaration);]
[port(port declaration);]
[entity declarative part]

[begin

entity statement part]
end [entity name];

Item Restrictions
generic declaration Only of type integer
port declaration Default values for ports are ignored
entity declarative part Alias declaration and disconnection specification are

unsupported
entity statement part Ignored

Table 1: Entity support

any functionality description. Table 1 presents the restrictions imposed on an entity for
synthesis.

Architectures

An architecture defines the functionality of an entity. It describes how the outputs
are obtained from the inputs.

Each entity can have associated an undetermined number of architectures. The “same”
functionality in each one of them can range from an algorithm (a set of sequential state-
ments within a process) to a structural netlist (a set of components instantiated). The
table 2 shows the architecture support for the Synopsys synthesis tool.

architecture architecture name of entity name is

[architecture declarative part]
begin

[statements]
end [architecture name];

Item Restrictions
architecture declarative part Only subprograms (declaration or body), types, sub-

types, constants, signals or component declarations.
statements Support as presented in sections 3.1.5 and 3.1.4.

Table 2: Architecture support

Configurations

INESC – QuickChips

Set of Synthesis Tools 7

Due to the possibility of existence of several architectures for the same entity, it is
necessary for each entity instantiated, to define which architecture to use.

The configuration unit allows the definition of the entities-architectures pairs that
will be used for each component instantiated inside a given architecture. In table 3 are
described the restrictions to the use of configurations units for synthesis.

configuration configuration name of entity name is

block configuration
end [configuration name];

Item Restrictions
block configuration Only to specify the top-level architecture for a top-level entity.

Component configuration and nested block configuration are
unsupported.

Table 3: Configuration support

Packages

The use of packages permits a better organization of circuit description, through the
use of code that can be shared, such as: constants or type definitions, component decla-
rations or subprograms.

A package can have two parts, the declaration, where the public view of the package is
defined, and the body , where the private information and the subprogram implementations
of the package are included. As shown in table 4, these two views of a package are fully
supported.

package package name is – – package declaration
[package declarative part]

end [package name] ;

package body package name is – – package body
[package body declarative part]

end [package name];

Item Restrictions
package declarative part Fully supported
package body declarative part Fully supported

Table 4: Package support

The IEEE standard package std logic 1164 defines a nine value logic system for
modeling. This package also defines the logic operators and conversion functions necessary

INESC – QuickChips

Set of Synthesis Tools 8

to use a nine value logic. The package is fully supported excluding the following functions:
rising edge, falling edge and is x.

3.1.2 Objects, Data Types and Attributes

VHDL objects are elements that can hold values of a given type. There are three classes
of objects: constants, variables and signals.

Object Restrictions

Constants Deferred constants are unsupported
Variables Initial values are unsupported
Signals register and bus declarations are unsupported. Resolution func-

tions are supported for wired and three-state functions only. Initial
values are unsupported.

Table 5: Supported objects

The type of an object determines which are the values that an object can hold. The
four basic scalar types are: integers, floating point, physical and enumerates. Composite
types, like arrays or structures, can be defined using the basic types. Access types and file
types provide a way to access objects of a given type. Subtypes can be defined through
the imposition of restrictions on another type. The types defined in VHDL language are
listed in table 6 with the restrictions imposed by synthesis.

Types Restrictions

Integer Infinite-precision arithmetic is unsupported. Integer
types are converted to vectors whose width is as small
as possible to accommodate all possible values of the
type range (binary for non-negative ranges and 2’s-
complement for range that include negative numbers).

Floating point Unsupported.
Physical Ignored.
Enumerates Fully supported.
Array Only integers range are supported. Multidimensional

arrays are unsupported, but arrays of arrays are
supported.

Records Fully supported.
Access Unsupported.
File Unsupported.
Incomplete data types Unsupported.

Table 6: Supported types

Attributes are characteristics (values, functions, etc) that can be associated with cer-
tain elements in VHDL. Although the language has a set of predefined attributes it also

INESC – QuickChips

Set of Synthesis Tools 9

allows user defined attributes.

