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Resumo

A geração automática de padrões de teste (ATPG) apresenta muitos problemas de optimização

que têm influência directa no tempo de teste de circuitos digitais, no auto-teste integrado

(BIST) e na dissipação da potência, entre outros. Infelizmente, a maioria destes problemas

são geralmente resolvidos usando aproximações heurı́sticas que não garantem uma solução

óptima. Os algoritmos discretos, em particular os algoritmos de procura para satisfação

(SAT), são uma técnica promissora para resolver problemas de optimização representados

como problemas de programação linear inteira (ILP). No entanto, para a maioria dos proble-

mas de ATPG não existia, até à data, qualquer modelo formal do optimização.

Nesta tese apresentamos modelos de optimização para problemas de ATPG relaciona-

dos com a compactação de vectores de teste, BIST e dissipação de potência. Apresentamos

modelos para compactação que minimizam o número total de padrões de teste necessários

para detectar todas as faltas detectáveis de um circuito combinatório. Definimos um novo

modelo de optimização para calcular padrões de teste com entradas indefinidas, que iden-

tifica padrões de teste com o número mı́nimo de entradas especificadas para detectar uma

dada falta. Propomos um modelo para identificar o menor circuito gerador de testes para

BIST, que detecta todas as faltas detectáveis, assumindo que durante o teste algumas en-

tradas primárias do circuito são equivalentes. Finalmente, desenvolvemos um modelo para

determinar a melhor sequência dos padrões de teste e as atribuições às entradas indefinidas

que influencia a potência dissipada durante o teste.

Implementámos todos os modelos e algoritmos que têm tamanho razoável de representação

e apresentamos resultados para os circuitos padrão do ISCAS e do IWLS confirmando a apli-

cabilidade prática dos nossos modelos.

Palavras-chave: Modelos de optimização para geração automática de padrões

de teste (ATPG), satisfação (SAT), programação linear inteira

(ILP), compactação/compressão do teste, auto-teste integrado (BIST),

redução de potência.
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Abstract

The field of automatic test pattern generation (ATPG) presents a large number of chal-

lenging optimization problems of key significance that impact testing time, built-in self-test

(BIST), power dissipation, among others. Unfortunately, the vast majority of these problems

are most often solved using heuristic approaches that do not guarantee an optimum solution.

Discrete algorithms, in particular satisfiability search algorithms (SAT), are a promising tech-

nique for solving optimization problems cast as integer linear programming (ILP) instances,

however, for most ATPG problems no formal optimization models existed, so far.

In this dissertation we derive several optimization models for ATPG problems concerning

test set compaction, BIST and power dissipation. We present models for test set compaction

which minimize the total number of test patterns that detect all detectable faults in a combi-

national circuit. We define a new optimization model for computing test patterns with don’t

cares, that identifies test patterns with the least number of specified input assignments that

detect a target fault. We propose a model to identify a minimal BIST test generator circuit,

which detects all detectable faults, assuming that some primary circuit inputs can be declared

equivalent for testing purposes. Finally, we develop a model for optimum pattern sequence

reordering and don’t care assignment that impacts directly the power dissipation during test

set application.

We have implemented all the models and algorithms that have reasonable representation

size and present results using the ISCAS and IWLS benchmark circuits which confirm the

practical applicability of our models.

Keywords: Automatic test pattern generation (ATPG) optimization models, satisfiabil-

ity (SAT), integer linear programming (ILP), test compaction/compression,

built-in self-test (BIST), power reduction.
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1.1 Motivation and Objectives 3

1.1 Motivation and Objectives

Technology advances in design and manufacturing of integrated circuits have contributed

greatly to the increase in the complexity of hardware systems. As physical dimensions be-

come smaller, integrated circuits are designed to run faster and to integrate higher function-

ality, therefore the complexity of circuit analysis, synthesis and test also increases.

The density of integrated circuits has been continuously increasing over the last decades,

however, the number of I/O pins in an integrated circuit remains small. Therefore, circuit

testing is becoming increasingly complex and is already one of the major costs to the inte-

grated circuit industry (estimated up to 30%) [Serra 97]. In general, the major objective in

circuit testing consists in the identification of malfunctioning circuits, resulting from phys-

ical defects. Also, for the faulty circuits it may be possible to locate the malfunction using

fault diagnoses techniques.

A circuit is tested by applying a set of input stimuli and comparing the output responses

of the circuit under test with the response of the fault-free circuit, whose results were ob-

tained by simulation. Applying all the different 2n logical input stimuli combinations to the

n primary inputs of the circuit is only practical when n does not exceed 25–30 bits. Deter-

mining a subset of all possible input combinations for detecting a given percentage of faults

is denoted as the test pattern generation problem. While dedicated techniques exist for se-

quential circuits, most testing techniques, as the ones presented in this thesis, are conceived

considering only combinational circuits. This is not a strong restriction because sequential

circuits can be viewed as a set of combinational functions and memory elements, that can

be configured as combinational circuits at testing time. This general approach is one of

the methods of design for testability (DFT) used for enhancing the testability of a circuit.

In particular, scan-based design is the best known approach for separating latches from the

combinational gates, such that some or all of the latches are also used in the testing process.

The most common metrics used by the research community to compare automatic test

pattern generation (ATPG) algorithms are: fault coverage, robustness and test generation

time. Fault coverage is defined as the quotient between the number of faults detected using

the test set computed by an ATPG algorithm/tool, and the total number of detectable faults.
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The goal of all ATPGs is to achieve 100% of fault coverage, i.e. to compute a test set that

detects all detectable faults in the circuit, for the selected fault model. Robustness refers to

the capability of the algorithm to identify all the non-detectable faults i.e. faults for which

no test pattern can be computed. Test generation time indicates how fast an ATPG algorithm

can compute a test set. Deterministic test generation is very complex, but ATPG algorithms

should be fast and the CPU time should scale well for large designs.

However, one might want to relax the test generation time constraint in favor of getting

an improved test set regarding some purposed metric, because the test pattern generation is

done once per design, but the testing of the circuit, using the computed test set, may be done

millions of times (in the production line and/or on the system). Therefore, the test generation

time may be not a key issue when the test set is generated with some optimization goal.

Besides the above metrics, that existing ATPG algorithms try to optimize, the field of

ATPG presents a large number of other challenging optimization problems of key signif-

icance that impact testing time, buit-in self-test (BIST), power dissipation, among others.

Unfortunately, the vast majority of these problems, when addressed, are most often solved

using heuristic approaches that do not guarantee an optimum solution.

The main objective of this thesis is to define formal optimization models for ATPG prob-

lems. We propose different models for problems concerning test set compaction, BIST, and

power dissipation. Moreover, for some of these problems we also present alternative heuris-

tic models/algorithms.

Discrete algorithms, in particular satisfiability search algorithms (SAT), for which test

pattern generation models exist, are also a promising technique for solving optimization

problems cast as integer linear programming (ILP) instances. An ILP instance is a mathe-

matical model to compute a set of integer values which optimize a given cost (or objective)

function subject to a set of linear constraints. Using a matrix notation a generic ILP problem
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can be represented in the following general form:

minimize c � x
subject to A � x � b (1.1)

and x
�

0

x is integer

where x is the vector of integer values to be determined, A is the matrix of constraints, and b

and c are generic vectors of coefficients. The discrete nature of this generic problem formu-

lation (1.1) makes it computationally hard. One approximated solution for these problems

can be computed by relaxing the restriction of x being integer, and then using well known

linear programming general methods (e.g. the Simplex algorithm). However, rounding the

computed real solution does not guarantee an optimal value of the cost function. This is

particularly significant in the case where the variables of the problem (the x vector) are con-

strained to binary values (0 or 1), i.e. we have a zero-one integer linear programming problem

(ZOILP).

Various techniques and algorithms exist for solving ILP problems. We study the use of

satisfiability algorithms for solving zero-one ILP1 problems using two different approaches:

the more well known linear search method [Barth 95], and a recent branch and bound method.

Implementations of both methods, based on the same SAT solver, and other generic, com-

mercial and academic, ILP solvers are evaluated. Given this evaluation we select the ade-

quate tool that will be used to solve the zero-one ILP optimization models proposed in the

remainder of the thesis.

The use of satisfiability algorithms also proved to be an effective approach for generic

ATPG. Satisfiability-based ATPG algorithms do not search the circuit structure directly to

identify a test pattern, as done by traditional algorithms like the D-algorithm [Roth 66], PO-

DEM [Goel 81] or FAN [Fujiwara 83]. Instead, satisfiability-based approaches construct an

algebraic formula that is subsequently used to compute the test pattern, by searching for one

1Sometimes, for a matter of simplicity we refer to generic ILP problems/models with the meaning of zero-

one ILP (ZOILP).
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of its solutions. Transforming the algebraic formula into a zero-one ILP problem is crucial

to establish formal optimization models for ATPG problems regarding some cost function.

However, these models are specific for each optimization test problem we are solving, and

must be tuned accordingly.

Determining the minimum number of test vectors that detect all detectable faults in a

circuit is a key issue in testing, because the size of the test set has a great impact on the

total testing time, especially in scan-based design testing. The size of the test has also great

influence on the resources needed to store the test patterns and the correct circuit outputs,

on the external testing machine or in the circuit itself. We propose a new exact model to

find the minimum test set for an arbitrary combinational circuit. The proposed ILP model

has a representation size that is polynomial in the size of the circuit description and which

is smaller than other existing solutions. Moreover, we describe several practical techniques

to further reduce the size of the proposed model. To determine the influence of different

strategies used by test pattern generators in the final test set size, a study is performed on test

set compaction obtained by using a set cover model over the generated test set.

The existence of unspecified inputs (or bits) in test patterns has several applications in

test optimization. However, the existing satisfiability-based test pattern generation models

use a logic of two values (0 and 1) where the don’t care value (X ) is not considered. There-

fore, in general, they are unable to compute test patterns which minimized the number of

specified inputs. We present a new model for test pattern generation for single stuck-at faults

in combinational circuits, where don’t cares are taken in consideration by using a logic of

three values (0, 1 and X ). The proposed solution is based on an ILP formulation which builds

on existing propositional satisfiability models for test pattern generation. The resulting ILP

formulation is linear on the size of the original SAT model for test generation, which is lin-

ear on the size of the circuit. The resulting algebraic formula is casted into a zero-one ILP

optimization model for computing test patterns with the maximum number of don’t cares,

i.e. the minimum number of specified inputs.

One important application of test generation with unspecified inputs is in BIST. The

main objectives of BIST are the design of test pattern generators circuits which achieve the

highest fault coverage, require the shortest sequence of test vectors and utilize the minimum



1.1 Motivation and Objectives 7

circuit area. Traditional BIST test generators are implemented with Linear Shift Feedback

Registers (LFSR) which generate pseudo-random sequences for the circuit under test. In

a simple BIST architecture the fault coverage depends on the testing time (i.e. number of

patterns in the sequence applied) and the initial seed of the pseudo-random generator (i.e. the

initial value of the LFSR). Many solutions have been proposed in order to reduce testing time

without reducing fault coverage, which, in general, result in some added circuitry causing an

area penalty. We propose a model to identify a minimal BIST test generator circuit, which

detects all detectable faults, assuming that some primary inputs can be declared equivalent

for testing purposes. The zero-one ILP model for test pattern generation with don’t cares is

then extended to identify compatibility relations between the primary inputs of the circuit

under test. The proposed model targets a specific built-in self-test architecture which is able

to reduce simultaneously the testing time and the test generator area overhead and still assure

100% fault coverage.

Other application of test set generation with a minimum number of specified inputs is

in the reduction of power dissipation during test set application. For a significant num-

ber of electronic systems used in safety-critical and/or mobile applications circuit testing is

performed periodically. For those systems, power dissipation during built-in self test can

represent a significant percentage of the overall power dissipation. One possible solution

to address this problem consists in reordering the test pattern sequence with the purpose of

reducing the amount of power dissipated during circuit testing. By reordering test pattern

sequences, one is able to reduce the circuit activity and consequently to minimize power

dissipation. Moreover, if the test patterns exhibit a large number of don’t cares the power

dissipated during test application can be further reduced because don’t cares can be spec-

ified with the appropriate logic value during test pattern sequence reordering. We propose

a zero-one ILP model for optimum pattern sequence reordering and don’t care assignment

that targets minimization of power dissipation during test set application. However, given the

complexity of the proposed model we also present an efficient heuristic-based approximation

algorithm, that reorders pattern sequences and assigns values to don’t care bits to minimize

the power dissipation during the test set application.

The work in this thesis was developed within the following research groups at INESC in
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Lisbon: ESDA – ELECTRONIC SYSTEM DESIGNS AND AUTOMATION group (http://esda.inesc.pt),

and SAT – SOFTWARE ALGORITHMS AND TOOLS FOR CONSTRAINT SOLVING group2

(http://sat.inesc.pt). Moreover, the present work was partially supported by two projects

from the Portuguese Ministry of Science and Technology (http://www.fct.mct.pt): GRASP

– Satisfiability algorithms for digital circuit analysis (PRAXIS 2/2.1/TIT/1597/95) and OPTI-

TEST – Models and algorithms for optimization problems in the digital system testing

(PRAXIS C/EEI/11266/98).

1.2 Original Contributions

The main original contributions in this thesis are:� Development of a new formal model to compute the minimum size test set – To

our best knowledge, only two other approaches [Matsunaga 93, Silva 98] have pro-

posed non-heuristic solutions to the minimum test set problem for arbitrary combi-

national circuits. While the former has a worst-case exponential representation size,

the latter has a worst-case polynomial representation size, O � n3 � . The new model

has also a worst-case polynomial representation size, O � n3 � , but, for typical circuits

the size of the resulting ILP model is significantly smaller. For the selected bench-

mark circuits the size reduction can go up to 47% when comparing to the solution

in [Silva 98].� Extension of existing satisfiability-based ATPG models to compute test patterns

with don’t cares – Most satisfiability-based ATPG models use a two-value logic sys-

tem to map the circuit representation into an algebraic formula. Therefore, they can

not represent the existence of don’t care values in the circuit. These models have

been extended to use a three-value logic that efficiently supports don’t care represen-

tation. We developed the MTP ATPG tool by casting this model to an ILP problem

2The members of SAT group were part of the ALGOS – ALGORITHMS FOR OPTIMIZATION AND SIMU-

LATION group (http://algos.inesc.pt), until November 2000.
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that identifies, for a given fault, a test pattern with the minimum number of specified

inputs [Flores 98a, Flores 98b, Flores 98c].� Proposal of a new ATPG model targeting a minimal BIST circuit generator –

Most common BIST test patterns generators use LFSRs within some architectures

to reduce testing time without compromising fault coverage. [Chen 95] proposed a

counter-based test generator circuit with a reduced number of bits, that ensures 100%

fault coverage and requires less testing time, and smaller area, than traditional archi-

tectures. The number of bits in the counter depends on the number of primary inputs

that can be declared equivalent or compatible for testing purposes. We propose a new

ATPG model that computes test patterns maximizing the number of compatible in-

puts, thus minimizing the number of bits in the counter. This model was implemented

in the MTP-C ATPG tool [Flores 99b].� Development of new model for optimum test pattern reordering, and bit as-

signment targeting low-power testing – The minimization of the power dissipated

during testing became more important with the advent of mobile computation. Re-

ordering sequences of completely specified test patterns [Chakravarty 94] is a known

solution to reduce power dissipation during testing. However, the existence of don’t

cares in the test set can be used to further reduce power dissipation, but no model ex-

isted so far that supported it. We propose an ILP optimization model for assignment

and reordering of incompletely specified test sequences targeting minimum power

dissipation during testing. We also present heuristic algorithms for this problem and

show that the existence of don’t cares has a direct impact in the reduction of power

dissipation during testing [Flores 99a, Costa 98a, Costa 98b].

Other relevant contributions of this thesis are:� Proposal of a optimization satisfiability-based algorithm – The use of satisfia-

bility algorithms to solve zero-one ILPs was proposed in [Barth 95]. However, the

algorithm described was shown to be particularly inefficient for a large number of

optimization instances [Silva 96a]. We propose the utilization and evaluate an algo-

rithm based on a branch and bound procedure, which is faster and solves more SAT
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based instances that other optimization tools (commercial and academic). The bsolo

algorithm was first described in [Manquinho 97].� Study of the effect of fault simulation in test set compaction – The use of set

covering algorithms for test set compaction was already proposed in [Hochbaum 96],

but only very preliminary experiments were conducted. We present a generic set

cover based compaction tool, MTSC, and study the impact of fault simulation in the

final test set size [Flores 99c].

1.3 Thesis Organization

This thesis is organized in 8 chapters which describe most of the research work devel-

oped. Each chapter was written to be, as much as possible, self-contained. Therefore some

subjects may be referred several times in different chapters.

After this introduction, we present in Chapter 2 some basic definitions used in the digital

circuit testing area and overview the most significant test pattern generator algorithms. We

group test pattern generation algorithms in two classes: structural or traditional algorithms,

that directly use the structure of the circuit to compute the test patterns; and satisfiability-

based algorithms, that use an algebraic formula generated from the circuit description, whose

solution, i.e. identifying a test pattern, is computed using “generic” satisfiability algorithms.

We give special attention to the generation of the algebraic formulas in Conjunctive Nor-

mal Formula (CNF) notation and describe in some detail existing propositional satisfiability

models for ATPG. We also describe heuristic techniques used during and/or after test pattern

generation to reduce the test set size, i.e. to obtain a compacted final test set.

In Chapter 3 we present an overview of the most common optimization models and algo-

rithms. We give particular emphasis to satisfiability-based algorithms for solving zero-one

ILPs and describe in some detail two approaches: linear search and branch and bound. We

evaluate several implementations of ILP solvers on different problems in order to select the

adequate solver for the instances that we will encounter in the remainder of the thesis.

In Chapter 4 we address the problem of determining the minimum size test set for a

circuit, a fundamental problem in digital system testing. However, unlike many competitive
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solutions that have been proposed, which are based on heuristics, we focus our attention

on exact models. We describe a minimum test set reference model in which the size of the

zero-one ILP formulation is polynomial in the size of the circuit, O � n3 � . Then, we propose

a new model for minimum test set computation whose zero-one ILP formulation has, for

typical circuits, a representation size that is significantly smaller than previously existing

solutions. We present, for both models, some practical simplification techniques which are

able to significantly reduce the final size of the ILP formulation. However, as in the reference

model, the proposed model still grows cubically with the circuit size. Therefore, we consider

an alternative approach for computing a minimal test set size: we use a set covering model

to compact test sets that were obtained by an ATPG tool or any heuristic test set compaction

procedure. With this objective, recent and highly effective set covering algorithms are used

to compact the test sets of several benchmark circuits. We study the relationship between

the application of fault simulation and the ability of reducing the test set size and conclude

that by not using fault simulation and targeting all faults, we are able to compute a more

compacted test set.

In Chapter 5 we address the problem of test pattern generation for single stuck-at faults

in combinational circuits, under the additional constraint that the number of specified pri-

mary input assignments is minimized. We first extend the existing propositional satisfiability

model for test pattern generation to represent logic gates in which the don’t care value is

modeled. Then, we present the ILP formulation for computing test patterns with the mini-

mum number of specified inputs, whose size complexity is linear on the size of the circuit.

Some limitations of the proposed model are discussed in order to identify the conditions

when the optimum solution of the model does not correspond to the minimum unspecified

vector that detects a given fault. Results on benchmark circuits are presented which val-

idate the practical applicability of the test pattern minimization model and associated ILP

algorithm.

