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1 Introduction

This report gives a brief review on the use of hardware description languages in a
CAD environment. Special attention will be given to the new emerging standard
language, the VHSIC1 Hardware Description Language (VHDL).

Hardware description languages describe the circuit at an higher level of repre-
sentation allowing an easier description of complex circuits and a direct verification
of the desired functionality through simulation. The translation of the circuit to
a gate-level description can be done either manually or automatically, using for
instance a synthesis tool.

Hardware description languages overcome some of the limitations of algorithmic
languages, where the referencing time is not important. While in the first ones the
temporal behavior of the circuit is explicit in the language in the second ones this
behavior must be represented in some algorithmic way.

The choice of the foundry can, thus, be defered to a later stage in the design flow
and design re-use and library sharing is also made easier because of the technology-
independet representation and because libraries are more readable and much more
pratical to use than netlists.

Hardware description languages are also an important means to interchange
hardware information between organizations, an advantage which become more sig-
nificant if the chosen language enjoys widespread support within the microelectronic
community.

In the next sections we summarize VHDL main features, and outline some com-
ments on it’s use in a CAD design enviromment.

2 The VHDL Language

The standardization of VHDL began in 1986 with the adoption of VHDL version
7.2. The language definition is now is stable and became a DoD2/IEEE standard
for electronic designs. It is currently becoming supported in most commercial CAD
systems.

1VHSIC - Very High Speed Integrated Circuits

2Department of Defense (US)
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2.1 Design Entities

The design entity is one hardware abstraction of VHDL which can represent a whole
system, a board, a chip, a cell or just a gate. Each design entity is formed by two
main parts: the entity declaration and the architecture body. The entity declaration
defines the interface between the device and the environment in which it is used and
the architecture body describes the internal architecture of the entity.

Each entity declaration can have associated any number of architecture bodys.
The same functionality can be obtained using one of the following descriptions:

Structural Description - the design is represented as an arrangement of inter-
connected components.

Dataflow Description - represents the behavior but implies some structure. It is
similar to an RTL description.

Behavior Description - describes the behavior of the circuit without any struc-
tural information. The description is done using a sequence of programming
language statements.

A mixed mode description is also possible using a combination of any of the
three.

entity test circuit is
port(I: in integer range 0 to 7; - - Data in

D IN: in bit; - - Load data
X: in bit vector(1 to 0); - - Operation code
O: out integer range 0 to 7; - - Data out
OVF, - - Overflow condition
LT, EQ, GT: out boolean; - - Comparison results
RESET, - - System reset
CLK: in BIT - - Clock

);
end test circuit;

Figure 1: The interface description



4

architecture behavioral of test circuit is
begin

process
variable reg, acc: integer range 0 to 7;
variable temp: integer range 0 to 15;

begin
if CLK = ’1’ and not CLK’stable then

if D IN = ’1’ then
reg := I;

else
case X is

when ”00” => - - No Operation
null;

when ”01” => - - Load reg into acc
acc := reg;
ovf <= FALSE;

when ”10” => - - Compares reg with acc
LT <= (reg < acc);
GT <= (reg > acc);
EQ <= (reg = acc);

when ”11” => - - Adds reg and acc to acc
temp := reg + acc;
acc := temp rem 8;
ovf <= (temp > 7);

end case;
end if;

end if;
if RESET = ’1’ and RESET’stable then

reg := 0;
acc := 0;

end if;
O <= acc;
wait on CLK, RESET;

end process;
end behavioral;

Figure 2: The behavior description
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To illustrate the concept of a design entity, we will use as example a 3 bit ALU
description3. Figure 1 defines a “black box” for a specific function. The VHDL code
of figure 2 represents one implementation of this function.

2.2 Objects and Data Types

VHDL objects are the entities that contain a value of a given type. There are three
classes of objects: constants, variables and signals. Constants have a fixed value that
can not be changed andVariables have a value which can be changed by assignment.
Signals can be seen as an abstract description of a wire: they have a past history of
values, present value, and a set of projected future values. Only the future values
can be changed by assignment.

The type of the object determines the kind of values that it can hold. VHDL
permits designers to declare any number of data types to characterize objects.

The four basic scalar types are integer, floating point, physical and enumeration .
Composite types like arrays or records can be defined from the basic types. Subtypes
can also be defined using a constraint on a specific type. Two other important
types are available. Access types which are similar to pointer variables in other
languages, and file types which provide a way of communication with an external
design environment.

2.3 The Timing Model

The VHDL timing model is quite general and complex. As a discrete event simula-
tion description language, VHDL assumes that all signals propagate in one direction
and some delay is always involved.

The time scale can be represented in two different ways, one that measures the
real time, and other that represents the time to evaluate one simulation cycle. The
latter is called delta delay and can be seen as an infinitesimally small but non-zero
delay: each time one simulation cycle ends within the same real time one delta delay
is incremented. The real time advances for the next value only after all the events
for that instant have been handled.

A driver is a container for a projected output waveform. For each driver asso-
ciated to a signal, through a signal statement assignment, two delay models can be
used to control the way that the new pairs, time/value, are placed in the driver:

3For a more detailed description see reference [1]
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Inertial Delay - This is the default model in VHDL, which is used for model
switching circuits, where, unless a value persists for a minimum amount of
time in the input, no changes occur on the output.