Many synthesis tools define attributes with special meaning for the tool. Although
the characterization and the imposition of constraints could be done through the use of
these, this method should be avoided for a portable VHDL description1. Because VHDL
was developed for simulation, there are some attributes with no meaning for synthesis.
The only supported attributes for synthesis are presented in table 7.

Attributes Class Restrictions

Predefined attributes Only the following attributes are supported:
base, left, high, low, range, reverse range

and length.
User-defined attributes Unsupported.
Synthesis-attributes Are supported to characterize components, input

and output ports, or to provide design and output
constraints.

Table 7: Supported attributes

3.1.3 Expressions

Expressions perform arithmetic or logical computations by applying an operator to one
or more operands. Operators specify the computation to be performed, while operands
are the data for the computation.

Operators

A VHDL operator is characterized by: name, function, number and type of operands,
and result type. It is possible to define new operators, with functions, for any type of
operand and result type, as well as assigning new functions to the predefined VHDL
operators (operator overloading). The VHDL predefined operators are presented in the
table 8 along with the restrictions imposed by the synthesis tool.

Operands

As already mentioned operands determine the date used by the operator to compute
its value. The operands in an expression can include identifiers, names, literals, aggre-
gates, subprograms calls, qualified expressions, type conversions, allocators and another
expressions surrounded by parentheses. The operands supported are presented in table 9.

3.1.4 Sequential Statements

The VHDL statements describe internal organization and/or operation of a circuit. Se-
quential statements are used when it is pretended to describe a circuit in a behavioral way.

1Characterization and imposition of constraints on the design can, and should be done, in the synthesis
tool (interactively or using a script).

INESC – QuickChips

Set of Synthesis Tools 10

Class Operators Restrictions

Logical and, or, nand, nor, xor Fully supported
Relational =, / =, <, <=, >, >= Fully supported
Adding +, −, & Fully supported
Sign +, − Fully supported
Multiplying ∗, /, mod, rem The ∗ operator is fully supported. The /, mod

and rem operators are supported only when both
operands are constant or when the right operand
is a computable1 power of 2.

Miscellaneous ∗∗, abs, not The ∗∗ operator is supported only when both
operands are constant or when the left operand
is a computable1 power of 2. The abs and not op-
erators are fully supported.

1Their value can be statically determined during the analysis of the code.

Table 8: Operators supported

Operands Restrictions

Identifiers Fully supported.
Selected names Fully supported.
Indexed names Fully supported.
Slice names Null slices are unsupported.
Attribute names Fully supported for the attributes defined in section 3.1.2.
Literals Null literals are unsupported. Physical literals are ignored.
Aggregates The use of types as aggregates choices is unsupported. Record

aggregates are unsupported.
Subprograms calls Function conversions on input ports are unsupported.
Qualified expressions Fully supported.
Type conversion Fully supported.
Allocators Unsupported.
Static expressions Fully supported.
Universal expressions Floating-point expressions are unsupported. Precision is limited to

32 bits; all intermediate results are converted to integer.

Table 9: Operands supported

The algorithm is set up in a step by step fashion as in high level programming languages.
All sequential statements are encapsulated inside processes or subprograms. Table 10 lists
the VHDL sequential statements and the restrictions imposed by the synthesis tool.

INESC – QuickChips

Set of Synthesis Tools 11

Statements Restrictions

wait Supported only on the following forms:
wait until signal = logic value ;

wait until signal’event and signal = logic value ;

wait until not signal’stable and signal = logic value ;

where logic value is ’0’ or ’1’ for synchronization with falling or
rising edge of signal, respectively. Wait statements cannot be used
in subprograms or for loops.

Assertions Ignored.
Signal assignment Multiple waveform elements in signal assignment statements are

unsupported. Transport keyword and after clause are ignored.
Variable assignment Fully supported.
Subprogram call Type conversion on formal parameters is unsupported.
If Fully supported.
Case Fully supported.
Loops The loop body must contain at least one wait statements.
For loops The loop range must be a computable, and the loop body must not

contain a wait statement.
While loops The loop body must contain at least one wait statement.
Next Fully supported.
Exit Fully supported.
Return Fully supported.
Null Fully supported.