In Chapter 6 we derive a model for test generation with maximum width compression in

order to identify minimal BIST test generators. We present a brief overview of BIST circuit

generators and of the most used techniques to achieve high fault coverages with: short test-

ing times and minimum circuit area overhead. The notion of compatibility relations between
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primary inputs of the circuit under test is formally introduced. The proposed algorithmic

solution is based on an ILP formulation that builds on the previously proposed propositional

satisfiability model for test pattern generation with don’t cares. Extra constraints are intro-

duced to identify the maximum number of compatibility classes that determine which inputs

are equivalent for testing purposes. Due to a limitation of the available optimizer, we had to

relax the objective function of the model. Even though, we are able to illustrate the practical

applicability of our approach for a wide range of benchmark circuits.

In Chapter 7 we address the problem of power reduction during test set application.

We present the power dissipation model for generic CMOS circuits and use an estimation

model based on the Hamming distance, to evaluate the power dissipated by any test pattern

sequence. Hence, by reordering test pattern sequences we are able to minimize power dissi-

pation. This problem can be modeled as an instance of the traveling sales-person problem,

provided the test sequence does not exhibit don’t cares. For test sequences with don’t cares a

new ILP model is developed. The proposed model makes possible the identification of both

the optimum test pattern sequence and the values to be assigned to each don’t care bit in

order to minimize the total “power dissipation” during testing. Due to the complexity of the

proposed “exact” optimization model, we developed a heuristic-based algorithm for comput-

ing approximated solutions for this problem. We present results showing that the proposed

heuristics effectively reduce the power dissipated during the application of a test set, and

that the Hamming distance between consecutive test vectors has good correlation with the

computed power dissipation.

Finally in Chapter 8, we present the conclusions of this thesis and provide directions for

future research.

The three appendixes included at the end of the document contain two proofs and an

algorithm description that were removed from the main document to improve its readability:

(1) establish the accuracy of the model proposed in Chapter 5 to compute test patterns with

don’t cares; (2) prove that the set of constraints used in Chapter 7 eliminates all partial

sequences of test patterns without excluding any complete sequence and (3) describe the

Christofides algorithm used in Chapter 7 to define an initial solution for the test pattern

sequence.
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2.1 Introduction

Circuit testing can be performed at several abstraction levels: at the circuit level, at the

board level and at the system level. While testing at the latter two levels emphasizes fault

location for repair purposes, testing at the circuit level has, in most cases, a single purpose:

to distinguish between good and faulty circuits.

Faulty circuits occur when physical causes, called defects, change the layout of the cir-

cuit during fabrication. These defects are translated into electrical faults and, thereafter, are

translated into logical faults such that they can be tested with logical signals. This mapping

of defects into electrical, and thereafter into logical faults is called fault modeling. Various

fault models exist for digital circuits which consider not only permanent failures but also

temporary failures [Mourad 87, Abramovici 90]. The most common fault model assumes

single stuck-at faults (SSF) even though it is clear that this model does not accurately rep-

resent all actual physical defects. Moreover, as we will see, the advantages of the single

stuck-at fault model assures its usage in the most recent technologies [Aitken 99].

For a given fault model, the problem of test pattern generation consists of finding logical

input stimuli, which, in the presence of the targeted faults, will produce a response on circuit

outputs that differs from the expected response. The test generation process for different

fault models is computational hard, and it has already been proven to be NP-complete for

SSF [Fujiwara 82, Krishnamurthy 84]. The challenge of automated test pattern generation

(ATPG) consists of designing algorithms and heuristics which generate test sets in minimal

time but with a maximal fault coverage and with a minimal test set application time. This

latter goal is, in general, achieved by reducing (compact) the size (i.e. the number of vectors)

of the final test set.

In this chapter we introduce basic definitions used in the digital circuit testing area and

the major automatic test pattern generation algorithms along with some techniques to reduce

test set size. The chapter is organized in three main sections. In the first section we present

some basic test definitions, most of them based on [Abramovici 90]. We address the problem

of fault modeling concentrating our attention on the single stuck-at fault model. Using this

model we present the formal definition of fault detection and fault redundancy, and study
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the relation of faults that must be targeted to generate a complete test set. Since most of

the models proposed in this dissertation use the satisfiability framework, we describe, also

in this section, how an algebraic formula for test pattern generation is derived from a circuit

description.

In the second section, we describe the most popular ATPG algorithms. Chronologically,

we briefly discuss the techniques introduced by each algorithm to improve the overall perfor-

mance of test pattern generation. However, we distinguish two classes of ATPG algorithms,

structural algorithms, where the search process is directly based on the structure of the cir-

cuit, and satisfiability algorithms, where the search process is done over an algebraic formula

generated from the circuit description.

In the third section, we study some heuristic-based algorithms for test set compaction.

Most algorithms use a combination of methods that can be classified into compaction dur-

ing test generation or post-generation compaction [Chang 95], also referred to as dynamic

compaction or static compaction, respectively [Kajihara 95].

2.2 Basic Definitions

Fault modeling

Faults represent the effect, on the behavior of the modeled system, of physical defects

that occur during circuit manufacturing or during circuit operation. For systems described

at the logic level it is common to separate the logic function from the temporal attributes.

Therefore we also distinguish between logical faults that affect the logic function and delay

faults that affect the operating speed of the circuit. We will focus our attention in the former

category, the logical faults, because they are widely accepted in IC industry since they are

easier to test in production than the delay faults.

Fault modeling is closely related to the type of model/description used for the circuit.

Faults defined based on a structural description of the circuit are referred to as structural

faults; their effect is to modify the interconnection among components (e.g. gates, transistors,

etc). Faults defined using a functional model are denoted as functional faults; their effect is

to modify the behavior of functional blocks (e.g. changing a truth table of a component or
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inhibit an RTL operation). For both types of faults we should be able to determine the output

of the circuit in the presence of the fault.

We assume that we have at most one logical fault in the circuit we are testing. However,

if multiple faults are present in the circuit we can still use the single-fault assumption for test

pattern generation, because, in most cases, a multiple fault can also be detected by the tests

generated for individual single faults that compose the multiple one. But, for those small

number of circuits in which fault masking occurs, i.e. the presence of multiple faults are not

detected by the test set, then a multiple stuck-at fault model should be used [Abramovici 90].

Structural faults consider only that two types of defects affect the interconnections be-

tween components: shorts and opens. A short results from the connection of two points

not intended to be connected, while an open results from the breaking of a connection. For

CMOS circuits, and other technologies, a short between an electrical node and the ground or

the power supply corresponds to fix that node to a predefined voltage level. From the logical

point of view this fault corresponds to have the signal of that node stuck at a fixed logic

value. These faults are denoted as stuck-at-0 or stuck-at-1, respectively. A short between

two signal lines usually creates a new logic function. This type of short represents a new

logical fault referred to as a bridging fault.

In many technologies, an open on a unidirectional signal line with only one fanout is

equivalent to assume that the line has a constant value. Therefore the line appears to be

stuck-at some logic value and the logical stuck-at fault model can be used. This model can

be also used if the line assumes a constant value resulting from a physical fault internal to

the component that drives the line. An open in a signal line with fanout may result in a fault

that is associated only with some fanout branches. To use the single-fault stuck-at model we

have to consider all the fanout branches faults separately and the stuck-at fault of the whole

line, the stem fault. Figure 2.1 shows a circuit with several physical defects that result in

two shorts (line d shorted to power and line f shorted to ground) and an open in line c (line

c was broken in two path, c and c � ). The short defects are modeled by simple stuck-at-1

and stuck-at-0 faults, respectively. The open defect can be modeled by a stuck-at-0 fault in

the fanout branch c � (assuming that we are using a technology in which dangling inputs are

interpret as logic level 0).
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Figure 2.1: Using the stuck-at fault model to model shorts and open defects.

There are other fault models. For example, we can assume that faults are located in the

transistors using the stuck-on fault model, in which a MOS transistor is always on, or stuck-

open fault model, in which a transistor in the pull-up or pull-down path is open introducing

some memory in the circuit [Mourad 87]. Fault models like this are more realistic because

they model more closely the actual physical defects. However, in practice the simple stuck-at

fault model has been found to work well and we concentrate on this model [Abramovici 90,

Smith 97].

The single stuck fault model is also denoted as classical or standard model because it

was the first model and it has been widely studied and used. Despite being known that the

model validity is limited, the single stuck model has a set of attributes that makes its usage

very attractive [Abramovici 90]:� As we noted, it may represent different physical defects.� The model is independent of the technology. Since the model deals only with inter-



2.2 Basic Definitions 19

connection lines being stuck-at a given logic value, it can be used for the implemen-

tation of the circuit in different technologies.� Experience has shown that the test vectors used to detect single stuck-at faults in

general detect many other non-classical faults.� The number of single stuck-at faults is small compared to the number of faults in

other fault models. Moreover, as we will show, the number of faults considered for

test pattern generation can be reduced by fault collapsing techniques.� The single stuck fault model can be used to model other types of faults by introducing

“virtual logic” in the circuit that changes the behavior of some lines [Abramovici 90].

Fault Detection and Redundancy

Let us consider a circuit C that implements a combinational logic function denoted as

gC � x � , where x represents the input vector. We refer to a test vector (or test pattern) as a input

vector (primary input assignments) with the main purpose of detecting the existence a given

fault or faults in the circuit.

Definition 2.1 (Test pattern) We define a test pattern (or test vector) t as an assignment to

the primary inputs, such that some assignments may be unspecified, i.e. t �
	�� x1 � v1
� ���� � xn � vn

���
for all xi � PI and with vi ��� 0 � 1 � X � .
Definition 2.2 (Test pattern specification) A test pattern t is completely specified when-

ever t ��	�� x1 � v1
� ���� � xn � vn

��� for all xi � PI and with vi ��� 0 � 1 � . Otherwise, t is said to be

incompletely specified.

The output response of the circuit to a test vector t is denoted as gC � t � . Note that, if the

circuit has multiple outputs the resulting output gC � t � is a vector. The existence of fault f

in the circuit modifies its functionality and a new combinational function is defined by the

circuit, g f
C � x � . Note that we are only considering faults that do not change the combinational

characteristic of the circuit (i.e. faults that do not introduce memory and sequential behavior).
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Definition 2.3 (Fault detection) A test vector t detects a fault f if and only if t distinguishes

the outputs from the good and faulty circuit:

gC � t ���� g f
C � t �

A circuit is tested by applying a test sequence � t1 � t2 ������ tm � denoted as test set T . For

a combinational circuit this sequence of vectors can be applied in any order and if any test

vector reveals the existence of a fault then the circuit is marked as defective and the test can

stop.

A test vector detects a stuck-at-v fault f if two conditions are satisfied:

1. The test vector activates the fault f , i.e. distinguishes the good and the faulty circuits

by forcing the site of the fault to assume the opposite value of v.

2. The test vector propagates the error to a primary output, i.e. there is at least one path

between the fault site and a primary output for which the lines on the good and the

faulty circuits along that path, assume opposite values1.

Definition 2.4 (Sensitized path) A line whose value for test vector t changes in the presence

of a fault f is said to be sensitized to fault f by test t. A path composed of sensitized lines is

called a sensitized path.

In a circuit with a gate whose output is sensitized has at least one input sensitized, with

the obvious exception of the fault site. Moreover, all other inputs of that gate that are not

sensitized must assume a the non-controlling value (nc) of the gate, i.e. the logic value that

forces the gate to go into transparent mode (when the output follows the input), if such value

exists. For example, in a 2-input AND gate if the output is sensitized then one input must

also be sensitized and the other input must assume the logic value 1, the non-controlling

value of an AND gate.

Definition 2.5 (Detectable/undetectable fault) A fault f is said to be detectable if exists a

test t that detects f . If such a test vector does not exist then the fault f is an undetectable

fault (also referred as redundant fault).

1Sometimes it is used the term “fault propagation” with the meaning of “error propagation” or “fault effect

propagation”.
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A circuit in a presence of an undetectable fault f does not alter its logical function,

therefore g f
C � x � � gC � x � and no test exists that can simultaneous activate f and create a

sensitized path to a primary input.

In general, a test set that is able to detect all detectable faults in the circuit is referred to as

a complete test set. However, the existence of undetectable faults may prevent a test set to

detect some detectable faults because, an undetectable fault may masquerade the erroneous

behavior of a detectable fault [Abramovici 90].

Definition 2.6 (Redundant/irredundant circuit) A combinational circuit that contains un-

detectable stuck-at faults is said to be redundant. A combinational circuit in which all stuck-

at faults are detectable is said to be irredundant.

A redundant circuit can always be simplified by removing at least one gate or gate input.

For example, if the undetectable fault is a stuck-at-0 on an input of an AND gate then the

gate could be removed and its output line connected to logic level 0. Note that, because the

fault is redundant, its existence does not change the behavior of the circuit therefore, we can

assume that the fault site is always connected to logic 0, in this case, and then simplify the

logic. Observe, however, that redundancy can be useful for reducing circuit delay or to avoid

circuit hazards [Keutzer 90, Abramovici 90].

Test pattern generation for large combinational circuits is computationally hard. In gen-

eral, most test pattern generators stop test generation for a target fault when the process

becomes too costly (in terms of time, memory, etc). Therefore the resulting test set may not

be a complete one, because some detectable faults are not detected. Consequently, it is usual

to distinguish between undetectable faults and faults that are detectable but for which no

vector could be computed during test pattern generation for the available CPU time and/or

memory resources.

Definition 2.7 (Aborted fault) A non-redundant fault for which no vector is computed dur-

ing test pattern generation, due to computational resource limitations, is referred to as an

aborted fault.

The existence of aborted faults in a test set conditions the effectiveness, or quality, of the

test set. Quality test evaluation is done in the context of a fault model, e.g. stuck-at fault
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model, and is related with the total number of detectable faults identified by the model and

the effective number of faults detected by the test set.

Definition 2.8 (Fault coverage) For a given fault model, the ratio between the number of

faults detected by a test set and the total number of faults in the assumed fault universe is

referred as fault coverage [Abramovici 90].

The fault universe is composed only of detectable faults, and excludes the redundant

faults which should be identified by the test pattern generator algorithm. In some cases,

the final test set quality is evaluated via fault simulation, where the circuit is simulated to

determine/confirm the faults that are effectively detected.

Fault Equivalence and Dominance

The number of single stuck-at faults in a combinational circuit with n signal lines is 2 � n,

where the value of n is calculated considering that every fanout branch is a distinct signal

line. The number of faults to be considered for test pattern generation can be reduced by

grouping faults according to their effect on the circuit.

Definition 2.9 (Equivalent faults) Two faults f and f � are equivalent in a circuit C if and

only if g f
C � x � � g f �

C � x � .
Since the combinational function of a circuit is the same in the presence of each equiv-

alent fault, then the equivalent faults are detected by the same set of test patterns. All the

single stuck-at faults of a circuit can be grouped into equivalence classes where all the faults

are equivalent among themselves. For test set computation we need only to consider one

representative fault from each equivalence class. Figure 2.2 shows an example of equivalent

fault collapsing for a 2-input NAND and OR gate. In general for a simple n-input gate with

a controlling value we need only to consider n � 2 single stuck-at faults: one stuck-at-0 and

one stuck-at-1 on the output and one stuck-at to the non-controlling value of the gate in each

input.

The number of faults that must be considered to compute a complete test set can be

further reduced using another fault relation.



2.2 Basic Definitions 23

PSfrag replacements

a

b
c

x

y
z

stuck-at-0 fault

stuck-at-1 fault(a) (b)

Figure 2.2: (a) NAND and OR gates with uncollapsed fault set. (b) Equivalence fault col-

lapsing.

Definition 2.10 (Dominating fault) A fault f is said to dominate another fault f � if all the

tests that detect f include all the tests for detecting f � .
If Tf and Tf � are the sets of all test patterns that detect faults f and f � , respectively, then

fault f dominates f � provided Tf ��� Tf . Therefore, it is only necessary to compute a test

pattern for f � because the same pattern will also detect the dominating fault f .

In general, fanout stem stuck-at faults dominate fanout branches faults and, in simple

gates with a controlling value c and an inversion i, the output stuck-at- � c � i � fault dominates

any input stuck-at-c fault. In these cases the stem stuck-at faults and output faults can be

removed from the set of faults we consider for test generation. The reduction of the set of

faults using the dominance relation is called dominance fault collapsing.

Using both equivalence fault collapsing and dominance fault collapsing, we can reduce

the target fault set of a circuit to a minimum that is sufficient to compute a complete test set.

Figure 2.3 shows a simple circuit where the number of target faults is reduced form 14 faults

to 6 faults using the two collapsing techniques.

Combinational Circuits Definitions

We start by introducing a unified representation for combinational circuits that will be

used throughout the dissertation. A combinational circuit C with N nodes is represented as
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a directed acyclic graph C ��� VC � EC
� , where the elements of VC, i.e. the circuit nodes, are

either primary inputs or gate outputs, and with  VC  !� N. The set of edges EC � VC " VC

identifies gate input-output connections. We shall assume gates with bounded fanin, and so EC  #� O �$ N  � . For every circuit node x in VC, the following definitions apply:� O � x � denotes the fanout nodes of node x, i.e. nodes y in VC such that � x � y � � EC.� O %!� x � denotes the transitive fanout of node x, i.e. the set of all nodes y such that

there is a path connecting x to y.� I � x � denotes the fanin nodes of node x, i.e. nodes y in VC such that � y � x � � EC.� I %&� x � denotes the transitive fanin of node x, i.e. the set of all nodes y such that there

is a path connecting y to x.� KO � x � denotes immediate fanout cone of influence of x, being defined as follows:

KO � x � � � y  y � O % � x �(' y � I � w �() w � O % � x � � (2.1)

� KI � x � denotes immediate fanin cone of influence of x, being defined as follows:
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KI � x � � *+-,
y . O /10 x 2 I % � y �43576 � O % � x �98 � x � � (2.2)

The set of primary inputs can also be referred to as PI, and the set of primary outputs

as PO. Simple gates are assumed: AND, NAND, OR, NOR, NOT and BUFF. Finally, the

number of stuck-at faults in the circuit is M, with M � O � N � , since we assume  EC  �� O �$ N  � ,
and are numbered 1 ������ M. The example in Figure 2.4 illustrates the previous definitions for

the ISCAS’85 [Brglez 85] benchmark circuit C17.

Conjunctive Normal Form Formulas

The representation of the circuit function can be described using any type of Boolean

functions or formulas. However, we will use the conjunctive normal form (CNF) formulas

because they are easily manipulated programmatically [Larrabee 92]. A CNF formula ϕ

on n binary variables x1 ������ xn is the conjunction (AND) of m clauses ω1 ������ ωm each of

which is the disjunction (OR) of one or more literals, and where a literal is the occurrence

of a variable xi or its complement : xi. A formula ϕ denotes a unique n-variable Boolean

function f � x1 ������ xn
� and each of its clauses corresponds to an implicate of f . Figure 2.5

shows a CNF formula that contains 3 clauses and 7 literals using 3 variables (x � y and z).

An assignment for a formula ϕ is a set of variables and their corresponding Boolean values,

represented as variable/value pairs; for example A � � � x1 � 0 � � � x7 � 1 � � � x13 � 0 � � which can also

be denoted as A � � x1 � 0 � x7 � 1 � x13 � 0 � . The value assumed by a formula ϕ given

an assignment A is denoted by ϕ  A and can yield three possible outcomes: ϕ  A � 1 and we say

that ϕ is satisfied and A is referred to as an satisfying assignment; ϕ  A � 0 in which case ϕ is

unsatisfied and A is referred to as an unsatisfying assignment; and ϕ  A � X indicating that the

value of ϕ cannot be resolved by the assignment A. The last case can only happen when A

is a partial assignment, i.e. not all variables are involved in the assignment. For example, the

assignment A � � x � 1 � y � 1 � to the formula of Figure 2.5 will result in ϕ � X because

the value for the third clause can not be determined, it is an unresolved clause.