Transport Delay - This model is analogous to the delay incurred by passing a
current through a wire. Any pulse on the input is transmitted, no matter how
short its duration is.

2.4 Statements

Statements specify the organization and the operation of the design. As most hard-
ware devices work in parallel, VHDL is a massively concurrent language. Therefore,
the designer has two levels to describe the operation of the system: the sequential
level and the concurrent level.

2.4.1 Sequential Statements

All sequential elements are encapsulated in processes, subprograms or functions for
use in concurrent contexts. The sequential statements specify the algorithms in a
step by step fashion. Instruction similar to any high-level language like if, case,

loops, procedures, variable assignment, etc are allowed with their own syntax. As
an hardware description language some constructions are unique to VHDL.

Sequential Signal Assignment Statement is where future values for a signal
are “proposed”. As will be shown in the following sections, it is not certain
that this value will become the actual value of the signal.

Wait Statement suspends the execution of the algorithm, waiting for some set
of conditions. These conditions can be just a timeout, a logical condition, a
signal sensitivity or a mix of the three.

Sequential Assertion Statement checks if the specified condition is true, other-
wise an error is reported.

Sequential statements are used when we want to describe a circuit using just
behavior, without any structural information.
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2.4.2 Concurrent Statements

Concurrent statements are executed asynchronously, no relative order of execution
being assumed. They are used for the structural and dataflow descriptions of the
circuit.

• Structural Description

Block Statement allows concurrent statements to be grouped into one log-
ical unit describing a portion of the design.

Component Instantiation Statement defines a subcomponent of the de-
sign entity and associates signals to the interface ports of that subcom-
ponent.

Generate Statement provides a mechanism for iterative or conditional elab-
oration of a portion of a description.

• Dataflow Description

Concurrent Signal Assignment Statement creates a new driver for each
assignment where new values “proposed” for the signal are retained. Each
signal may have associated a set of drivers. If for the same instant differ-
ent drivers try to impose different values, a resolution function must be
called to decide the actual signal value.

Process Statement defines an independent sequential way of describing the
behavior of some part of the design.

Concurrent Procedures Calls are executed asynchronously.

Concurrent Assertions Statements have the same meaning as sequential
assertions but used in concurrent statements.

3 Application of VHDL

Although VHDL started as a simulation language, currently other CAD tools accept
it as way to describe a circuit. Due to its complexity, some restrictions are usually
made, and most of the tools support only a specific subset of the language.
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3.1 Simulators

As expected, simulators were the first tools to use VHDL. Today many simulators
are available from different CAD vendors but some of them use only a subset of the
language.

Two differents approaches have been followed in the design of VHDL simulators.
Producing intermediate code, for latter interpretation is one of them, resulting in a
slower simulation but with faster turnaround time to correct errors. Others gener-
ate C code directly from VHDL, producing a faster executable simulation. Future
simulators will compile directly from VHDL to machine executable code.

3.2 Synthesis Tools

Sinthesis tools are starting to support VHDL, although some problems can arise with
its use for synthesis [2]. Difficulties such as modeling low-level devices, understand-
ing if timing information is part of specification or if it belongs to the simulation
model, defining the equivalence between logic levels and electrical levels are some of
the problems.

Thus, synthesizing a circuit from a VHDL description is possible, but some
limitations are imposed to that description. Only a subset of the language is used,
which means that some of the constructs specific to simulation may be ignored or
even not supported. Some tools impose more severe restrictions, requiring the use
of some structural information, such as an RTL description.

Moreover the sythesis results depend on the type of description.

3.3 Other CAD Tools

Design capture and test tools have also already started to accept VHDL. Again, just
a subset of the language is supported. So for each tool, there is usually a VHDL
flavor.

Tools, like analyzers, which just take a VHDL description, verify its correctness
with respect to syntax and static semantics, and enter them into a VHDL design
library make easier the interface between old and new tools to VHDL. The use of
the attribute feature of the language, which allows associate arbitrary design data
with a variety of items in VHDL, is another way to facilitate tool interface.
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4 Conclusions

In the future, electronic designs will start from higher abstraction levels which means
that hardware description languages will be routinely used.

Unlike other hardware description languages, that are property languages, VHDL
is public, allowing you to be uncommitted to any company polices. Most of all, the
design of the language itself involved user participation which “guarantees” that
VHDL will become a used standard.

The adoption of VHDL as DoD/IEEE standard for electronic design descrip-
tion brought many benefits to the CAD community. First, from the viewpoint of
the designer it is only necessary to learn one language for the whole design task
(simulation, synthesis and so on). Second, it provides a standard for sharing infor-
mation between the design team using different levels of abstraction. Due to the
possibility of different styles of description, it is possible to design complex systems
on a chip, without any commitment to any particular architecture. Even vendors
can distribute the behavior of their devices without giving any proprietary informa-
tion about construction. Finally, documentation of digital systems is possible in a
technology-independent way.

Decide which will be the best set of VHDL constructs and the design style to
adopt for a CAD environment depends on the CAD tool involved and is still a
matter of current research. The inexistence of a common VHDL subset for the
different CAD tools is still a major limitation.
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