Table 10: Sequential statements support

INESC – QuickChips

Set of Synthesis Tools 12

3.1.5 Concurrent Statements

Since electronic circuits work in parallel, the VHDL language has included the concurrent
capability to model this behavior. Unlike sequential statements, which are executed one
after another, concurrent statements are executed continuously and in parallel without
any predefined execution order. The support of concurrent statements is presented in
table 11.

3.2 Description Styles

As important as knowning the VHDL subset that can be used in a synthesized description,
is knowning the description style that synthesis tools accept. Only in this way it is possible
to write descriptions that can be synthesized and at the same time get the most from the
synthesis tool.

It is also of great importance to understand how descriptions are mapped to gates.
For instance, the synthesis of the sequential statement if-then-else inside a process
generates a multiplexer, in which the selection input is dependent on the if condition, as
shown in figure 2.

entity examp is
 port(a, b, selection: in bit;
 z: out bit);
end examp;

architecture ifthenelse of examp is
begin
 process(selection, a, b)
 begin
 if selection = ’1’ then -- if instruction
 z <= a;
 else -- else branch
 z <= b;
 end if;
 end process;
end ifthenelse;

Figure 2: Synthesis of an if-then-else inside a process.

However, if the signal assignment is only done in one branch of the if instruction,
the previous solution is not so simple. This situation is represented in figure 3, through
the use of an if without the else branch. In this case, the synthesized circuit is a latch
enabled by the if condition. The use of this memory element is necessary because while
the if condition is false the output signal must keep the previous value.

INESC – QuickChips

Set of Synthesis Tools 13

Statements Restrictions
Block Ports and generics in block statement and guarded blocks are

unsupported.
Process Sensitivity list is ignored.
Subprogram calls Type conversion on formal parameters is unsupported.
Assertions Ignored.
Signal assignment The guarded and transport keywords and after clause are ig-

nored. Multiple waveforms are unsupported.
Component instantiation Type conversion on the formal port of a component specification is

unsupported.
Generate Fully supported.

Table 11: Concurrent statements support

INESC – QuickChips

Set of Synthesis Tools 14

entity examp is
 port(a, selection: in bit;
 z: out bit);
end examp;

architecture ifthen of examp is
begin
 process(selection, a)
 begin
 if selection = ’1’ then -- if instruction
 z <= a; -- without else branch
 end if;
 end process;
end ifthen;

Figure 3: Synthesis of an if without the else branch.

The description of synchronous circuits, in which memory elements (flip-flops) are
used, can be done using either the wait or the if instruction. The figure 4 presents
the synthesis of a flip-flop with synchronous reset through the use of an wait and if

statement.

If a flip-flop with asynchronous reset is required, the description in figure 5 can be used,
which consists on two chained if instructions. The former represents the asynchronous
reset and the later the normal synchronous operation of the circuit.

The description of finite state machines in VHDL can be achieved in different ways,
since a specific statement for their representation does not exist. The most common
descriptions of state machines use two process: one is responsible for the definition of the
synchronous behavior of the circuit; the other, describes the combinational part of the
circuit, the transitions between states and the generation of the outputs values.

The example of figure 6 describes a Moore finite state machine that detects the in-
put sequence "111". The state table of this machine, represented in table 12, is de-
scribed in the combinational process through the use of a case statement controlled by
the present state. Each branch of the case assigns a value to the output and defines
the next state of the machine using an if, whose condition depends on the input value.
This process is identified in the code of the figure 6 with the label comb. The process
identified with the sync label is responsible for the synchronous operation of the state
machine.