The CNF formula of a gate denotes the consistent input-output assignments to the gate.
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Figure 2.4: (a) Example circuit, C17, (b) graph representation (c) and topological data for

node x11.
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Figure 2.5: An CNF formula with 3 clauses and 7 literals.

Therefore, the CNF formula of a circuit is the conjunction of the CNF formulas for each

gate output, because each individual gate have to have consistent assignments in its inputs-

output. Figure 2.6 shows the consistency function, ξx, for a 2-input AND gate, which models

the consistent assignments on the gate inputs and output. Figure 2.6 also shows the resulting

CNF formula of the AND gate obtained as the product of sums (POS) representation of ξx.

For a j-input AND gate, x � AND � w1 ������ w j
� the resulting CNF formula is [Larrabee 92,

Stephan 96, Silva 97b],

ϕx ��� j

∏
i � 1

� wi �_: x �4� ��� j

∑
i � 1

: wi � x � (2.3)

A complete list of the CNF formulas for simple gates with an arbitrary number of inputs

is reproduced in Table 2.1 [Silva 97b]. If we view a CNF formula as a set of clauses, the

CNF formula for the circuit is defined by the set union of the CNF formulas for each gate

with output x, ϕx:

ϕ � ,
x . VC

ϕx (2.4)

Given the CNF formula ϕ for a circuit and an assignment API to the primary inputs, then

the assignment AC denotes the values on the circuit nodes obtained from API by implying the

assignments on all gate outputs [Abramovici 90].
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Figure 2.6: Example of the consistency function and CNF representation of a gate.

CNF Formulas for Test Pattern Generation

In this section we describe a simple CNF representation of the fault detection problems,

which will be used throughout the reminder of this dissertation. The CNF formulas for test

pattern generation assume the single stuck-at line fault (SSF) model described previously in

Section 2.2.

In the context of test pattern generation, and for capturing the fault detection problem,

each node x is characterized by three propositional variables:� xG denotes the logic value assumed by the node in the good circuit.� xF denotes the logic value assumed by the node in the faulty circuit.� xS denotes whether xG and xF assume different logic value. We shall refer to this

variable as the sensitization status of node x.

Given the definition of variable xS, the following relationship must hold:
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Gate type Gate function ϕx

AND x � AND � w1 ������ w j
� � j

∏
i � 1

� wi �_: x � � � � j

∑
i � 1

: wi � x �
NAND x � NAND � w1 ������ w j

� � j

∏
i � 1

� wi � x � � � � j

∑
i � 1

: wi �_: x �
OR x � OR � w1 ������ w j

� � j

∏
i � 1

�4: wi � x � � � � j

∑
i � 1

wi �_: x �
NOR x � NOR � w1 ������ w j

� � j

∏
i � 1

�4: wi �_: x � � � � j

∑
i � 1

wi � x �
NOT x � NOR � w1

� � x � w1
� ���4: x �_: w1

�
BUFFER x � BUFFER � w1

� �4: x � w1
� ��� x �_: w1

�
Table 2.1: CNF formulas for simple gates.

� � xG �� xF ��� xS � � � xG � : xF � xS � ���4: xG � xF � xS � �
(2.5)� xG � xF �_: xS � ���4: xG �_: xF �_: xS �

which basically states that the logic values of xG and xF differ if and only if xS assumes logic

value 1.

Let ϕx denote the CNF formula associated with gate output x. The notation ϕG
x denotes

the CNF formula for x in the good circuit, i.e. using xG variables, whereas ϕF
x denotes the

CNF formula for x in the faulty circuit, i.e. using xF variables. For a stem fault z stuck-a-
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v, the CNF representation of the associated fault detection problem contains the following

components:� CNF formula denoting the good circuit, ϕG.� CNF formula denoting the faulty circuit, ϕF . This formula only needs to contain the

CNF formulas for the nodes that are relevant for detecting the given fault, i.e. nodes

in the transitive fanout of node z.� CNF formulas for defining the sensitization status of every node in the transitive

fanout of the fault site, i.e. node z. Hence, for each of these nodes, ϕS
x , is given

by (2.5) which requires xS � 1 if and only if xG �� xF .� Clauses requiring xG � xF on each node x such that x is not in the transitive fanout of

z but at least one fanout node of x is in the transitive fanout of z, i.e. x is in KO � z �F6
O % � z � . Observe that this condition permits restricting the number of clauses and the

number of xF and xS variables that must actually be used.� Clauses capturing conditions for activating the fault on node z, i.e. by requiring zG ��
zF and by forcing a suitable logic value on zG.� Finally, we guarantee that the fault effect is observed at a primary output by requiring

that for at least one primary output x, xS � 1.

The formula for detecting a fault z stuck-a-v is summarized in Table 2.2 and will hence-

forth be referred to as the fault detection formula, ϕD. Similarly, we defined the fault

specific formula, ϕFS , as follows,

ϕFS � ϕD 6�� ϕG 8 ϕR � � ϕF 8 ϕS 8 ϕE 8 ϕA (2.6)

which contains only the clauses associated with the propagation of the error signal to the

primary inputs. The fault specific CNF formula for fault x11 stuck-a-1 on the example circuit

C17 (see page 26) is given in Table 2.3.
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Sub-formula/Condition Clause Set

Good Circuit ϕG � ,
x . VC

ϕG
x

Faulty Circuit ϕF � ,
x . O /�0 z 2 ϕF

x

Node Sensitization ϕS � ,
x . O / 0 z 2 ϕS

x

Side Input Equivalence ϕE � �4: xG � xF � �¥� xG � : xF � x � KO � z �¨6 O % � z �
Fault Activation Conditions ϕA � ���� ���! � zS � ���4: zG � ��� zF � if v � 1

� zS � ��� zG � ���4: zF � if v � 0

Fault Detection Requirement ϕR � � ∑
x . PO " x . O / 0 z 2 xS �

Detection of Fault z stuck-a-v ϕD � ϕG 8 ϕF 8 ϕS 8 ϕE 8 ϕA 8 ϕR

Table 2.2: Definition of the fault detection problem for the stem fault z stuck-a-v.

The CNF formula for fanout-branch faults requires additional information for dealing

with setting specific values on the fanout branch. For a given fanout branch fault � z � y � stuck-

a-v 2, the CNF formula of Table 2.2 needs to be modified as follows:

2The fanout branch from node z to y is denoted by edge # z $ y % that in ISCAS’85 notation is represented as

z &(' y.
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Sub-formula/Condition Clause Set

Fault Circuit ϕF �*) ϕF
x16
8 ϕF

x19
8 ϕF

x22
8 ϕF

x23 +
Node Sensitization ϕS �-, ϕS

x16
8 ϕS

x19
8 ϕS

x22
8 ϕS

x23 .
Side Input Equivalence

ϕE � �P: xG
2 � xF

2
� ��� xG

2 �_: xF
2
� ��P: xG

7 � xF
7
� ��� xG

7 �_: xF
7
� ��P: xG

10 � xF
10
� �¥� xG

10 �_: xF
10
�

Fault Activation Conditions ϕA � � xS
11
� �¥�4: xG

11
� ��� xF

11
�

Fault Detection Requirement ϕR � � xS
22 � xS

23
�

Table 2.3: Fault specific formula and fault detection requirements for fault x11 stuck-a-1.

� For all sub-formulas in Table 2.2, replace node z by node y.� Replace the fault activation formula ϕA as follows:

– Add a clause requiring yG �� yF which causes the creation of the fault effect:

� yG �� yF � � � yG � yF � � � : yG � : yF � (2.7)

– Require zG � 1 or zG � 0 depending on whether the fault is stuck at 0 or 1,

respectively.� If the gate with output y has a non-controlling value [Abramovici 90], nc � y � , require

that the side inputs of y with respect to z to assume the non-controlling value of y,
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ϕH �
������������ �����������!

,
w . I 0 y 20/21 z 3 � w � if nc � y � � 1,

w . I 0 y 20/41 z 3 �P: w � if nc � y � � 0

(2.8)

These clauses allow the propagation of the fault effect from node z to node y if the

gate y has a controlling value. Note that these assignments are not required, but are

helpful for reducing the search space.

For a fanout branch fault the fault specific formula, ϕFS, now becomes,

ϕFS � ϕF 8 ϕS 8 ϕE 8 ϕA 8 ϕH (2.9)

We should note that the CNF formulation presented can be simplified. For example,

nodes that do not affect the fault detection problem need not to be included in the good

circuit formula ϕG. Also note that the CNF formula for fault detection can be constructed

directly from the gate network, and is linear in the size of the network.

2.3 Automatic Test Pattern Generation

Generating all the 2n input combinations for a circuit with n inputs (exhaustive testing)

guarantees a 100% of fault coverage but it becomes unrealistic when the number of inputs

exceeds 25–30 bits. Several techniques exist to reduce the number of test patterns. In general,

non-automatic test pattern generation is only carried out for specific circuits or when the fault

coverage is unsatisfactory after a test set has been computed using an automatic test pattern

generator. In the next two sections we present two different algorithmic approaches for

ATPG.
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2.3.1 Structural/Traditional Algorithms

Structural algorithms for ATPG are implemented using information from the structural

model of the circuit, and therefore, they are often characterized as topological. We also

denote this type of ATPGs as traditional because they were the first to appear, and because

they are extensively studied, documented and still used in many tools.

We will focus our attention only on algorithms that generate a test set for a specific target

fault, i.e. fault-oriented algorithms, as opposed to fault-independent algorithms whose goal

is to derive a test set which detects a large number of faults without targeting any individual

fault [Abramovici 90].

Most of the structural algorithmic solution for ATPG are based on the D-calculus [Roth 66]

or on its algebraic variations [Akers 78, Cha 78]. The D-calculus represents the value of a

line considering the logic value v, on the correct circuit (or good circuit), and the logic value

v f , on the faulty circuit. The composite logic value v 5 v f represents an error when v and v f

assume opposite logic values, v 5 v f � 1 5 0 or v 5 v f � 0 5 1 and are denoted as D and D, re-

spectively. The lines where v and v f assume the same logic value, v 5 v f � 0 5 0 or v 5 v f � 1 5 1

are denoted as 0 and 1, meaning that they are not affected by the presence of the fault f in

the circuit. The D-calculus has been shown to be a suitable framework for the fault detection

problem. A test pattern t detects a stuck-at fault f if at least one circuit output assumes the

value D or D under the D-calculus. The algebraic definition of the D-calculus is given in

Figure 2.7 where the X value denotes an unspecified composite value.

The D-algorithm [Roth 66] was the first algorithm to use the D-calculus for test patterns

generation. It starts by assigning the error D (D) to the faulty line that is stuck-at-0 (stuck-

at-1) and then proceeds with two objectives:� propagate any error value, D or D, to a circuit output, so that the fault effect is ob-

servable;� justify the internal line assignments, including the error value at the faulty line, by

identifying consistent assignments to the circuit primary inputs. The justification pro-

cess identifies consistent input assignments for each gate that has an assigned value

on the output but which is not implied by the current input values.
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v 5 v f 0/0 1/1 1/0 0/1

Composite logic value 0 1 D D

NOT Out AND 0 1 D D X OR 0 1 D D X

0 1 0 0 0 0 0 0 0 0 1 D D X

1 0 1 0 1 D D X 1 1 1 1 1 1

D D D 0 D D 0 X D D 1 D 1 X

D D D 0 D 0 D X D D 1 1 D X

X X X 0 X X X X X X 1 X X X

Figure 2.7: Definition of the composite logic values and the D-calculus.

These objectives are achieved implementing a decision procedure that assign values to

the gates in one of the two frontiers:

D-frontier: consists of all the gates whose current output value is X but have one or more

error values (D or D) on their input lines.

J-frontier: consists of all gates whose output value is known but it is not implied (or

justified) by its current input values.

Therefore, at each decision step the D-frontier represents the gates which can be selected

to create one or more sensitized paths to one or more primary outputs, and the J-frontier

represents the gates whose inputs need to be justified. For some practical circuits, the orga-

nization of the D-algorithm may lead to large decisions trees, since a large number of internal

lines may be involved in the decision process.

The 9-V [Cha 78] algorithm is similar to the D-algorithm but uses a logic of nine val-

ues [Muth 76]. These nine values result from the combinations assignment of three logic

values � 0 � 1 � X � to v 5 v f which results in four new partially specified composite logic values.

Using these new composite logic values the propagation of the error through multiple paths

is considered also during gate justification. For example, Figure 2.8 shows an NAND gate

sensitized with a single D input value and a D output value. While in the D-algorithm the
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Figure 2.8: Justification on a NAND gate by the (a) D-algorithm and (b) 9-V algorithm.

other input of this gate is set to 1 during justification, in the 9-V algorithm the input is set to

1 5 x. This assignment serve to justify “simultaneously” the logic value 1 or the error value

D, allowing in this situation a multiple path sensitization. Therefore, the flexibility provided

by the new composite logic values allows reducing the amount of search done for multiple

path sensitization. In a situation where k paths exist for error propagation, the D-algorithm

may eventually try all 2k 6 1 possible combinations while the 9-V algorithm will enumerate

at most k paths. However the advantages of using the 9-V algorithm are limited because

multiple path sensitization are rare in practical circuits [Cha 78].

PODEM (Path-Oriented Decision Making) [Goel 81] was the first ATPG algorithm that

restricted the search process to the primary inputs. This direct implicit enumeration of the

circuit inputs was shown an efficient technique to reduce the complexity of the D-algorithm.

Each step of the algorithm identifies an assignment objective, based on the D-frontier, and

maps it into the primary inputs by a simple backtrace procedure. This procedure identifies

each primary input, not yet assigned, that will contribute to satisfy the objective by “back-

ward justifying” at most one unspecified line per gate until a primary input is reached with

a logic value. Finally, this value on the primary input is propagated through the circuit.

This whole process continues until an error signal propagates to a primary output. The main

advantages of the PODEM algorithm over the D-algorithm are:� inexistence of justification conflicts, since all values are assigned by forward impli-

cations;



2.3 Automatic Test Pattern Generation 37� no need to maintain a J-frontier, since there is no need for justification;� no backward implication process, because all values are propagated forward;� no backtrack procedure is required to manipulate the D-frontier and J-frontier and

restore a previous state; any change in the state is easily computed by propagating the

new values from the primary inputs (as also shown in [Snethen 77]).

The FAN (FAN-out-oriented test generation) algorithm [Fujiwara 83] has several im-

provements with respect to PODEM by changing the backtracing strategy in two distinct

ways. First, the backtrace procedure of FAN may stop at specific internal lines rather than

have to reach a primary input. These lines, denoted as head lines, are statically identified

as the outputs of fanout-free subcircuits. Observe that, the justification of the head lines

cannot cause conflicts and therefore is postponed to a final stage. Second, FAN uses a

multiple-backtrace procedure which attempts to satisfy a set of objectives simultaneously

rather than one objective at a time. For some set of objectives a multiple-backtrace proce-

dure can detect conflicting assignments, in particular, in fanout branches lines. Stopping

the multiple-backtrace procedure immediately and assigning the most requested value to the

fanout branches line avoids fruitless computation and leads to the early detection of incon-

sistency which would decrease the number of backtracks. FAN also introduced the notion

of unique sensitization points (USPs), unique lines that should always be sensitized for the

propagation of an error to a primary output. Upon the identification of USPs, which in FAN

occurs when the associated D-frontier has only one gate, the algorithm immediately gener-

ates all the necessary assignments to propagate the error on the identified lines. Since FAN

assigns values also to internal lines, the authors have implemented a backward implication

procedure that justifies those assignments as much as possible in order to improve the over-

all performance of the algorithm. The lines left unjustified after backward implication are

marked as the next set of objectives for justification using the multiple-backtrace procedure.

The ATALANTA [Lee 93] is an example ATPG tool that implements the FAN algorithm and

which will be extensively used in this dissertation.

TOPS (TOPological Search) [Kirkland 87] and SOCRATES [Schulz 88, Schulz 89] rep-

resent evolutions of FAN. The TOPS algorithm extended the concept of head lines of FAN to
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include sub-circuits that might have fanout, but all such fanout must completely re-converge

before the lines where the backtrace procedure stops. These lines, denoted as basis-nodes,

are also justified in the final stage of the algorithm, as the head lines are, even though such

justification may require some backtracking. TOPS formalized the notion of unique sensiti-

zation points (USPs), denoted as absolute dominators, and proposed processing algorithms

for their identification. The algorithms to identify either the basis-nodes or the absolute

dominators are based on graph analysis and use set operations (union and intersection), thus

having time complexity O � N2 � . TOPS also extended the PODEM algorithm to use nine

composite values [Muth 76] instead of five values. The SOCRATES algorithm uses the

same techniques of TOPS but using the “traditional” five logic values. The new concepts

introduced by SOCRATES were the static [Schulz 88] and dynamic learning [Schulz 89].

The learning process consists in the identification of global implications (sometimes also

referred as non-local implications) by assigning temporary logic values to “arbitrary” lines

in the circuit with the objective of examining their logical consequences. The static learn-

ing procedure is performed in a pre-processing stage based on the following logical identity

called contrapositive:

i f � i � vi
��� � j � v j

� then � j � v j
��� � i � vi

� (2.10)

where vi is the logical value assigned to line i and v j is the value assigned to line j by a impli-

cation procedure. A learning criterion is used to identify the implications (the ‘then’ clause

of (2.10)) that are worthwhile to be saved. Dynamic learning is identical to static learn-

ing but, performed during the search process, when some lines already have values assigned

from earlier stages of the deterministic ATPG process. Figure 2.9 shows two examples where

global implications are learned. In the static learning example (Figure 2.9(a)) the temporary

assignment b � 0 implicates f � 1, therefore we can learn that f � 0 is necessary to obtain

b � 1. In the dynamic learning example (Figure 2.9(b)) the current assignment, a � 1, en-

ables us to learn other implication: in order to get g � 1 we have to have b � 1. Note that,

in dynamic learning, besides learning global implications, it is also possible to determine

logic values to be assigned or to recognize the necessity of backtracking. However, the use
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Figure 2.9: Example of (a) static and (b) dynamic learning.

of dynamic learning makes the management of the decision tree more complex because the

dynamically learned implications must be associated to the current node of the decision tree

and they have to be eliminated if that node is deleted by backtracking.

SOCRATES [Schulz 89] also introduced for the first time the concept of dynamic USPs

(that considers the effects of current logic assignments) and proposed a procedure for their

identification which is also based on set manipulation and therefore has time complexity

O � N2 � . Fault simulation and reverse order fault simulation (ROFS) was also introduced to

speedup test generation and reduce the number of test patterns in the test set.

The EST (Equivalent STate Hashing) [Giraldi 90, Giraldi 91] algorithm was the first al-

gorithm to use the search space information generated for a fault to accelerate test generation
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for all subsequent faults. The information is recorded at each stage of the search process and

consists on the identification of an E-frontier. The E-frontier consists of the gates and their

assigned logic values (0, 1, D or D) implied by primary inputs, that drive other gates which

outputs still have the logic values X . Equivalent E-frontiers indicate repeated operations in

the search process that can be eliminated by checking if the previously explored search state

has led to a valid test pattern or to an inconsistency. The EST algorithm has been used to

improve TOPS in [Giraldi 90] and SOCRATES in [Giraldi 91] with promising experimental

results.

TG-LEAP (Test Generation – LEvel dependent Analysis in Path sensitization) [Silva 94,

Silva 95] introduces several non-heuristic search-space pruning techniques, based on the dy-

namic analysis of the search process. The failure-driven assertion technique, that can be

viewed as a form of learning while searching, identifies nodes that must assume certain

values to eliminate inconsistencies which occur during search. These inconsistencies take

place when the logic values of the inputs and outputs of a gate are not consistent, or when

there exists no path (X-path) to propagate the error signal to a primary output. The anal-

ysis of the implication graph associated with the decision that originates the inconsistency

is sufficient to learn new implications that reduce the search space. The dependency-direct

backtracking technique potentially avoids backtracking to the previous node in the decision

tree (chronological backtracking). This technique records the decision levels that constrain

D-propagation and when a backtrack is identified the decision tree is analyzed to see if

the search can immediately backtrack several decisions rather than one (non-chronological

backtracking). TG-LEAP also introduces a linear time algorithm for dynamic identifica-

tion (during the search process) of unique sensitization points (USPs) and head lines, which

also contributes to pruning the search space. Results produced with TG-LEAP showed an

effective algorithm to prove redundancy and to find tests for hard to detect faults.

2.3.2 Satisfiability-Based Algorithms

Satisfiability-based ATPG algorithms belong to the generic class of algebraic algorithms.

These algorithms do not search directly the circuit structure to determine a test pattern but,

instead, they construct an algebraic formula that subsequently is used to encounter the test
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pattern.

A well-known purely algebraic method for ATPG is the Boolean difference method

[Sellers 68]. It generates a formula based on the Boolean difference of the circuit func-

tion that is simplified using basic laws of Boolean algebra or by using identities specific to

the Boolean difference [Akers 58]. The boolean difference of any function f with respect to

its variable xi is equal to:

∂ f
∂xi

� f � x1 ������ xi / 1 � 0 � xi / 1 ������ xn
� � f � x1 ������ xi / 1 � 1 � xi / 1 ������ xn

� (2.11)

The set of test vectors for a fault on node xi is determined by:

ti � ���� ���! fxi � ∂ f
∂xi

for xi stuck-at 0

fxi � ∂ f
∂xi

for xi stuck-at 1

(2.12)

where fxi is the function representing the output of the subcircuit with output at xi. How-

ever, the simplification process of these formulas has been shown to be not competitive for

implantation in a practical test patterns generation tool [Larrabee 92].

Satisfiability-based ATPG methods build on the algebraic methods, in the sense that an

algebraic formula is generated from the circuit but, instead of performing symbol manipula-

tion, they run a Boolean satisfiability (SAT) algorithm on the formula. Thus, after deriving

the formula, the test generation problem then becomes a satisfiability problem [Garey 79]:

finding a set of variables assignment that makes the formula true, if one exists.

The Nemesis [Larrabee 90, Larrabee 92] system was the first test pattern generator based

on Boolean satisfiability. The circuit and the test generation problem formulation of each

fault is based on expressing the characteristic function of the Boolean difference method

directly in CNF. In order to reduce the search space, and thus solving the CNF formula ef-

ficiently, several heuristics were proposed. These heuristics include adding additional CNF

formulas based on particular structural information of the circuit (global implications, re-

quired non-controlling values, determined USPs, etc), and deciding which variable and value

to assign when solving the resulting formula. Nemesis also introduced the notion of active
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variables as extra variables3 that relate the values of a node in the good and faulty circuit,

and add clauses with these variables that capture the notion of X-path to propagate the fault

effect to an output. These additional clauses prune the search space because contradictions

can be detected much before than values on the outputs of the circuit are derived. Although

the results are much better than for other algebraic techniques (less aborted faults), the time

performance is still worse than existing structural algorithms.

The TEGUS (TEst Generation Using Satisfiability) [Stephan 92, Stephan 96] ATPG sys-

tem focused on implementing SAT heuristics which solve the basic CNF formula as effi-

ciently as possible, instead of applying structural search heuristics to add extra clauses to

the formula, as in Nemesis. TEGUS presented a technique to reduce the size of the global

formula necessary to detect a given fault. The number of variables is also reduced by using

variables of the good circuit (good variables) in the description of the faulty circuit for the

lines that can not be affected by the fault.

The main SAT heuristic included in the TEGUS system is the use of greedy search. The

greedy search uses dynamic variable selection based on the clauses with three or more literals

that are not satisfied yet. Therefore, the greedy heuristic depends on the clause ordering, but

since TEGUS generates clauses in depth first search order, in general preference is given to

primary input variables and all other assignments are derived from implications (this mimics

the PODEM heuristic). Another technique introduced in TEGUS for redundant and hard

faults, i.e. difficult to detect, was the iterated global implications. This technique is based on

the tautologies introduced by the SOCRATES algorithm [Schulz 89]:� A � B �() � A � B �10 A (2.13)� A � B �20 � B � A � (2.14)

The main difference is that while in SOCRATES the learning process is applied once per

line in the TEGUS algorithm the learning process is iterated until no more implications

are produced, which eliminates the dependency on the order of the variables selected for

3The active variables are similar to the sensitization status variables defined in Section2.2 (see page 28).

Both are used to identify the sensitized path from the fault site to a PI, but active variables are also used to

check the existence of this path during search.
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learning. Experimental results of TEGUS show that test pattern generation satisfiability-

based algorithms outperform existing structural algorithms in terms of running time and

number of aborted faults.

The TG-GRASP (Test Generation using Generic seaRch Algorithm for Satisfiability

Problems) [Silva 97b] system attempts to reduce the amount of heuristic knowledge to a

minimum by relying almost exclusively on pruning techniques that effectively reduce the

amount of search. TG-GRASP uses the generic satisfiability algorithm GRASP [Silva 96b,

GRASP ], which implements the following search pruning techniques:� A non-chronological backtracking search strategy, that permits jumping over parts of

the decision tree where no solution can be found.� Early identification of equivalent conflicting conditions that prevent the occurrence of

the same conflict further in the search process by dynamically adding new clauses to

the formula.� Identification of unique implication points that permits finding necessary assignments

to prevent the occurrence of known conflicting conditions.

Moreover, since TG-GRASP is an ATPG tool, some extra testing techniques were introduced

in the sat algorithm that prune the amount of search for each fault, which include:� Adding structural information by including extra CNF formulas to reduce the amount

of search. These formulas result from the static identification of USPs, identified

while generating the global CNF formula using a linear-time algorithm [Silva 94],

and from the inclusion of implied assignments for all possible occurrences of dy-

namic USPs.� Increasing the pruning ability by recording “all” the conflict induced clauses that

are not fault dependent and re-use them to prevent similar conflicts when targeting

other faults. We refer to such clauses as pervasive clauses.� Reducing test pattern over-specification by identifying in each step of the search

process the clauses that are required to be satisfied for the fault detection problem.



44 2. Digital Circuit Testing

Therefore, the search process can terminate before all clauses are satisfied if the fault

is justified to the primary inputs and the fault effect is observed in a primary output.

This modified termination condition for SAT is referred to as syntactic satisfiability.� Changing the decision making procedures to reorder the variables so that decisions

will be first made with respect to primary inputs close to the site of the fault. This re-

ordering is done statically for each fault and is not necessarily as effective as dynamic

decision making procedures used by structural algorithms.

The CGRASP (Circuit GRASP) [Silva 99] algorithm implements a “generic SAT al-

gorithm”, based on GRASP [Silva 96b], that takes into account the circuit structure when

solving instances derived from combinational circuits, in particular for testing instances. In

CGRASP each variable of the algebraic formula, that also represents a circuit node, has as-

sociated some structural information such as a list of fanin and fanout nodes, among others.

Using this structural information one is able to keep the notion of justification frontier, i.e.

set of variables/nodes that require justification. The SAT algorithm can then be modified to

implement structural-based heuristic decisions, e.g. using simple or multi-backtracing pro-

cedures, and to stop the search process when the fault is detected and the justification frontier

is empty, even if not all clauses are satisfied. Using these techniques with the specific tech-

niques of GRASP, which are the basis for CGRASP and TG-GRASP, the SAT-based ATPG

algorithms have shown to be more effective than structural algorithms.

2.4 Heuristic Test Set Compaction Algorithms

The main objective in test set compaction is to compute a test set that is complete, i.e.

that detects all the detectable faults, of minimal size. In this section we present some test

set compaction algorithms to generate (or just process) test patterns using heuristics that

minimize the test set size. Non-heuristic test set compaction algorithms will be addressed in

Chapter 4.

The COMPACTEST [Pomeranz 91, Pomeranz 93b] algorithm introduces a set of heuris-

tics that allow a simple PODEM algorithm to effectively reduce the number of test pat-
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terns generated, without compromising the fault coverage. In a pre-processing phase, COM-

PACTEST orders the fault list such that test vectors for the faults at the top also detect poten-

tial faults appearing later in the fault list. The final order of the faults will be determined by

the size of independent fault sets [Akers 87], which are sets of faults that have no common

test vectors, i.e. they can not be detected with the same test vector. The maximal independent

fault sets in fan-out free regions are computed using a new polynomial time algorithm, and

then, the faults are ordered by selecting first faults from larger maximal independent fault

sets. During the test generation phase two heuristics are used to reduce the test set size. The

maximal compaction heuristic complements individually each input bit bi of a computed test

vector to determine whether that bit is not essential by itself for detecting the target fault

(primary target fault), i.e. the fault is detected for both logic values, 0 and 1, assigned to the

bit bi. All bits that are not essential are made unspecified and the resulting partial specified

vector is used to detect other target faults (secondary target faults) by selecting assignments

to the unspecified bits. When the test pattern is fully specified, deterministically or randomly

for the bits left unspecified, it is used for fault simulation, and all the detected faults are re-

moved from the fault list. The rotating backtrace heuristic changes the backtrace procedure

of PODEM algorithm with the aim of sensitizing different paths every time a value on a line

needs to be justified. This way it is expected that other faults may be potentially detected

because different paths are selected for backtrace.

The ROTCO (Reverse Order Test COmpaction) [Reddy 92] introduces techniques that

try to remove as many unnecessary test patterns as possible by heuristically re-assigning

those bits which during test generation were unspecified and have been randomly assigned

for detecting additional faults. The modifications in the test patterns are done in reverse order

of the original test generation phase in order to reduce the dependency of the compaction

results on the test set. However, because the modifications to the test patterns are limited to

the originally unspecified bits, the resulting compaction efficiency is restrict.

The TSC (Test Set Compaction) [Chang 95] algorithm is a post-generation technique that

introduces two compaction methods based on the notion of essential faults. The essential

faults of test vector, ti, in a test set, are the faults which are only detected by test vector ti

in the entire test set, i.e. no other test vector in the test set detects the essential faults of ti.
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The force pair-merging (FPM) method modifies an incompatible pair of vectors, by turning

certain unspecified bits, until they become compatible for merging, i.e. the test vectors do

not have a specified opposite values for the same PI. The resulting vector has to detect both

the essential faults of each vector and the faults detected only by the original pair of vectors

(these are called potential essential faults). The essential fault pruning (EFP) method is more

general and more effective than FPM but also more time consuming. Essential fault pruning

of a test vector, ti, tries to modify other test vectors, in the test set, so that all the essential

faults of ti are detected by those new modified vectors. If all the essential faults of ti are

pruned then the test vector does not detect any essential faults and thus can be removed from

the test set. If at least one essential fault is not pruned then ti can not be removed. In this

situation the vectors of the test set are restored to their previous values before attempting

the EFP of another test vector. To support the EFP method a new multiple target fault test

generation (MTFTG) procedure is proposed that is based on pattern-rising, and that attempts

to rise each bit of the test pattern to X . For this, a modified fault simulator is presented that

observes the consequences of each bit raised to X on the detected faults, without executing a

complete fault simulation cycle over the whole circuit.

[Kajihara 95] proposes some improvements to the fault ordering and rotating backtrace

heuristics of COMPACTEST [Pomeranz 93b] and describes two other compaction tech-

niques. The dynamic compaction technique double detection (DD), performed during test

set generation, determines the order of secondary target faults for which detection will be at-

tempted, when extending the coverage of the test vector generated for a primary target fault.

So, for secondary target faults are first selected undetected faults and then faults already

detected by other test vectors. This allows previously generated test vectors to be dropped

when all the faults they detect are detected by other vectors. Finally, a fault simulation is

carried out where the order of the test vectors is also heuristically determined by the DD

algorithm. The two-by-one (TBO) static/post-generation technique can be seen as a special

case of the EFP method. In both cases a vector might be dropped from the test set, but while

in EFP the essential faults of that vector could be distributed over several test vectors which

were modified, in TBO those essential faults are confined to the new and single generated

vector. EFP achieves better performance than TBO but is computationally more expansive.
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Moreover, TBO implementation has several heuristics to identify good pairs of vectors and

to speed-up the pruning process.

The MinTest [Hamzaoglu 98] system introduces two new algorithms for generating com-

pact test sets for combinational circuits. The redundant vector elimination (RVE) algorithm

is applied after each test pattern is generated with the objective of dropping redundant test

vectors, i.e. vectors that can be removed from the test set without changing the fault cover-

age. RVE fault simulates each new test vector to determine the faults covered by that vector

and then, updates the list of essential faults of each vector. When a computed test vector

does not detect any essential faults it is immediately dropped. The essential fault reduction

(EFR) algorithm iterates over the test set trying to reduce the number of essential faults of

each test vector, until it becomes redundant to be dropped from the test set. An essential

fault e fk is removed from a test vector ti if a test vector t j
�� ti in the test set is replaced by a

new test vector t �j which detects the essential fault e fk, the essential faults of t j and the faults

detected only by ti and t j. Therefore, EFR attempts to reduce the number of essential faults

of a test vector as much as possible, even if the vector does not become a redundant vector

to be immediately dropped. However, reducing the number of essential faults of a test vector

increases the probability of its elimination in the next iteration of the EFR. Consequently,

the EFR approach differs from TBO and EFP because it does not carry out a localized greedy

search by trying to remove only one test vector at a time from the test set (by pruning all its

essential faults). This way EFR explores a larger portion of the search space and can produce

smaller test sets than the ones produced by TBO and EFP.

The authors of MinTest also present a minimum test set size estimation heuristic that

presents better results than previous solutions [Kajihara 93, Matsunaga 93, Chang 95, Kajihara 95].

They determine a lower bound of the minimum test size by finding the maximal independent

fault set, which can be computed by finding the maximal clique4 in the incompatibility graph

of the single stuck-at fault set [Akers 87, Tromp 91]. The proposed heuristic determines the

order in which faults are selected to be added to the clique based on the number of essential

4A clique is a complete graph in which there is an edge between any two vertices of that graph. A clique

of size k is a clique with k vertices. The clique problem is the optimization problem of finding a clique of

maximum size in a graph [Cormen 90].
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faults of each vector in the final test set.

2.5 Conclusions

In this chapter we addressed the fault modeling problem and adopted the well known

single stuck-at fault model because it is the most used fault model and, in practice, it is able

to detect most circuit defects. We also introduced some basic test definitions for the single

stuck-at fault model that will be used in the remaining chapters of this dissertation.

We described in some detail the CNF formulation that represents a circuit and the spe-

cific clauses needed for test pattern generation which, together, are the groundwork of most

models presented in this dissertation. We also presented some pruning techniques, that are

directly implemented on the SAT solver or add extra CNF clauses to an original formulation,

to improve the overall robustness of the ATPG algorithm.

The most popular ATPG algorithms and some heuristic compaction techniques were

briefly discussed. We classified the test patterns generation algorithms in two classes: structural-

based algorithms and satisfiability-based algorithms. While the former use the structural in-

formation of the circuit, often of crucial importance for test generation, the latter generate

a CNF formula and use Propositional Satisfiability (SAT) techniques to determine the test

patterns. Satisfiability-based algorithms have shown to be faster and more robust, since they

identify all redundant faults and do not abort any hard to detected faults on existing problem

instances.

The test set compaction algorithms presented are based on heuristics that reduce the

minimum number of test patterns needed for a complete test set. These heuristics are divided

in two phases. First, during the test pattern generation phase, integrated with the ATPG, and

then, in a post-processing phase to further reduce the test set size. In general, the existing

algorithms are able to compute in a reasonable amount of time good test sets, in terms of

fault coverage and test set size. Nevertheless, these algorithms are based on heuristics which

do not guarantee that the minimum complete test set is computed. In Chapter 4 we address

again the problem of identifying a complete minimum test set for arbitrary combinational

circuits but using non-heuristic approaches.
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In the next chapter, and before proposing the optimization models for circuit testing

problems, we will overview the most common optimization models and algorithms.
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3.1 Introduction

Optimization problems are a general class of mathematical problems which seek to min-

imize, or maximize, a numerical cost function of a set of variables, with those variables sub-

ject to some type of constraints. If the optimization problem is modeled using a linear objec-

tive function and the constraints are represented by linear functions of the decision variables,

then it is referred to as a linear programming1 (LP) problem. When the objective function or

any of the constraints is not a linear function of the decision variables, the model is called a

nonlinear programming (NLP) problem. If the problem variables are constrained to assume

only integer values, then the problem is called an integer linear programming (ILP) prob-

lem or integer nonlinear programming (INLP) problem, respectively. A linear programming

problem with some regular (continuous) decision variables, and some variables which are

constrained to integer values, is called a mixed-integer linear programming (MILP) problem.

An integer linear programming problem in which all variables are constrained to be 0 or 1

(all variables are binary) is called a zero-one integer linear programming (ZOILP) problem.

Linear programming problems are intrinsically easier to solve than nonlinear problems [Luenberger 65].

In nonlinear programming problems there may be more than one feasible region (region

where all the constraints are satisfied) and the optimal solution may be found at any point

within any such region. In contrast, linear programming problems have at most one feasible

region which has the convexity property, i.e. the feasible region has no “holes” and there are

no “indentations” on the outer surface [Hadley 63]. Observe that the fact that a region is

convex can be expressed simply by saying that a line joining any two points in the region

also lies in the region [Hadley 63]. Moreover, for linear programming problems the feasible

region has flat faces (i.e. no curves) in its outer surface, and the optimal solution will always

be found at an extreme point, i.e. in a point resulting from the intersection of the hyperplanes

defined by the constraints [Hadley 63, Luenberger 65]. In some linear problems there may

be multiple optimal solutions, all of them lying along an edge between extreme points, with

the same objective function value.

1The term programming dates back to the 1940s from the discipline of “planning and programming” where

these solution methods were first used; originally it had nothing to do with computer programming [Fourer 00].
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Since there is a finite number of extreme points, which are solution candidates, a LP

solver needs to consider only this finite number of points to find a solution, while a NLP

solver needs to consider an infinity of points. Thus, for LP problems it is always possible to

determine (subject to the limitations of finite precision computer arithmetic) whether a linear

programming problem has no feasible solution, has an unbounded objective function, or has

an optimal solution (either a single point or multiple equivalent points along an edge).

The mathematical representation of any linear programming problem can be transformed

in the following generic form called canonical form [Papadimitriou 83]:

minimize c � x
subject to A � x � b (3.1)

and x
�

0

where c � x represents the value of the cost or objective function which we want to minimize

– a linear combination (represented by c, an n-dimensional row vector) on the variables of

the problem (represented by the n-dimensional x vector). The m " n matrix A and the m-

dimensional vector b are part of the equation which represents the set of linear constraints of

x, imposed by the given problem.

Solving a linear programming problem consists of finding the n values for the x vari-

ables such that: they are non-negative, satisfy a set of constraints and optimize some linear

cost function. The classical algorithm for solving linear programming problems is the Sim-

plex Algorithm. This algorithm, introduced by George Dantzing in 1947 [Dantzing 51],

is an algebraic iterative procedure which will solve exactly (i.e. does not compute an ap-

proximated solution) any feasible linear programming problem, as represented by equa-

tion (3.1), in a finite number of steps, or will give an indication that there is an unbounded

solution [Hadley 63].