The example presented in figure 6 illustrates some points that should be considered
when describing a finite state machine, such as:

• Use of an enumerate type to represent the states of the machine. The use of this
type allows the description of the state machine at a symbolic level. In this way it

INESC – QuickChips

Set of Synthesis Tools 15

entity circuit is
 port(data, clock, reset: in bit;
 z: out bit);
end circuit;

architecture async_rst of circuit is
begin
 process
 begin
 wait until clock’event and clock = ’1’ ;
 if reset = ’1’ then
 z <= ’0’; -- synchronous reset
 else
 z <= data; -- synchronous operation
 end if;
 end process;
end sync_rst;

Figure 4: Synthesis of a flip-flop with synchronous reset.

entity circuit is
 port(data, clock, reset: in bit;
 z: out bit);
end circuit;

architecture async_rst of circuit is
begin
 process (reset, clock)
 begin
 if reset = ’1’ then -- asynchronous reset
 z <= ’0’;
 elsif clock’event and clock = ’1’ then
 z <= data; -- synchronous operation
 end if;
 end process;
end async_rst;

Figure 5: Synthesis of a flip-flop with asynchronous reset.

is left to the synthesis tool to choose the best state codification. However, if the
optimal codification is known it should be given to the synthesis tool.

INESC – QuickChips

Set of Synthesis Tools 16

entity fsm is
 port(data_in, clock, reset: in bit;
 sequence: out bit);
end fsm;

architecture Moore of fsm is
 type states is (zero, one, two, three); -- enumerat type for
 signal present_state, -- the state variables
 next_state: states;
begin

 comb: process(data_in, present_state) -- combinational logic
 begin
 case present_state is
 when zero =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= one;
 else
 next_state <= zero;
 end if;
 when one =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= two;
 else
 next_state <= zero;
 end if;
 when two =>
 sequence <= ’0’;
 if data_in = ’1’ then
 next_state <= three;
 else
 next_state <= zero;
 end if;
 when three =>
 sequence <= ’1’;
 if data_in = ’1’ then
 next_state <= three;
 else
 next_state <= zero;
 end if;
 end case;
 end process;

 sync: process(reset, clock) -- synchronous behavior
 begin
 if reset = ’1’ then
 present_state <= zero;
 elsif clock’event and clock = ’1’ then
 present_state <= next_state;
 end if;
 end process;

end Moore;

Figure 6: Moore state machine to detect the sequence "111".

INESC – QuickChips

Set of Synthesis Tools 17

Present Next State Output
state data in = 0 data in = 1 sequence

zero zero one 0
one zero two 0
two zero three 0

three zero three 1

Table 12: Transition table of the finite state machine.

• Initialization of the state machine using a dedicated signal (reset). Other types
of initialization are possible in VHDL: implicitly, in which the state variable is
initialized to a default value, or explicitly when the variable is declared. Both types
of initialization are appropriate for simulation, but when synthesized the circuit can
evaluate to an unpredictably state after the power on.

• Use of if-then-else statements in the combinational process to completely specify
in all states which are the values for each output and next state. This method avoids
the use of latchs that will force the circuit to an unpredictably state after the power
on.

In descriptions where the use of a multi-value logic is required for the correct specifica-
tion of the circuit, the IEEE standard logic system defineed in package std logic 1164,
should be used.

For circuits in which the outputs are not completely specified for all inputs combination
the don’t-care value, ’-’, should be used. In this way it is possible for the synthesis tool
to generate a better circuit if it uses this information during the logic optimization phase.
For circuits that need three-state lines the high-impedance value ’Z’ can be used, so that
the synthesis tool provides three-state drivers.

The example of figure 7 describes a BCD to 7-segments decoder with three-state
output. The use of the std logic vector type allows to force all outputs to three-state,
when the decoder is not enabled, or to assign to the output (for input values from "1010"

to "1111") a vector of don’t-cares.