As referred above, it can be shown that for a set of linear constraints, such as the ones in

equation (3.1), the region for possible solutions is a convex set [Luenberger 65]. Moreover,

the optimal solution for the linear programming problem is in one of the extreme points of the
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convex region. Thus, the simplex algorithm is a procedure for moving along an edge, at each

step, from one extreme point to an adjacent one. The next adjacent extreme point is selected

such that the largest decrease in the value of the cost function is achieved. At each extreme

point the simplex algorithm identifies if the optimal solution has been reached, and if not,

selects the next extreme point. Since the number of extreme points is finite, it is guaranteed

that the optimal solution is found in a finite number of steps. If the algorithm reaches an

extreme point, which has an edge leading to infinity and for which the cost function can

always decrease by moving along that edge, the simplex algorithm has detected that there is

an unbounded solution and stops.

Simplex-based algorithms are used to solve many linear programming problems in prac-

tice. However, it is known that, in its worst case, the algorithm’s complexity is exponential

in the size of the problem [Schrijver 86]. In 1979, L. Khachian developed the ellipsoid

algorithm which can solve the linear programming problem in a polynomial number of op-

erations [Khachian 79]. The main idea of the ellipsoid algorithm is to proceed in iterations,

always maintaining an ellipsoid which contains the solution to the problem, if such solution

exists. Each iteration consists of replacing the current ellipsoid with a smaller one which

also contains the solution (if one exists). The algorithm ends when the solution is discovered

or the ellipsoid has become so small to contain a solution, up to a given precision, that it can

be reported that no solution exists [Papadimitriou 83].

Unfortunately, the ellipsoid algorithm is not useful in practice, and the most obvious ob-

stacle, among others, is the large precision apparently required [Papadimitriou 83]. In 1984,

Karmarkar proposed a new method that enjoyed both polynomial complexity and practical

efficiency [Karmarkar 84]. This was the first algorithm of a class of algorithms referred to as

interior point methods [Roos 96]. Interior point methods start with a “interior point”, i.e. a

point that satisfies the bounds of the variables, and then proceeds with a series of iterations.

Each iteration determines a direction and a distance (a vector) that identify the next point.

The vector is determined in such a way that the new point is still an “interior point” and there

is a progress towards an optimal objective value.

Various different algorithms have been proposed for solving linear programming prob-

lems, some of them based on the simplex algorithm, others based on interior point methods
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and still others developed only for specific types of problems. Further information about lin-

ear programming can be found in [Hadley 63, Luenberger 65, Nemhauser 88, Schrijver 86,

Beasley 96, Tavares 96].

In many situations the variables of a linear programming problem must only assume

integer values. For example in EDA, finding the optimal number of registers to allocate

for a data-path of a circuit, using linear programming, requires that the problem variables,

and consequently the solution, be integer values. Clearly, we can not build a circuit with

3.47 registers in the data-path [Micheli 94, Landwehr 94]. And, rounding this solution to the

closer integer solution may not always identify an optimum solution or even a solution to the

corresponding integer linear programming problem [Papadimitriou 83].

In the remainder of this chapter we present an overview of the most common algo-

rithms to solve integer linear programming problems. We will give particular emphasis to

satisfiability-based algorithms for solving zero-one integer linear programming problems,

which will be extensively used in the optimization models proposed in this thesis. The chap-

ter is organized as follows. In the next section we briefly overview common methods for

solving generic ILP problems. In Section 3.3 we describe two satisfiability-based algorithms

(linear search and branch and bound search) for solving zero-one ILP problems, in particular

for the minimum-size prime implicant problem, in to which most of the optimization prob-

lems of this thesis can be mapped. Finally in Section 3.4 we present experimental results for

various algorithms, based on different methods, which will support the selection of the ILP

solver that will be used in the remainder of this thesis.

3.2 Integer Linear Programming Methods

In general, we can formalize the integer linear programming model using matrix notation

as follows:
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minimize c � x
subject to A � x � b (3.2)

and x
�

0

x is integer

where A, b, c, and x, have the same meaning as in (3.1), except that the problem variables x

are now constrained to integer values (by the last constraint of (3.2)).

Several methods exist for solving integer linear programming problems [Salkin 75]. The

main approaches for solving these problems can be grouped in two classes: branch-and-

bound methods and cutting plane methods. We briefly describe these and other approaches in

the next subsections. Further details on the algorithms and a comprehensive related list of ref-

erences can be found in [Salkin 75, Papadimitriou 83, Schrijver 86, Mitchell 94, Beasley 96].

3.2.1 Branch-and-Bound Methods

In branch-and-bound search an algorithm either explicitly or implicitly enumerates all

possible integer solutions [Salkin 75]. The feasible solution which minimizes the objective

function is the optimum solution. The enumeration of solutions is achieved by iteratively

partitioning the initial problem (branching), into subproblems of the original integer pro-

gram. Each subproblem is solved (either exactly or approximately) to obtain a lower bound

on the subproblem objective value, i.e. a value computed in such a way that is for sure less

or equal than the exact (optimum) objective function value.

The main idea behind branch-and-bound methods lies in the following fact: for the min-

imization problem (3.2), if we have a lower bound for the objective function (LBe) of a

given subproblem that is greater than the objective value of a known integer feasible solu-

tion (Solint , previously obtained by solving some other subproblem), then the optimal inte-

ger solution (Optint) cannot be found in the solution space of that subproblem (SPi), i.e. if

LBe
�

Solint then Optint 5� SPi. As a result, a set of possible non-optimal integer solutions
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are implicitly enumerated. Hence, lower bounds on the subproblems are used to speed-up

finding the optimum solution without exhaustive search.

The branch-and-bound method for solving integer programming problems starts first by

solving the linear programming relaxation of the integer problem, i.e. computes a relaxed

solution, with the integrality constraints dropped, to determine a lower bound. Using lin-

ear programming relaxation is the most common approach to compute lower bounds but,

as we will see latter on in this chapter, other techniques can be used. Note that the relaxed

solution to an integer linear programming problem is a lower bound for all feasible inte-

ger solutions [Papadimitriou 83]. Therefore , if the optimum solution to the LP relaxation

problem yields an integer solution then the integer programming problem is solved. Other-

wise, the relaxation problem is split into two subproblems, usually by introducing a mutually

exclusive integer constraint on some variable. This creates a node in the search tree that rep-

resents the set of subproblems of the original integer programming problem. For each integer

subproblem a linear programming relaxation is solved, with four possible outcomes:� the linear programming relaxation is infeasible. In this case the integer subproblem

is also infeasible, and the tree can be pruned at this node.� the optimal solution to the linear programming relaxation is feasible in the integer

subproblem. If this solution is worse (has a greater value) than the better known

integer solution, then the tree can be pruned at this node (a better solution has already

been found). If this is the best known solution, then it is marked as the best solution,

and the tree can also be pruned at this node.� the optimal solution of the LP relaxation subproblem has a worse objective function

value than a known integer solution to the original problem. In this case any solution

to the integer subproblem is also worse than the known solution, and the tree can be

pruned at this node.� none of the previous situations occurs: a non-integer solution is found to the linear

programming relaxation with a better objective value than previous solutions. In this

case it is necessary to split the node into two further subproblems.



3.2 Integer Linear Programming Methods 59

1

2

3

1 2 3 4

1

2

3

1 2 3 4

1

2

3

1 2 3 4

1

2

3

1 2 3 4

1

2

3

1 2 3 4

1

2

3

1 2 3 4

z8

Infeasible
Solution

1

2

3

1 2 3 4

z3

Infeasible
Solution

Feasible solutions of LP

Feasible solutions of ILP

PSfrag replacements

z0 � 6 4  37

z1 � 6 3  2

z2 � 6 3

z3

z4 � 6 4  14

z5 � 6 4  1

z6 � 6 4 z7 � 6 3  71

z8

x1x1

x1 x1

x1
x1

x1

x2x2

x2 x2

x2
x2

x2

x1 3 1

x2 3 2 x2
�

3

x1
�

2

x2 3 2

x1 3 2 x1
�

3

x2
�

3

Sol1
int � 6 3

Sol2
int � 6 4 z7 4 Sol2

int
subproblems pruned

Figure 3.1: Branch-and-bound example for problem (3.3).
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The solution to the integer programming problem is determined when the whole tree has

been traversed, and implicitly (or explicitly) all solutions have been enumerated. The optimal

solution is the best solution found during the tree traversal. Figure 3.1 shows the search tree

resulting from the branch-and-bound method for the following ILP problem:

minimize z � 6 x1
6 x2

subject to 1  20 x1
6 x2

� 6 16 1  43 x1
6 x2

� 6 5 (3.3)

and x
�

0

x is integer

For each subproblem it is indicated the feasible region (shadowed areas for the linear pro-

gramming relaxation of (3.3) and black dots for the ILP problem), and the cost function

value, zi, obtained by the Simplex method. This solution is used as an estimated lower

bound for the objective function of the ILP problem. The first solution of the linear program-

ming relaxation of (3.3) is non-integer (x1 � 1  52 and x2 � 2  85 that imply z0 � 6 4  37).

Considering that we select x1 to split the original problem, the search space can be divided

in two areas, one for x1 3 1 and another for x1
�

2, which start a tree of subproblems. This

process is repeated until the whole search space becomes implicitly or explicitly enumerated.

The first integer solution found, Sol1
int � z2 � 6 3, is saved until a better solution is found,

Sol2
int � z6 � 6 4. Note that since the lower bound estimated for z7 � 6 3  71 is greater than

the previous computed integer solution (Sol2
int � 6 4) there is no need to search for a solution

in the feasible region of that subproblem, thus the search is pruned at this node. Moreover,

a depth-first search is used in this example but other search approaches can be used, such as

breadth-first search or best-bound search [Russell 94].

3.2.2 Cutting Plane Methods

Cutting planes methods for general integer programming problems were first proposed

by Gomory [Gomory 58, Gomory 63]. These methods find exact solutions for integer pro-
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gramming problems by solving a sequence of linear programming relaxations of the original

problem. As noted before, the optimum solution to the LP relaxation problem, where the

integer constraints are dropped, is a lower bound on the optimum integer solution. So, if the

optimal solution to the LP relaxation problem is feasible (all the constraints are satisfied by

the solution) for the integer programming problem, the original integer linear programming

problem is solved. But, while an integer solution is not found, each iteration of cutting plane

algorithms deduces a set of new inequalities, from the original constraint requirements, to

create a new linear programming problem. These extra constraints are inferred in such a

way that no feasible integer solutions are excluded, the feasible solution region is actually

reduced and the optimum solution for the linear programming problem will contribute to an

integer solution. Using these methods it is possible to solve an integer linear program in a

finite number of iterations. However, for hard instances this finite convergence is known to

be slow, because an exponential number of cutting planes must be added [Mitchell 98b]. For

these hard integer programming instances that can not be solved to an optimum solution,

cutting planes algorithms can produce approximations to the optimum solution in moderate

computation time, with guarantees on the distance to the optimum [Mitchell 98b].

Figure 3.2 shows an example of using cutting plane methods for computing the solution

to the ILP problem described by (3.3). In each iteration of the algorithm new constraints
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are added in order to reduce the feasible solution of the LP relaxation problem but without

excluding any integer solution. The solution to the ILP problem is obtained when the solution

to the LP relaxation problem respects the integrality constraints, i.e. all xi are integers.

3.2.3 Other Approachs

Integer linear programming problems can also be solved using a combination of cutting

plane methods with branch-and-bound methods [Mitchell 94, Beasley 96]. These methods,

called branch-and-cut, work by solving a sequence of linear programming relaxations of

the integer programming problem. Cutting plane methods improve the solution of the LP

relaxation problem, introducing additional constraints which will approximate the relaxed

solution to the solution of the ILP problem, and the branch-and-bound methods proceed

using a wise divide-and-conquer approach to solve ILP problems [Mitchell 98a].

Another class of algorithms for solving integer linear programming problems are the

group theoretic. A detailed description of these algorithms, which are based on group theory,

can be found in [Salkin 75]. However, due to the complexity of these algorithms, only small

problems can be solved using these approaches [Salkin 75].

3.3 Methods for Zero-One ILPs

As noted before, an integer linear programming problem in which all variables are con-

strained to be 0 or 1 (binary variables where each xi � � 0 � 1 � ) is called a zero-one integer

linear programming (ZOILP) problem. The zero-one ILP problem can be formalized using

the following matrix notation:

minimize c � x
subject to A � x � b (3.4)

and xi �7� 0 � 1 � � i � 1 ������ n
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where A, b, c, and x, have the same meaning as in (3.1), except that the n problem variables

xi are now constrained to assume binary values (0,1) by the last constraint in (3.4).

A significant number of combinatorial and logical constraints can be modeled

through the use of zero-one variables. In particular, it is possible to map any integer lin-

ear programming problem, in which the variables are bounded above, as an zero-one integer

linear programming problem [Papadimitriou 83].

Any algorithm for solving ILP problems can also be used for solving zero-one ILP prob-

lems. Observe that, using a generic ILP solver for zero-one ILP problem requires that for

each variable two additional constraints be included in the formulation i.e. xi
�

0 and xi 3 1

for i � 1 ������ n, which guarantee that each variable value is limited to 0 or 1. However,

due to the special characteristics of zero-one integer linear programming problems (binary

variables, finite number of possible solutions), they are more suitable to be solved using

dedicated search algorithms than using general ILP algorithms. In particular, propositional

satisfiability (SAT) search algorithms can be adopted for solving zero-one ILP problems, as

will be illustrated later on.

In [Barth 95], Peter Barth described how to solve zero-one integer linear programming

problems using a propositional satisfiability (SAT) search algorithm. However, the algorithm

described in [Barth 95] is based on the Davis-Putnam search procedure [Davis 60], which has

been shown to be particularly inefficient for a large number of instances of SAT [Silva 96b].

In this section we describe two different algorithms for solving zero-one integer linear

programming problems. Both algorithms are based on SAT algorithms that solve proposi-

tional formulas generally represented in Conjunctive Normal Form (CNF). As explained in

Chapter 2 (see section 2.2 on page 25), a conjunctive normal formula ϕ denotes a boolean

function f : � 0 � 1 � n � � 0 � 1 � , which is composed exclusively by a conjunction of clauses

where each clause ω is a disjunction of literals, and a literal l is either a variable xi (positive

literal) or its complement : xi (negative literal). For example, the following formula

ϕ � � x1 � x2 �_: x3
� ���4: x1 �_: x3

� ���4: x2 �_: x3
� (3.5)

has 3 clauses and uses 5 literals, � x1 � x2 � : x1 � : x2 � : x3 � , from a set of 3 variables, � x1 � x2 � x3 � .
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A generic CNF clause ω � � l1 �������P� lk � denotes a constraint which can also be viewed as

a linear inequality, l1 � �����P� lk
�

1 if one associates true with 1 and false with 0. Furthermore,

the logical or can be viewed as ordinary addition and since all variables are binary, a literal

l �
: xi can also be defined by l � 1 6 xi. Thus, the CNF formula (3.5) can also be viewed as

the following set of integer programming constraints:

x1 � x2
6 x3

�
06 x1

6 x3
� 6 1 (3.6)6 x2

6 x3
� 6 1

and x1 � x2 � x3 � � 0 � 1 �
In general, ZOILP solvers that are built on top of existing SAT search algorithms are

limited in the type of instances of zero-one integer linear programming problems that can be

solved. In particular, all the constraints must be restricted to the following representation of

linear inequalities:

k

∑
i � 1

xi
6 n

∑
i � k 5 1

xi
�

1 6 � n 6 k � (3.7)

This limitation could be dropped to allow general linear inequalities by modifying SAT

procedures to determine whether a generalized constraint/clause is satisfied. However, the

complexity involved in this modification depends on how generic we want (3.7) to be. For

example, the simple generalization of (3.7) as one of,

∑xi �63 � � � � � Cint (3.8)

with Cint integer
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is conceptually straightforward to implement, but the generalization of (3.7) as a generic

zero-one integer linear programming constraint, represented by

∑ai � xi �63 � � � � � Creal (3.9)

with ai � Creal � R

is complex because it implies the re-implementation of most procedures of SAT algorithms

to handle constraints with generic coefficients. However, as we will see in the remaining

chapters of this thesis, the proposed test optimization models proposed in this work are not

limited by the restriction imposed by (3.7), because most of the models are derived from

constraints described as CNF formulas.

The first zero-one ILP solver algorithm presented in this section follows Peter Barth’s ap-

proach [Barth 95], whereas the second builds a branch-and-bound procedure on top of a SAT

engine. As we will see, by the results presented in Section 3.4, the SAT algorithm impacts di-

rectly the performance of the zero-one ILP solver. Therefore, it is crucial to use a state-of-art

SAT algorithm which includes efficient pruning techniques. For this reason, both zero-one

ILP algorithms use the GRASP SAT algorithm described in [Silva 96b], which includes sev-

eral pruning techniques for reducing the amount of search associated with instances of SAT.

Among the pruning techniques included in GRASP, the following have been shown to be

particularly significant:� GRASP implements a non-chronological backtracking search strategy2.

This backtracking strategy potentially permits skipping over large portions of the de-

cision tree for some instances of SAT.� GRASP utilizes selective clause recording techniques. During the search process,

and as conflicts are diagnosed (i.e. due to an assignment a clause becomes false or

2Some variations of this strategy are also commonly referred to as dependency-directed backtracking and

back-jumping [Russell 94].
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unsatisfied), new clauses are created from the causes of conflicts. These clauses rep-

resent implicates of the boolean function associated with the CNF formula, and are of-

ten referred to as nogoods [Stallman 77, Schiex 96]. Newly recorded clauses are then

used for pruning the subsequent search. Moreover, bounds on the size of recorded

clauses can be imposed, thus preventing an excessive growth of the resulting CNF

formula.� In most practical situations, instances of SAT can have highly structured CNF rep-

resentations. The intrinsic structure of these representations can be exploited by

GRASP, after diagnosing the causes of conflicts, by identifying necessary assign-

ments required for preventing conflicts from being identified during the subsequent

search.� In addition, other pruning techniques can be straightforwardly applied to SAT algo-

rithms. In particular, and as described in [Silva 97a], several techniques commonly

used in algorithms for different variations of the set covering problem [Coudert 96],

such as dominance relations and dynamic partitioning, can be applied. Dominance

relations between clauses identify which clauses can be deleted because they are

dominated by other clauses. A clause ω2 dominates another clause ω1 if the set

of all assignments that satisfy ω1 include the set of all assignments that satisfy ω2.

Consider for example the following two clauses ω1 � � x1 �ò: x2 � x3 �s: x4
� and

ω2 � � x1 �f: x4
� . Clause ω2 dominates ω1, which can be deleted because, when-

ever ω2 is satisfied, ω1 is also satisfied. Dynamic partitioning identifies disjoint

sub-formulas during the search process, that correspond to subproblems whose so-

lution can be computed separately. For example in the following CNF formula,

ϕ ��� x0 � x1 � x6
� �!� x1 �p: x2

� �!�4: x1 � x3
� �!� x4 � x5 �p: x6

� �!�4: x4 � x6
� , for the as-

signment x0 � 1 the set of clauses involving the variables x1, x2 and x3 becomes

disjoint from the set of clauses involving the variables x4, x5 and x6. Hence, the two

sub-formulas can be solved independently.

The SAT-based algorithms presented in the next sub-sections solve zero-one ILPs as-
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sociated with instances of the minimum-size prime implicant problem3. The minimum-size

prime implicant problem is defined as the problem of computing a minimum-size assignment

(in the number of literals) that satisfies a given boolean function f ; in our case f is described

in CNF format. Note that solving this problem corresponds to identifying a maximum-size

cube for function f . Minimum-size prime implicants find applications in many areas in-

cluding Electronic Design Automation (EDA). As we will see in Chapter 4, the computation

of the minimum-size test patterns, in automatic test pattern generation, can be viewed as

a particular case of computing a minimum-size prime implicant of a boolean function. In

other areas, the interest on computing minimum-size prime implicants of a boolean func-

tion has motivated extensive research work, as illustrated by the bibliographic references of

[Ngair 93, Pizzuti 96].

We used the zero-one ILP formulation described in [Silva 97c] to generate instances for

computing the minimum-size prime implicants of a Boolean function described in CNF.

Given a CNF formula ϕ, which is defined on a set of variables � x1 ������ xn � , with p clauses� ω1 ������ ωp � , and which denotes a Boolean function f : � 0 � 1 � n � � 0 � 1 � , apply the following

transformation:

1. Create a new set of boolean variables � y1 ������ y2n � , where y2i / 1 is associated with

literal xi, and y2i is associated with literal : xi.

2. For each clause ωk � � l1 � �����J� lm � , replace each literal l j with y2i / 1 if l j � xi, or with

y2i if l j �
: xi.

3. For each pair of variables, y2i / 1 and y2i, require that at most one is set to one. Hence,

y2i / 1 � y2i 3 1.

4. The set of inequalities obtained from steps 2 and 3 can be viewed as a single set of

inequalities A � y � b. Furthermore, define the cost function to be,

minimize
2n

∑
i � 1

yi (3.10)

3Note that the minimum-size prime implicant problem can be view as a specific application of the generic

binary cover problem (BCP) [Coudert 96].
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The complete ILP formulation for the minimum-size prime implicant is thus defined as

follows:

minimize
2n

∑
i � 1

yi

subject to A � y � b (3.11)

and yi �7� 0 � 1 � � i � 1 ������ 2n

3.3.1 SAT-Based Linear Search Algorithm

The min-prime SAT-based linear search algorithm for solving ILP problems follows P.

Barth’s ILP algorithm [Barth 95] and was first described in [Silva 97c]. Let us consider the

following zero-one ILP problem:

minimize
n

∑
i � 1

xi

subject to A � x � b (3.12)

and xi ��� 0 � 1 � � i � 1 ������ n
The possible values assumed by the cost function for the different assignments to the

variables in the set � x1 ������ xn � range from 0, when all variables are assigned value 0, to n,

when all variables are assigned value 1. P. Barth’s [Barth 95] approach consists of applying

the following sequence of steps, starting from an upper bound of k � n on the value of the

cost function:

1. Create a new inequality ∑n
i � 1 xi 3 k. This inequality basically requires that a computed

solution must have no more than k literals assigned value 1.

2. Solve the resulting instance of satisfiability. (Note that this instance is defined on

linear inequalities, but as we already mentioned, modifying most SAT algorithms for

handling this generalization is straightforward.)
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3. If the instance of SAT is satisfiable decrement k (i.e. specify a new value for the cost

function) and go back to step 1. Otherwise, report that the solution to the zero-one

ILP is k � 1. In those cases where the initial SAT instance is not satisfied, then the

problem does not have a solution.

Note that this ILP algorithm allows for any SAT algorithm to be used as the underlying

SAT testing engine, provided the algorithm is modified to handle linear inequalities. The

proposed ILP algorithm is illustrated in Figure 3.3. For our particular case, the solve sat

function call invokes the GRASP SAT algorithm [Silva 96b].

As noted before, one distinct feature of the GRASP algorithm is non-chronological back-

tracking. However, by appending the constraint ∑n
i � 1 xi 3 k, involving all the variables, we

are limiting non-chronological backtracking solely to the conflicts occurring on the original

constraints of the problem, i.e. logical conflicts. Note that a conflict in the appended con-

straint will always result in a chronological backtrack because all variables are involved, and

so the analysis of the conflict will necessarily point to the last assignment. However, as we

will see in Section 3.4, the results obtained by the min-prime algorithm outperform other

non-SAT ILP solvers for most instances evaluated.



70 3. Optimization Models and Algorithms

int min prime(ϕ)

k � n;

while � k � 0 � do

ϕ � ϕ 8 � ∑xi 3 k � ;
status � solve sat � ϕ � ;
ϕ � ϕ 6 � ∑xi 3 k � ;
if (status � SATISFIABLE) then

k � ∑xi;

k 6 6 ;

else

k � � ;

break;

end if

end while

return k;

Figure 3.3: SAT-based linear search algorithm.

3.3.2 SAT-Based Branch-and-Bound Algorithm

A different algorithmic organization consists of using a variation of the branch-and-

bound procedure [Nemhauser 88], where upper bounds to the cost function of (3.12) are

identified and lower bounds to the current set of variable assignments are estimated.

The implementation of [Manquinho 97], uses the independent set based lower bound

estimation procedure described in [Coudert 96]. This technique, widely used for computing

lower bounds, consists in finding a maximum set of disjoint clauses (Dω), i.e. the maximum

number of clauses (ωk) with no literals (l j) in common between them4. The minimum cost

4If we consider a graph whose vertices are the clauses, and such that there is an edge between two

clauses if and only if they have one common literal, then the set Dω is the maximal independent set on this

graph [Coudert 96].
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maximal independent set(ϕ)

Dw � /0;

repeat

ωk � choose clause � ϕ � ;
Dw � Dw 7r� ωk � ;
ϕ � eliminate intersecting clauses � ϕ � wk

� ;
until ϕ �� /0;

return Dw;

Figure 3.4: Heuristic algorithmic to compute Dw.

needed to cover Dω, i.e. to satisfy all clauses ωk � Dω, is certainly a lower bound (LBe) on

the cost to satisfy all clauses, which is computed as:

LBe � ∑
ωk . Dω

min cost � ωk
� (3.13)

where min cost � ωk
� is the minimum value added to the cost function such that ωk is satisfied.

Note that, if a clause ωk has any negative literal l j (i.e. l j � : xi) then cost min � ωk
� is zero

because we can always satisfy ωk, with xi � 0, without increasing the value of the cost

function of (3.12). Therefore, the set of clauses used to identify Dω are only those which

necessarily increase the value of the cost function when satisfied. Since the identification

of the maximal set of disjoint clauses is NP-hard, a simple greedy heuristic to compute

Dω [Coudert 96] is used. This heuristic, whose algorithm is presented in Figure 3.4, selects a

clause ωk from the initial set of clauses (ϕ) which is added to Dω, then eliminates from ϕ all

the clauses which have common literals with ωk, and repeats this process until ϕ is empty.

The operation of bounding for the proposed procedure is illustrated in Figure 3.5. Let UB

denote the lowest computed upper bound on the solution of (3.12), LBe denote an estimated

lower bound on the solution and OPT denote the optimum solution of (3.12). If the estimated

lower bound is less than the already computed upper bound (as shown in Figure 3.5(a)), then

the search cannot be bound since it may still be possible to reduce the value of the upper
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UB

LBe

OPT

UB

OPT

LBe

(a) Bounding cannot be applied

OPT

LBe

UB

LBe � UB

OPT

(b) Bounding can be applied

LBe

UB � OPTLBe

UB � OPT

(c) UB cannot decrease

Figure 3.5: Using bounding in the ILP algorithm.
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bound. Clearly, the search can be bound whenever the estimated lower bound of the objective

function of (3.12) is larger than or equal to the existing upper bound to the solution of (3.12),

as illustrated in Figure 3.5(b). Finally, observe that Figure 3.5(c) denotes the conditions after

which the upper bound will no longer be updated during the search.

Moreover, since the branch-and-bound procedure is embedded in the SAT algorithm,

every pruning technique used by the SAT algorithm can also be used in solving the ILP.

This is particularly useful whenever a constraint of (3.12) becomes unsatisfied. The branch-

and-bound procedure, that was implemented in the bsolo solver and whose pseudo-code is

shown in Figure 3.6, consists of the following steps:

1. Initialize the upper bound to the highest possible value ( � ∞).

2. If a solution to the constraints has been identified, then determine the new minimum

value of the cost function of the ILP formulation. Update the current upper bound

and issue a conflict to guarantee that the search is bound (Issue UB based con f lict).

Otherwise, branch on a given decision variable (i.e. make decision assignment).

3. Apply boolean constraint propagation [Zabih 88]. If a conflict is reached, then diag-

nose conflict, record relevant clauses, and proceed with the search process or back-

track if required.

4. Estimate lower bound. If this value is larger than or equal to the current upper bound,

then issue a conflict (Issue LB based con f lict), diagnose the conflict, backtrack, and

continue the search from step 2.

Observe that the proposed branch and bound SAT-based ILP algorithm has the following

main differences with respect to the linear search ILP algorithm:� No clauses involving the cost function are created. The exception occurs when a

solution to the constraints is found or the estimated lower bound is no less than the

computed upper bound. In this situation a clause involving a subset of variables in the

cost function is temporarily created, thus causing the search procedure to backtrack.
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int bsolo(ϕ)

UB �
� ∞;

while (TRUE) do

if � Solution f ound � � � T RUE) then

UB � Cost f unction value � � ;
Issue UB based con f lict � � ;

else

Decide � � ;
end if

while (Deduce � � � CONFLICT) do

if � Diagnose � � � CONFLICT) then

return UB;

end if

end while

while (Estimate LB � � � UB) do

Issue LB based con f lict � � ;
if (Diagnose � � � CONFLICT) then

return UB;

end if

end while

end while

Figure 3.6: SAT-based branch-and-bound algorithm.� Lower bounding procedures are required. As mentioned earlier, the lower bounding

procedures of [Coudert 96] are used, but lower bounding procedures based on linear

programming relaxations or lagrangian relaxation can also be used [Berkelaar 92,

Nemhauser 88]. Clearly, the tightness of the lower bounding procedure is crucial for

the efficiency of the branch-and-bound procedure.

As described, in the SAT-based branch-and-bound algorithm bsolo (Figure 3.6) there are
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three types of conflicts which can arise: logical conflicts, upper bound conflicts and lower

bound conflicts. Logical conflicts, that occur when the one of the constraints of the problem

is unsatisfiable, are solved by the usual conflict analysis procedure of GRASP that determines

to which decision level the search should backtrack and if possible in a non-chronological

manner (see [Silva 96a, Silva 96b] for details of the non-chronological backtrack search SAT

algorithm). Upper bound conflicts and lower bound conflicts occur when a solution to the

constraints is found, and when the estimated lower bound is higher than or equal to the upper

bound, respectively. These bounding conflicts are treated differently than logical conflicts.

In both situations, a new clause must be added to the problem in order for a logical conflict

to be issued and, consequently, to bound the search.

The new clause, added to bound the search when a bound conflict arises, is built us-

ing the assignments that are deemed responsible for the conflict to arise. In the approach

of [Manquinho 97], the new clause is built to bound the search by including all the decision

variables in the search tree, i.e. every variable assignment xi � 1 (or xi � 0) will contribute

to the new clause with the literal : xi (or xi, respectively). Clearly, by construction, after

the clause is built its state is unsatisfied. Therefore, the conflict analysis procedure has to

be called to determine to which decision level the algorithm must backtrack to. This was

also the case with the SAT-based linear search algorithm (min-prime), the problem with

this approach is that backtracking is always chronological, since it depends on all decisions

made.

New ways of building these bounding clauses which enable non-chronological backtrack-

ing due to upper and lower bound conflicts are presented in [Manquinho 99, Manquinho 00b].

However, the results presented in next section show that the simple approach used in [Manquinho 97]

for building the upper and lower bound conflicts clauses have resulted in an algorithm that

has a good performance when compared to other ILP solvers, in particular, bsolo outper-

forms the min-prime algorithm in most instances. Moreover, new versions of the bsolo

algorithm (which enable non-chronological backtracking on the bounding clauses among

other pruning techniques) have been proposed and evaluated by Manquinho [Manquinho 99,

Manquinho 00b]. The results obtained with these new versions, improved our results and fur-

ther indicate that bsolo is particular efficient for solving instances of some models proposed
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in this thesis.

3.4 Experimental Results – Tool Selection

In this section we include experimental results of several integer linear programming

tools (which implement different algorithms) used for solving instances of zero-one ILPs

associated with the minimum-size prime implicant problem.

The algorithms selected for solving the resulting zero-one integer programming problem

instances include three SAT based algorithms opbdp, min-prime and bsolo. opbdp uses the

implicit enumeration algorithm described in [Barth 95], min-prime is based on linear search

through the possible values of the cost function as described in Section 3.3.1, whereas bsolo

uses the SAT based branch-and-bound algorithm described in Section 3.3.2. We also com-

pare these SAT-based ILP algorithms with other generic ILP solvers, lp-solve [Berkelaar 92],

and the commercial optimization tool CPLEX. Moreover, the binate covering tool scherzo [Coudert 96]

is also evaluated, since minimum-size prime implicant computation can also be viewed as a

restricted form of the binate covering problem. The function f for which we want to iden-

tify the minimum-size prime implicants was selected from the set of satisfiable instances of

the DIMACS benchmarks [Johnson 93]. The aim instances were randomly generated with

exactly one satisfying assignment. The ii8 instances are obtained from inductive inference

problems [Kamath 92]. The jnh instances were randomly generated to be computationally

hard to solve and the ssa are instances from circuit fault analysis (a single stuck-at fault). The

CPU times, obtained on a SUN 5/85 machine with 64 MByte of physical memory, are shown

in Table 3.1. For each benchmark and for each tool 3000 seconds of CPU time were allowed.

Table 3.2 includes the upper bound on the minimum-size prime implicant computed by each

algorithm for each benchmark. Column min indicates the size of the minimum-size prime

implicant, when this size is known. (Observe that for some of the benchmarks the minimum-

size prime implicant is still unknown.) When a tool finishes, it reports the minimum-size

prime implicant if it was identified, otherwise the lowest computed upper bound is reported

provided at least one upper bound was identified. For the results shown, whenever a tool

quits earlier than 3000 seconds, it is because the tool exceeded the limit imposed on the
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Generic ILP algorithms SAT based algorithms

Benchmark CPLEX lp-solve scherzo opbdp min-prime bsolo

aim-50-1 6-y1-1 116.50 8 3000 2.33 0.09 0.05 0.07

aim-50-2 0-y1-2 109.50 8 3000 5.65 0.64 0.02 0.04

aim-50-3 4-y1-3 62.90 377.10 0.57 0.40 0.08 0.18

aim-50-6 0-y1-4 26.90 96.80 0.73 0.48 0.07 0.17

aim-100-1 6-y1-2 8 3000 8 3000 8 1000 8 3000 0.09 0.22

aim-100-2 0-y1-3 8 3000 8 3000 691.57 42.45 0.17 0.45

aim-100-3 4-y1-4 8 3000 8 3000 35.47 0.81 0.47 1.08

aim-100-6 0-y1-1 294.30 8 3000 2.78 0.18 0.32 0.52

aim-200-1 6-y1-3 8 3000 8 3000 8 345 8 3000 0.22 0.76

aim-200-2 0-y1-4 8 3000 8 3000 8 1705 8 3000 0.83 2.60

aim-200-3 4-y1-1 8 3000 8 3000 8 3000 41.84 4.32 2.31

aim-200-6 0-y1-2 8 3000 8 3000 619.38 4.59 3.58 2.76

ii8a1 63.30 786.90 0.98 1.93 861.53 3.51

ii8b2 8 3000 8 3000 8 3000 8 3000 8 3000 8 3000

ii8c2 8 3000 8 3000 8 3000 8 3000 8 3000 8 3000

ii8d2 8 3000 8 3000 8 3000 8 3000 8 3000 8 3000

ii8e2 8 3000 8 3000 8 3000 8 3000 8 3000 8 3000

jnh1 8 3000 8 3000 70.00 2.24 17.96 11.39

jnh7 8 3000 8 3000 5.35 0.45 9.06 2.88

jnh12 2529 8 3000 3.07 0.12 0.58 1.10

jnh17 873.90 8 3000 17.28 0.30 2.53 2.13

ssa7552-038 8 3000 8 3000 8 223 8 3000 8 1205 8 500

Table 3.1: CPU times on selected benchmarks.

virtual memory allowed to solve each instance (i.e. 64 MByte).

As can be concluded, general-purpose ILP solvers, such as CPLEX and lp-solve, may

be inadequate for computing minimum-size prime implicants. Similarly, despite the very

promising results as an algorithm for solving binate covering problems [Coudert 96], scherzo

performs particularly poorly when computing minimum-size prime implicants. The three
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Generic ILP algorithms SAT based algorithms

Benchmark min CPLEX lp-solve scherzo opbdp min-prime bsolo

aim-50-1 6-y1-1 50 50 – 50 50 50 50

aim-50-2 0-y1-2 50 50 – 50 50 50 50

aim-50-3 4-y1-3 50 50 50 50 50 50 50

aim-50-6 0-y1-4 50 50 50 50 50 50 50

aim-100-1 6-y1-2 100 – – – 100 100 100

aim-100-2 0-y1-3 100 – – 100 100 100 100

aim-100-3 4-y1-4 100 – – 100 100 100 100

aim-100-6 0-y1-1 100 100 – 100 100 100 100

aim-200-1 6-y1-3 200 – – – – 200 200

aim-200-2 0-y1-4 200 – – – – 200 200

aim-200-3 4-y1-1 200 – – – 200 200 200

aim-200-6 0-y1-2 200 – – 200 200 200 200

ii8a1 54 54 54 54 54 54 54

ii8b2 – 388 474 – – 379 379

ii8c2 – 629 668 – – 525 525

ii8d2 – 588 – – – 540 540

ii8e2 – 653 – – – 494 494

jnh1 92 93 – 92 92 92 92

jnh7 89 90 – 89 89 89 89

jnh12 94 94 – 94 94 94 94

jnh17 95 95 – 95 95 95 95

ssa7552-038 – 1449 1450 – 1452 1448 1448

Table 3.2: Computed upper bounds.

SAT-based ILP solvers can handle a large number of benchmarks and, in general, min-prime

and bsolo perform better and are more robust than opbdp, which is unable to find the so-

lution on a larger number of instances. For the JNH benchmarks, opbdp performs better

because the amount of search is similar and the overhead of the underlying GRASP SAT al-

gorithm is larger. One key drawback of min-prime derives from using an ILP layer around
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the SAT algorithm which creates large additional clauses. For the minimum-size prime im-

plicant problem, these additional clauses involve all variables in the problem representation.

Hence, conflicts involving this clause necessarily lead to chronological backtracking to the

most recent decision assignment [Silva 96a, Silva 96b], and so the most useful features of

GRASP cannot be exploited. Finally, we note that bsolo tends to be a more efficient search

algorithm than min-prime, as the experimental results suggest. For this reason we choose

the bsolo ILP solver for solving the ILP optimization models proposed in the remainder of

this thesis.
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3.5 Conclusions

In this chapter we briefly presented the main approaches for solving the integer linear

programming problem. In particular, we concentrated on satisfiability-based algorithms for

solving zero-one ILP problem instances. We described algorithms for computing the mini-

mum size prime implicant of boolean functions. The model is based on an ILP formulation

and the proposed algorithms are built on top of existing SAT solvers, in our case GRASP.

The algorithms, min-prime and bsolo, are based on the well known linear search algo-

rithm and the branch-and-bound method, respectively. To our best knowledge min-prime

and bsolo are the first SAT-based ILP algorithms that incorporate conflict diagnosis tech-

niques [Silva 96b] in solving optimization problems. Both algorithms incorporate several

powerful search-pruning techniques which are known to be particularly useful for SAT algo-

rithms, in particular the non-chronological backtracking strategy, the clause (nogood) record-

ing procedures, and the identification of necessary assignments.

As the results given in the previous section clearly show, the proposed algorithms are

the most competitive for the set of benchmarks considered. Moreover, those results also

show that, for these classes of benchmarks, the branch and bound SAT-based ILP algorithm

bsolo is in general more efficient than the SAT-based linear search algorithm, min-prime.