4 Code Portability

To guarantee the portability of a description between synthesis tools, it is necessary to use
a common subset of VHDL constructs and a compatible description style. Even if these
restrictions may be difficult to sustain between some tools, there are some constructs that
should not be used in a portable description, such as:

• Specific attributes that are just recognized by one synthesis tool. As mentioned
previously these include the attributes for characterization and imposition of re-
strictions to the circuit. The synthesis package under development by the IEEE

INESC – QuickChips

Set of Synthesis Tools 18

library ieee;
use ieee.std_logic_1164.all;

entity bcd_7seg is
 port(data_in: in std_logic_vector(3 downto 0);
 enable: in std_logic;
 data_out: out std_logic_vector(6 downto 0));
end bcd_7seg;

architecture combinational of bcd_7seg is
begin
 process (data_in, enable)
 begin
 if enable = ’0’ then
 data_out <= (others => ’Z’); -- three-state output
 else
 case data_in is --abcdefg
 when "0000" => data_out <= "1111110";
 when "0001" => data_out <= "1100000";
 when "0010" => data_out <= "1011011";
 when "0011" => data_out <= "1110011";
 when "0100" => data_out <= "1100101";
 when "0101" => data_out <= "0110111";
 when "0110" => data_out <= "0111111";
 when "0111" => data_out <= "1100010";
 when "1000" => data_out <= "1111111";
 when "1001" => data_out <= "1110111";
 when others => data_out <= "-------"; -- don’t-care output
 end case;
 end if;
 end process;
end combinational;

Figure 7: Use the IEEE multi-value logic values.

INESC – QuickChips

Set of Synthesis Tools 19

synthesis working group addresses this problem, defining a set of attributes for syn-
thesis that will become an IEEE standard.

• Synthetic comments2 that allow incorporation in the VHDL description of com-
mands for the synthesis tool. An example of a synthetic comment that most tools
support, but differently, is the one which allows to cancel or re-initialize the analysis
of specific portions of code.

• Functions or procedures described in packages which are integrated in the tool. For
these only the package declaration exists, but the body has no VHDL representation
because it is embedded in the tool.

It should be noticed that to get the most from the synthesis tool it maybe necessary
to use some of this constructs at the cost of getting a non-portable description.

For a multi-level logic system it is encouraged to use the standard package std logic 1164.
This package defines a nine-value logic system and a set of functions to manipulate this
logic system, and is supported by most synthesis tools.

5 Conclusion

In this report we presented the design flow usually used in a synthesis environment. The
information on the synthesizable VHDL subset and the use of a proper description style are
vital for a faster design process, reducing the time spent in each design step or decreasing
the number of iteration cycles needed. The study of the supported VHDL constructs for
the synthesis tool of choice was presented and some examples on a suitable description
style were given.

Some considerations have been made about code portability. The use of the standard
package sdt logic 1164 is a first step for a portable description in order to avoid the use
of tool specific constructs. Special attention is maintained on the follow-up of the work
being developed by the IEEE synthesis working group which is addressing these problems.

References

[CRM 92] Synopsys, Inc. VHDL Compiler Reference Manual, November 1992. Version
3.0.

[Flores 93] Paulo Flores. Especificação funcional de Sistemas Electrónicos Digitais em
Ambiente de Śıntese. Master’s thesis, Instituto Superior Técnico, June 1993.

2Comments in which the first word has a especial meaning to force the tool to interpret the rest of
the line as a command.

INESC – QuickChips

Set of Synthesis Tools 20

[Harper 92] P. Harper and K. Scott. Towards A Standard VHDL Synthesis Package.
In Proceedings of European Design Automation Conference / Proceedings of
Euro-VHDL, September 1992.

[Levitan 89] S. Levitan, A. Martello, R. Owens, and M. Irwin. Using VHDL as a Lan-
guage for Synthesis of CMOS VLSI Circuits. In Proceedings of the Ninth
IFIP Symposium on Computer Hardware Description Languages and their
Applications, June 1989.

[Sim oes 93] Leonel Sim oes. IC Blocks Reference Manual. Technical report, Project
ESPRIT 6043, November 1993.

[Synthesis 92] Synopsys, Inc. Design Compiler Reference Manual, December 1992. Ver-
sion 3.0.

INESC – QuickChips