Therefore, we selected the bsolo ILP solver for solving the ILP optimization models pro-

posed in the remainder of this thesis. Recent research [Manquinho 99, Manquinho 00a,

Manquinho 00b] confirms this choice: new versions of the bsolo SAT-based linear search

algorithm outperform the other solvers (presented in Table 3.2) for the test optimization in-

stances that result from the models proposed in this thesis, in particular, for the minimum

size test pattern generation model proposed in Chapter 5.

Having described the optimization models and algorithms for solving them, which will

be used in the remainder of this thesis, we are now in condition to present the proposed

optimization models for testing problems. In the next chapter, we will describe an ILP

optimization model that identifies a complete minimum test set for arbitrary combinational

circuits.
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4.1 Introduction

Test set compaction is a fundamental problem in digital system testing. The test size

(number of vectors) is directly related with the time and cost of test application during the

production phase. For economical reasons a compact test set is highly desirable, even if it

is necessary to use a heavily computational effort during the test generation process or in an

additional test set reduction process, or both.

As seen in the previous chpater, the ATPG process for digital circuits has been extensively

investigated and most of the algorithms are able to generate a complete test set for a given cir-

cuit [Goel 81, Fujiwara 83, Kirkland 87, Schulz 88, Silva 94, Stephan 96, Silva 97b]. How-

ever, only during the last decade did the problem of deriving small test sets gain key impor-

tance due to the increasing complexity of the circuits and large scale production. The ideal

goal is to obtain the minimum number of test vectors that detect all the detectable faults in

an arbitrary combinational circuit. This problem is computationally hard and its restriction

to the subset of irredundant circuits is known to be NP-hard [Krishnamurthy 84]. Neverthe-

less, many competitive solutions have been proposed, most of which based on heuristic ap-

proaches [Pomeranz 91, Reddy 92, Pomeranz 93b, Chang 95, Kajihara 95, Hamzaoglu 98].

In this chapter we propose an integer linear program (ILP) model for solving the min-

imum test set problem. The proposed formulation is polynomial in the size of the circuit.

To our best knowledge, only two other approaches [Matsunaga 93, Silva 98] have proposed

non-heuristic solutions to the minimum test set problem for arbitrary combinational circuits.

In [Matsunaga 93] the problem is formalized as a minimum set cover problem, and then im-

plicit manipulations techniques using binary decision diagrams (BDDs) are applied. Given

that this approach is based on implicitly representing all test patterns for each fault, it re-

quires worst-case exponential space, and so it is impractical except for very small circuits.

[Silva 98] proposes an integer linear programming model in which the size of representation

is polynomial in the size of the circuit representation. Our proposed model is closely related

with the techniques proposed in [Silva 98], henceforth referred to as the reference model,

which are based on the SAT model presented in Section 2.3.2. Although our model has the

same worst-case polynomial size representation of the reference model, it significantly im-
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proves on its representation size. Moreover, we propose additional techniques for reducing

the size of the proposed ILP formulation for practical circuits. These techniques include the

identification of fault independence relations, removal of redundant faults by preprocessing,

using empirical upper bounds, and limiting the model to the nodes related with each fault.

Using these techniques the new model can be used to obtain optimal solutions for small-size

circuits. Hence, besides its theoretical interest, the proposed model can be used to validating

new and existing test set compaction heuristics.

However, for larger circuits this model becomes impractical. Therefore, we developed

a practical alternative approach using a post-generation compaction method, and studied

the effect of fault simulation in the test set compaction. The existing heuristic approaches,

which do not guarantee to compute a test set of minimum size, perform in practice extremely

well [Hamzaoglu 98, Pomeranz 93b]. For heuristic approaches, and given a pre-computed

test set which is not known to be optimum, one can potentially remove redundant test pat-

terns, thus obtaining a reduced test set. Clearly, this reduced test set need not be the minimum

size test set for the circuit. The existence of redundant tests is intrinsic to any heuristic ATPG

tool, since in general any fault simulation strategy is unable to guarantee the complete elim-

ination of redundant test patterns. One approach for minimizing a pre-computed test set has

been proposed by D. Hochbaum in [Hochbaum 96], and consists of casting the problem of

removing redundant test patterns from a test set as an instance of the set covering problem.

Since the set covering problem can naturally be formulated as a 0-1 integer linear program,

an integer programming approach based on linear programming relaxations was proposed

and evaluated in [Hochbaum 96]. Nevertheless, only very preliminary experiments were

conducted. In particular, the effect of fault simulation on the ability of reducing the size of

a test set was not evaluated. Therefore in this chapter we also study the application of set

covering models to the compaction of test sets, which can be used over any heuristic test set

compaction procedure. For this purpose, recent and highly effective set covering algorithms

are used [Coudert 96]. Experimental evidence suggests that the size of the computed test sets

can often be reduced by using set covering models and algorithms. Moreover, a noteworthy

empirical conclusion is that it may be preferable not to use fault simulation when the final

objective is test set compaction.
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This chapter is organized as follows. In the next section we present the reference model

for computing the minimum size test set. In the Section 4.3 we describe in detail the proposed

ILP model and present results showing that our model has a smaller size representation.

Finally in Section 4.4 we describe the set covering model for test set compaction and present

some experimental results of the test set compaction model.

4.2 Minimum Size Test Set – Reference Model

In this section we introduce the reference model for the computation of the minimum

number of test patterns which detects all detectable faults in a combinational circuit [Silva 98].

First, we provide an ILP formulation for computing the minimum number of test patterns

which detect all faults in an irredundant circuit. Afterwards, we extend this formulation to

arbitrary combinational circuits, which may include redundant faults.

4.2.1 Irredundant Combinational Circuits

The first problem we address is to identify the minimum number of test patterns that

detect all faults in an irredundant combinational circuit. Let us consider a circuit where

there are M stuck-at faults to be detected. So, we need at least to specify M fault detection

formulas, one for each fault. Moreover, M tests suffice for detecting all M faults. As a result,

we can create M copies of each circuit formula, and for each such formula we can create

M associated fault-specific formulas, one for each fault. A set of tests that detects all faults

will do so in such a composed formula. Figure 4.1 shows the global organization of this

approach for detecting all stuck-at faults. In each copy of the good circuit ϕG
i , each node

variable x will be represented as xG
i . Accordingly, in each copy a fault-specific formula ϕFS

i � j ,

the variables associated with fault detection problems and with node x will be represented as

xF
i � j, for the faulty node, and xS

i � j, for the sensitization node. Given the above, the problem of

minimizing the number of tests is now reduced to finding a set of test patterns that detects all

faults and that minimizes the number of copies ϕG
i that are required. Note that the values on

the primary inputs of each used copy ϕG
i are the minimum size test set.

Let us associate a Boolean variable di � j with each fault-specific formula ϕFS
i � j which as-
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Figure 4.1: Global formula organization for detecting all faults.
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sumes value true whenever fault j is detected with copy i of the circuit formula and associ-

ated fault-specific formula. This leads to the following conditions for all i, j:,
x . PO

� xS
i � j � di � j � � ,

x . PO

� : xS
i � j � di � j � � ,

x . PO

� di � j 6 xS
i � j � 0 � (4.1)

and,

� di � j � ∑
x . PO

xS
i � j � � � : di � j � ∑

x . PO

xS
i � j � � ∑

x . PO

xS
i � j 6 di � j � 0 (4.2)

Hence, fault j is detected with ϕFS
i � j , if at least one sensitization xS

i � j variable (with x � PO)

evaluates to true. In addition, either di � j assumes value 0, or the error signal must reach at

least one primary output; hence condition (4.2). Clearly, since each fault j is detectable and

must be detected by a test set, then the following conditions must hold,

� M

∑
i � 1

di � j � � M

∑
i � 1

di � j � 1 (4.3)

for j ��� 1 ������ M � . Let us now introduce a variable si � j, for each variable di � j, such that,

§
di � j � si � j ¨ � § : di � j � si � j ¨ � si � j 6 di � j � 0 (4.4)

and, for all i ��� 2 ������ M � � j ��� 1 ������ M �
§
si / 1 � j � si � j ¨ � § : si / 1 � j � si � j ¨ � si � j 6 si / 1 � j � 0 (4.5)

Variable si � j evaluates to true whenever di � j � 1. In such a situation, for all k 4 i, sk � j � 1.

Thus, each variable si � j permits selecting the least i for which fault j is detected. Notice that

the least i for which fault j is detected is such that si / 1 � j � 0 and si � j � 1.
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In addition to the previous variables, we need to associate a Boolean variable ui that is

assigned value true whenever copy i of the circuit formula is used to detect at least one fault

which had not been detected with a smaller i. Hence, we must have,

§
s1 � j � u1 ¨ � § : s1 � j � u1 ¨ � u1

6 s1 � j � 0 (4.6)

for j ��� 1 ������ M � , and

§ � si / 1 � j ) si � j ��� ui ¨ � § :��P: si / 1 � j � si � j � � ui ¨ � si / 1 � j 6 si � j � ui
�

0 (4.7)

for i �_� 2 ������ M � and j �_� 1 ������ M � . This condition basically states that the first copy i,

for which fault j is detected, is declared to be used for detecting fault j. Hence, from the

definition of ui we have the following result,

Proposition 4.1 Given the definition of ui in (4.6) and (4.7), each fault j can set exactly one

variable ui to true. Moreover, more than one fault j can set the same variable ui.

Finally, we must define the cost function that we want to minimize. Clearly, this cost

function should minimize the number of copies of the circuit formula that are used for de-

tecting all faults, and so we get,

min
M

∑
i � 1

ui (4.8)

The M replicas of the clausal representation of the circuit, each with its M copies of the

fault detection problems, as well as (4.1) through (4.8) capture the problem of computing

the minimum number of tests for a given irredundant circuit. For the C17 benchmark circuit

(see Figure 2.4 on page 26), which have 34 non-collapsed stuck-at fault, the data for the

associated ILP formulation is summarized in Table 4.1. Finally, in [Silva 98] and [MS 97]

the following formal results have been established and proven.
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# Clauses # Formulas

Circuit formula ϕG 34

Fault-specific formula ϕFS 342 � 1156

Fault detection (4.1) (4.2) 342 � 1156

Detection requirement (4.3) 34

Fault detection selection (4.4) 342 � 2312

Propagation of selection (4.5) 33 " 34 � 1122

Usage of replica i (4.6) (4.7) 34 � 33 " 34 � 1156

Cost function (4.8) 1

Table 4.1: Upper bounds on the ILP formulation for the C17 benchmark circuit.

Proposition 4.2 The size of the ILP for the minimum test set problem (described above) is

O � M2 � N � � O � N3 � .
Proposition 4.3 The minimum value of (4.8) denotes the minimum number of tests that de-

tect all faults in the irredundant combinational circuit C. Furthermore, each of the assign-

ments to the primary inputs of each circuit copy ϕG
i , for which ui � 1, denote a test pattern.

4.2.2 Arbitrary Combinational Circuits

The next problem addressed is the identification of the minimum number of test patterns

which detect all detectable faults in a given arbitrary combinational circuit, as well as the

identification of all the redundant faults in that circuit. This problem is quite similar to the

problem of the previous section, with the added difficulty that some faults are now redundant.

One simple solution to this problem is to introduce additional variables and modify some

of the equations of the ILP of the previous section. First, let us define a variable r j, with

j � � 1 ������ M � , that is true when fault j is declared redundant. Given that some faults are

indeed redundant, constraint (4.3) must be modified to capture this fact:

� M

∑
i � 1

di � j � r j � � M

∑
i � 1

di � j � r j
�

1 (4.9)
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for j � � 1 ������ M � . This condition requires that either the fault is detected by at least one

copy of the circuit formula or otherwise it must be declared redundant. The next step is to

modify the cost function so as to penalize the existence of redundant faults. This can be

done by giving a sufficiently large weight to variables declared redundant, such that the cost

of declaring a fault redundant is larger than the sum of all ui variables. Hence, the minimum

value is achieved only when the actual redundant variables are declared redundant, since

these faults cannot be detected. Consequently, we obtain the following cost function:

min � M

∑
i � 1

ui � M � M

∑
j � 1

r j � (4.10)

This cost function splits the range of possible values into disjoint sets according to the

number of variables r j set to true. Valid ranges are (1 to M) for no redundant faults, (M � 1

to 2 � M 6 1) for one redundant fault, (2 � M � 1 to 3 � M 6 2) for two redundant faults, etc.

The size of these ranges is, respectively, M, M 6 1, M 6 2, etc. Intuitively, the minimum

value will be achieved when all detectable faults are indeed detected and in the least number

of copies of the circuit formula. The ILP formulation for this problem is summarized in

Table 4.2.

Proposition 4.4 The minimum value of (4.10), assuming (4.9) instead of (4.3), denotes the

minimum number of tests that detect all detectable faults and identify all redundant faults in

a combinational circuit C. In addition, the assignments to the primary inputs of each circuit

copy ϕG
i , for which ui � 1, denote a test pattern. Finally, each variable r j set to true indicates

that fault j is redundant.

4.2.3 Practical Considerations

In practice the size of the model can be reduced because we do not need to consider all

possible circuit faults nor to assume that one vector detects at least only one fault. Different

techniques for reducing the size of the ILPs associated with minimum test set computation

are described in [MS 97, Silva 98]. These techniques involve removing redundant faults from
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Clauses Ranges of indices

Circuit representation ϕG
i 1 3 i 3 M

Fault-specific representation ϕFS
i � j 1 3 i 3 M, 1 3 j 3 M

Fault detection

,
x . PO

� di � j 6 xS
i � j � 0 � 1 3 i 3 M, 1 3 j 3 M

∑
x . PO

xS
i � j 6 di � j � 0 1 3 i 3 M, 1 3 j 3 M

Detection requirement
M

∑
i � 1

di � j � r j
�

1 1 3 j 3 M

Fault detection selection si � j 6 di � j � 0 1 3 i 3 M, 1 3 j 3 M

Propagation of selection si � j 6 si / 1 � j � 0 2 3 i 3 M, 1 3 j 3 M

Usage of replica i
u1
6 s1 � j � 0 1 3 j 3 M

si / 1 � j 6 si � j � ui
�

0 2 3 i 3 M, 1 3 j 3 M

Cost function to minimize
M

∑
i / 1

ui � M � M

∑
j � 1

r j

Table 4.2: ILP for the minimum test set problem.

the fault set, applying fault dominance and independence relationships, and using empirical

upper bounds. Applying to the model such techniques we are reducing the values of the

M, which limit the range of indices i and j. For example, in the benchmark circuit C17,

there are a total of 34 stuck-at faults. This leads to the ILP model described in Table 4.1. In

contrast, by running the ATPG algorithm ATALANTA [Lee 93], four test patterns are identified.

Thus, instead of an ILP model that contains 342 � 1156 fault-specific formulas, using the

empirical upper bound of 4 tests the number of fault-specific formulas is guaranteed to be at

most 4 " 34 � 136. Moreover, by taking into account dominance relations, the set of faults

can be collapsed into 17 faults [Brglez 85]. Thus, only 17 " 4 � 68 fault-specific formulas

need to be considered. Similarly, the number of fault detection formulas is also reduced to

17 " 4 � 68. Likewise, the number of all other clauses used in the ILP formulation are also

reduced once the range of i and j indices are narrowed to 1 3 i 3 4 and 1 3 j 3 17, because

we need at most 4 vectors and there are only 17 collapsed faults, respectively.
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4.3 Minimum Size Test Set – Proposed Model

In this section we propose a new model for the computation of the minimum number of

test patterns which detects all detectable faults in a combinational circuit. The new model

also has size complexity O � N3 � , but, as we will see, for most circuits the effective size of its

ILP formulation is significantly smaller than the size of the ILP used in the reference model.

In fact, this is true for all circuits where the number of nodes is much bigger than the number

of primary inputs and outputs, a condition which is verified by most practical circuits. As

in the previous section, first we provide an ILP formulation for computing the minimum

number of test patterns which detect all faults in an irredundant circuit. Afterwards, we

extend this formulation to arbitrary combinational circuits, which may include redundant

faults.

4.3.1 Irredundant Combinational Circuits

Let us consider a circuit with M irredundant stuck-at target faults. We need at most M

representations of the circuit (ϕi) and M fault-specific detection formulas (ϕFS
j ), one pair

for each fault, to detect all faults in the circuit. Therefore, instead of the M 0 ϕi 2 � M 0 ϕFS
j 2 �

M 0 ϕFS
j 2 formulas1 required by the reference model, we need only to consider M 0 ϕi 2 � M 0 ϕFS

j 2
formulas. This reduced set of formulas, together with the associated fault detection formulas,

provide the sufficient conditions to detect all the faults in a circuit, but they are not adequate

to minimize the test set. For that, we have to share the inputs of one circuit formula with

different fault-specific formulas and thus detect several faults simultaneous with one test

vector. We use multiplexers (two for each fault) to share the inputs/outputs requiring in fact

only M replicas of the fault-specific formulas for the entire model.

In the reference model (described earlier in Section 4.2) M replicas of the fault-specific

formulas were used for each circuit formula, thus using a total of M2 fault-specific formulas,

which make the size complexity of the model as O � M2 � N � � O � N3 � . In this new model the

reduction in the size complexity of the formulation to detect the faults is, at some extent,

1We denote the M representations of the circuit as M © ϕi ª and the M fault-specific detection formulas as

M © ϕFS
j ª .
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compensated by the size complexity for representing the multiplexers. Thus, the overall ILP

size of the proposed model is still O � N3 � but in practice and more often smaller than the

reference model. Intuitively, this is explained by the fact that each pair of multiplexers has

a smaller representation than the M 6 1 copies of fault-specific formulas they are replacing.

Figure 4.2 shows the complete block diagram of the new test set minimization model.

As in the reference model, we refer to each copy of the good circuit formula as ϕG
i , and

refer to the faulty circuit formula associated with each fault j as ϕFC
j . The faulty circuit

ϕFC
j is a copy of the good circuit with an extra variable f c j that is set to true when fault

j is activated (i.e, the faulty node is controllable and assumes the opposite value of the

fault). In each copy of the good circuit ϕG
i , each variable xn � Vc will be represented as xG

n � i.
Accordingly, variables associated with faulty circuit ϕFC

j and node xn will be represented

as xF
n � j. Each multiplexer, that selects the good circuit inputs that feed the faulty circuit

ϕFC
j , is represented by the formula µI

j, hereafter referenced as the input multiplexer formula.

Similarly, the multiplexer that selects which good circuit outputs will be compared with the

outputs of the faulty circuit ϕFC
j is represented by the formula µO

j , hereafter referenced as the

output multiplexer formula. Note that, each pair of multiplexers, µI
j and µO

j , associated with

the faulty circuit ϕFC
j have the same set of control/selection lines. Only in this way we can

determine if the fault effect is observable, because we are comparing the outputs of the faulty

circuit with the outputs of one of the good circuits knowing that the vectors present at the two

circuits inputs are the same. This comparison is done using a miter circuit, represented by

the formula λ j, which performs a pairwise comparison on the corresponding outputs of the

good and faulty circuits. Thus, if the fault effect is observable on the outputs f o j assumes the

value 1, otherwise it will assume the 0 value. Given the above, the problem of minimizing

the number of tests is reduced to finding the set of test patterns that detects all faults and

minimizes the number of copies ϕG
i used.

Let us associate with each fault j a set of control Boolean variables ci � j, where i �� 1 ������ M � . When ci � j � 1 we are using the test vector present at the inputs of good cir-

cuit i, ϕG
i , to detect fault j in the faulty circuit ϕFC

j . Consequently, for each fault j, one, and

only one, variable ci � j, with i �_� 1 ������ M � , may assume a true value. Thus for each j we

have,
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Figure 4.2: Proposed formula organization for detecting all faults.
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� M

∑
i � 1

ci � j � � M

∑
i � 1

ci � j � 1 (4.11)

to guarantee that each fault j has at least one variable ci � j, i � � 1 ������ M � , which assumes

value true, and

M

∏
i � 1

M

∏
k � i 5 1

�4: ci � j �_: ck � j � � M
,
i � 1

M
,

k � i 5 1

� 6 ci � j 6 ck � j � 6 1 � (4.12)

to ensure that no more than one of ci � j, i � � 1 ������ M � , assumes the value true. Hence from

the definition of ci � j we have the following result,

Proposition 4.5 Given the above definition of ci � j, conditions (4.11) and (4.12), each fault

j sets exactly one variable ci � j to true. Moreover, the ci � j that is true indicates that we are

using the vector from the primary inputs of the good circuit, ϕG
i , for detecting j in the faulty

circuit ϕFC
j .

The input multiplexers, µI
j, select for each faulty circuit one of � X1 ������ XM � input buses

from the good circuits. Each Xi is a bus formed by the primary inputs (PI) of the good circuit

ϕG
i . Thus, the bus width of Xi is P, the number of primary inputs of the circuit, and the p line

in the bus Xi will be represented as xp � i. Figure 4.3 presents the internal structure of the input

multiplexer µI
j. There are P “small” multiplexers, one for each primary inputs of the faulty

circuit, all sharing the same control variables. Each “small” multiplexer, µI
j � p, selects the p

input line from the M good circuits to the faulty circuit j. This output line will be denoted as

yp � j. The CNF formula that represents each one of the “small” multiplexers is:

µI
j � p � M

∏
i � 1

�P: ci � j � xp � i �_: yp � j � �4: ci � j �_: xp � i � yp � j � (4.13)

note that, for the variables ci � j which assume value 0, the correspondent pair of clauses

in (4.13) is satisfied and so, xp � i and yp � j can assume any value. However, for the unique
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variable ci � j that assumes value 1, we must have xp � i � yp � j to satisfy the correspondent pair

of clauses in µI
j � p.

The complete CNF formula that describes each input multiplexer, µI
j, j � � 1 ������ M � , is

achieved by,

µI
j � P

∏
p � 1

µI
j � p (4.14)

The output multiplexers, µO
j , can be represented using the same internal structure used

for the input multiplexers. Note that, the control variables are the same, ci � j � j ��� 1 ������ M � ,
and there are also M input buses, Z1 to ZM, to choose from. The only difference between the

two types of multiplexers are the buses widths. In the output multiplexers the width of each

bus is Q, the number of primary outputs (PO) of the circuit. So, the CNF formula for each

“small” multiplexer, µO
j � q, in the output multiplexer µO

j is:

µO
j � q � M

∏
i � 1

�4: ci � j � zq � i �_: wq � j � �P: ci � j �_: zq � i � wq � j � (4.15)

where ci � j represent the control variables, zq � i is the q output line on the Zi bus from the good

circuit ϕG
i , and wq � j is the q line on the Wi bus, which is output of the multiplexer µO

j .

Similarly, the complete CNF formula that describes each output multiplexer, µO
j , j �� 1 ������ M � , is achieved by,

µO
j � Q

∏
q � 1

µO
j � q (4.16)

The miter circuit, λ j, checks if the effect of fault j is observable for the current selected

test vector. Figure 4.4 presents the internal structure of the miter circuit λ j. Basically, each

miter circuit, λ j, does a pairwise comparison between correspondent outputs of the faulty

circuit, rq � j, and the output multiplexer, wq � j, that are associated with the miter. The result
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of all comparisons are then applied to an OR with output f o j indicating whether the fault is

observable. The CNF formula, χq � j, that describes each XOR is,

χq � j � � wq � j � rq � j �_: bq � j � �¥� wq � j � : rq � j � bq � j � ��4: wq � j � rq � j � bq � j � �¥�P: wq � j �_: rq � j �_: bq � j � (4.17)

and the formula ω j for the OR is (from Table 2.1 in page 29)

ω j � � Q

∏
q � 1

�4: bq � j � f o j
� � � � Q

∑
q � 1

bq � j � f o j � (4.18)

Combining (4.17) and (4.18) we obtain the complete CNF formula for the miter circuit,

λ j,

λ j � � Q

∑
q � 1

χq � j � � � Q

∏
q � 1

�4: bq � j � f o j
� � � � Q

∑
q � 1

bq � j � f o j � (4.19)
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To determine whether the faulty node is controllable from the primary inputs, i.e. whether

the fault is activated, we associate a Boolean variable f c j to each faulty circuit. Therefore,

the value of f c j depends on the value of the faulty node (xFC
n � j ) and the stuck-at value of the

fault. Thus, f c j must satisfy one of the following constraints:

λ � j � � ! �P: f c j � xFC
n � j � ��� f c j � : xFC

n � j � for fault xFC
n � j stuck-at-0� f c j � xFC

n � j � ���4: f c j � : xFC
n � j � for fault xFC

n � j stuck-at-1
(4.20)

Let us associate a Boolean variable vi with each good circuit formula ϕG
i which assumes

value true whenever the primary inputs of the circuit formula i are used to detect any fault.

Moreover, each vi can be determined by all the multiplexers control variables that are asso-

ciated with each good circuit formula, ci � j with j � � 1 ������ M � . Note that, if one of these

control variables is assigned value 1 we are using the inputs of ϕG
i to detect fault j and then

vi must be true. Therefore, vi is obtained using an OR function,

vi � OR � ci � 1 �é���� ci � j � ���� ci �M � (4.21)

which leads to the following constraint for all i ��� 1 ������ M � ,
� M

∏
j � 1

�4: ci � j � vi
� � � � M

∑
j � 1

ci � j � vi � (4.22)

Observe that the variables vi are similar to the variables ui in the reference model, as both

indicate whether replica i of the good circuit is used to detect any target fault.

Finding the minimum size test set for irredundant combinational circuits implies that each

fault is controllable and observable. Therefore, we must assure that the following clauses

hold true,

M

∏
j � 1

� f c j
� ��� f o j

� (4.23)
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# Clauses # Formulas

Circuit formula ϕG 34

Faulty circuit formula ϕFC 34

Fault detection (4.19) (4.20) 34

Detection requirement (4.23) 2 " 34 � 68

Control variables (4.11) (4.12) 34 " � 1 �f� 34 « 33
2

��� � 19108

Input multiplexers (4.13) (4.14) 34 " � 5 " 64 � � 10880

Output multiplexers (4.15) (4.16) 34 " � 2 " 64 � � 4352

Usage of replica i (4.22) 34 " � 34 � 1 � � 1190

Cost function (4.24) 1

Table 4.3: Upper bounds using the new formulation model for the C17 benchmark circuit.

Finally, we must define the cost function that we want to minimize. Clearly, this cost

function should minimize the number of good circuits (which implies the number of vectors)

used for detecting all the faults, and so we get,

min
M

∑
i � 1

vi (4.24)

The M replicas of the good circuit and the M representations of the faulty circuits with

the constraints represented by (4.11) through (4.24), capture the problem of computing min-

imum size test sets for irredundant circuits, using a linear number of circuit representations.

Table 4.3 summarizes the data associated with the new ILP formulation for the C17 bench-

mark circuit. Remember that, this benchmark circuit has 34 non-collapsed faults, 5 primary

inputs and 2 primary outputs.

Proposition 4.6 The size of the ILP for the minimum test set problem (described above) is

O � M � 1
2 � M ��� M 6 1 ��� � O � N3 � .

Proof. According to the structure of the model presented in Figure 4.2 we can associate
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for each of the M copies of the good circuit formula, one faulty circuit formula, one set of

control variables, two multiplexers and one miter. For circuits with bounded fanin gates2,

each copy of the good and faulty circuits have representation size O � N � . The formulas

for each input and output multiplexer have its size bounded by O � M � PI � and O � M � PO � ,
respectively. All the formulas for the usage of replicas and fault detection have size O � M2 �
and O � M � PO � , respectively, and all the detection requirement formulas have size O � M � . The

control variables formulas for each fault have size O � 1
2 � M ��� M 6 1 � . Since M � O � N � , then

the size of the proposed ILP model becomes O � N3 � .
We should note that, even though both models (reference and proposed) have size com-

plexity O � N3 � , the model described in this section exhibits in general a size smaller than the

reference model. Table 4.4 shows the estimated value of the number of clauses in the refer-

ence model and in the new model for the IWLS [IWLS 89] and for ISCAS’85 [Brglez 85]

benchmark circuits. The estimated values were determined considering that N is the total

number of nodes in each circuit, PI and PO are the number of primary inputs and outputs,

respectively, and M is the number of all the possible stuck-at faults in the circuit (no fault

collapsing was performed). For the ILP representation of the good and faulty circuits, and as

motivated below, we consider an average of 3  5 clauses for each node. Note, that a 2-input

basic gate uses 3 clauses, an XOR uses 4 clauses and a BUFFER or INVERTER just uses 2

clauses. We also consider for this estimate that the fault-specific representation (ϕFS
i � j in the

reference model) and the faulty circuit representation (ϕFC
j in the proposed model) have the

same size, which may not necessarily be true. Note that, due to space reasons, the number

of literals for each model was omitted from the table, but they can be easily estimated by

determining the average number of literals per clause in each model (about 2.4 literals per

clause).

From these results we can conclude that the proposed model presents a size reduction in

the ILP formulation up to 47.85%, with an average value of 32%. This size reduction results

form the fact that for common circuits we have PI ¬ N and PO ¬ N. Therefore, the total

size of the multiplexers in the proposed model is significantly smaller than the size of the

2Circuits in which any gate in the circuit have at most k inputs.
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M �!� M 6 1 � extra faulty-specific circuits used in the reference model. In Section 4.3.3 we

will consider some practical considerations to further reduce the size of the proposed model.

4.3.2 Arbitrary Combinational Circuits

In this section we extend the previous model to identify a minimum test set that detects

all detectable faults in a given combinational circuit. As noted before, this problem is quite

similar to the one presented in the previous section, with the added difficulty that some faults

are now redundant.

The simple solution used in the reference model, will be followed. We will introduce

additional variables and modify some of the constraints of the previous section to support

circuits with redundant faults. First, let us define a variable r j, with j ��� 1 ������ M � , that is

true when fault j is declared redundant. Given that some faults are indeed redundant, because

they are not observable and/or controllable, (4.23) must be modified to capture this fact:

M

∏
j � 1

� f c j � r j
� ��� f o j � r j

� (4.25)

This constraint requires that each fault j is either detectable ( f c j � 1 and f o j � 1), in the

faulty circuit ϕFC
j , or otherwise it must be declared redundant (r j � 1). The next step is to

modify the cost function to minimize so it penalizes the existence of redundant faults,

min � M

∑
i � 1

vi � M � M

∑
j � 1

r j � (4.26)

This cost function is identical to the cost function (4.10) presented on the reference model

in Section 4.2.2. Giving a sufficiently large weight to the r j variables, bigger than the sum

of all vi, we are penalizing the existence of redundant faults. Hence, the minimum value of

the cost function is achieved only when all faults declared as redundant cannot actually be

detected. The ILP formulation for this problem using the proposed model is summarized in

Table 4.5.
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Benchmark Nodes Inputs Outputs Faults Ref. Model New Model Reduction

circuit # N % # PI % # PO % # M % (# of clauses) (# of clauses) (%)

9symml 167 9 1 752 3.38E+08 2.27E+08 32.80

alu4 606 14 8 2704 1.57E+10 1.05E+10 33.06

cht 292 47 36 820 7.46E+08 5.10E+08 31.67

cm138a 40 6 8 124 2.43E+06 2.03E+06 16.65

cm150a 84 21 1 232 1.72E+07 8.99E+06 47.84

cm163a 75 16 5 220 1.39E+07 8.66E+06 37.81

cmb 74 16 4 248 1.74E+07 1.14E+07 34.42

comp 140 32 3 480 1.22E+08 7.52E+07 38.27

comp16 259 35 3 960 8.74E+08 5.28E+08 39.65

cordic 99 23 2 342 4.39E+07 2.72E+07 38.07

cu 76 14 11 254 1.90E+07 1.51E+07 20.82

dalu 918 75 16 3742 4.63E+10 2.99E+10 35.48

majority 18 5 1 54 2.13E+05 1.34E+05 37.20

misex1 67 8 7 220 1.23E+07 8.55E+06 30.33

misex2 127 25 18 414 8.43E+07 6.59E+07 21.75

misex3 561 14 14 2574 1.32E+10 9.37E+09 29.13

mux 69 21 1 202 1.09E+07 6.20E+06 43.25

pcle 104 19 9 328 4.26E+07 2.87E+07 32.66

pcler8 138 27 17 396 8.33E+07 5.85E+07 29.79

term1 199 34 10 704 3.69E+08 2.44E+08 33.98

too large 275 38 3 1132 1.29E+09 8.51E+08 34.06

unreg 155 36 16 448 1.20E+08 8.23E+07 31.53

C17 13 5 2 34 6.57E+04 5.02E+04 23.71

C432 203 36 7 864 5.65E+08 4.14E+08 26.83

C499 275 41 32 998 1.04E+09 8.03E+08 22.42

C880 469 60 26 1760 5.36E+09 3.67E+09 31.65

C1355 619 41 32 2710 1.65E+10 1.22E+10 25.91

C1908 938 33 25 3816 4.87E+10 3.13E+10 35.72

C2670 1566 233 140 5340 1.67E+11 1.17E+11 29.71

C3540 1741 50 22 7080 3.09E+11 1.90E+11 38.48

C5315 2608 178 123 10630 1.07E+12 7.38E+11 30.74

C6288 2480 32 32 12576 1.38E+12 1.04E+12 24.82

C7552 3827 207 108 15104 3.13E+12 1.99E+12 36.39

Table 4.4: Estimated ILP size for some benchmark circuits.
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Clauses Ranges of indices

Circuit representation ϕG
i 1 3 i 3 M

Faulty circuit rep. ϕFC
j 1 3 j 3 M

Fault detection λ j, λ � j 1 3 j 3 M

Detection requirement
f c j � r j

�
1 1 3 j 3 M

f o j � r j
�

1 1 3 j 3 M

Control variables

M

∑
i � 1

ci � j � 1 1 3 j 3 M

6 ci � j 6 ck � j � 6 1
1 3 i 3 M, i  k 3 M

1 3 j 3 M

Input multiplexers

,
xp . PI

§ 6 ci � j � xp � i 6 yp � j � 6 1 ¨ 1 3 i 3 M, 1 3 j 3 M,
xp . PI

§ 6 ci � j 6 xp � i � yp � j � 6 1 ¨ 1 3 i 3 M, 1 3 j 3 M

Output multiplexers

,
zq . PO

§ 6 ci � j � zq � i 6 wq � j � 6 1 ¨ 1 3 i 3 M, 1 3 j 3 M,
zq . PO

§ 6 ci � j 6 zq � i � wq � j � 6 1 ¨ 1 3 i 3 M, 1 3 j 3 M

Usage of replica i

6 ci � j � vi
�

0 1 3 i 3 M, 1 3 j 3 M

M

∑
j � 1

ci � j � vi
�

1 1 3 i 3 M

Cost function
to minimize

M

∑
i � 1

vi � M � M

∑
j � 1

r j

Table 4.5: The proposed ILP model for the minimum test set problem.

Proposition 4.7 The minimum value of (4.26), assuming (4.25) instead of (4.23) in the

model described in Section 4.3.1, denotes the minimum number of test vectors that detect

all detectable faults and identify all redundant faults in a combinational circuit C. In addi-

tion, the assignments to the primary inputs of each circuit copy ϕG
i , for which vi � 1, denote
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a test pattern. Finally, each variable r j set to true indicates that fault j is redundant.

4.3.3 Practical Considerations and Other Improvements

In practice the size of the model can be reduced if we consider the techniques presented

for the reference model in Section 4.2.3, which can also be used in the new model. Therefore,

in practice we will remove the redundant faults from the fault set, apply fault dominance and

independence relationships, and use empirical upper bounds to reduce the size of the ILP

model. Table 4.3 shows an upper bound on the size of the ILP model for the C17 bench-

mark circuit considering all the of 34 stuck-at faults present in the circuit. But, considering

fault dominance relations the set of faults could be collapsed into 17 faults [Brglez 85]. So,

only 17 faulty circuit representations ϕFC
j , need to be considered. Moreover, by running the

ATPG algorithm ATALANTA [Lee 93] only 4 test patterns are identified. Thus, only 4 circuit

representations are needed at most to detected all faults. Likewise, the number of all other

clauses used in the ILP formulation are also reduced once the range of i and j indices are

narrowed to 1 3 i 3 4 and 1 3 j 3 17, because we need at most 4 vectors and there are only

17 collapsed faults, respectively.

Two other type of improvements can be implemented in the model itself to further re-

duce the size of the resulting ILP. First, in each miter circuit we just need to compare the

outputs that are in the transitive fan-out of the fault (i.e. the outputs of the circuit in which

the fault effect could be observed). Therefore, in the output multiplexers it is not necessary

to multiplex the outputs that will not be used by the miter. This will reduce the bus width

of each output multiplexer to the number of primary outputs that are in the transitive fan-out

of the corresponding fault, which in general are significantly fewer than Q (the total number

of primary outputs). This improvement to the model can significantly reduce the number of

clauses in the fault detection formulas (by reducing the size of the miter circuits) and in the

output multiplexers. Second, the bus width on the input multiplexers can also be reduced.

Each input multiplexer does not need to multiplex all the primary inputs of the circuit, but

only those that can be involved in the fault activation and the fault propagation to the outputs

(primary inputs in the transitive fan-in of the primary outputs that are in the transitive fan-out

of the faulty node). This improvement to the model will reduce the number clauses in the
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input multiplexers.

Moreover, the size of the input multiplexers can be further reduced (by reducing its bus

width), if we directly multiplex some internal nodes of the circuit instead of the primary

inputs. The nodes selected for multiplexing should form a cut, with the minimum number of

nodes, in the sub-circuit composed by the nodes of the immediate fanin cone of influence of

the faulty node. Naturally, the total number of selected nodes for multiplexing is less or equal

than the number of primary inputs involved in the fault activation and propagation. Observe

that by selecting internal nodes for multiplexing we are also reducing the representation size

of each faulty circuit, because the nodes in the transitive fanin of the selected nodes do not

need to be in the faulty circuit representation anymore.

4.4 Maximum Test Set Compaction

As illustrated by Table 4.4, the previous models for computing the minimum size test

set for larger circuits are (currently) impractical. Therefore, in this section we will consider

a practical alternative approach for computing minimized test sets. First, we review the set

covering model for test set compaction. Then, we use a highly effective algorithm for the

unate covering problem [Coudert 96] and evaluate the application of the model in the sim-

plification of test sets. Moreover, we study the relationship between the application of fault

simulation and the ability of reducing the test set size. Experimental evidence, obtained on a

large number of benchmark circuits, clearly indicates that the utilization of fault simulation

in general reduces the ability for computing smaller test sets.

4.4.1 Set Covering Model for Test Compaction

Let F � � f1 ������ fm � be the set of stuck-at faults of a combinational circuit C, and let

T � � t1 ������ tn � be a pre-computed test set. Furthermore, let the faults detected by test pattern

t j be F � t j
� � � f j1 ������ f jk � . Consequently, the objective of the test set compaction problem

is to find a set of test patterns U � T , such that,
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F � ,
t j . U

F � t j
� (4.27)

and such that the size of U is minimum. This problem can naturally be mapped into an

instance of the set covering problem. Indeed, define a matrix D where di j � 1 provided test

pattern t j detects fault fi. Further, define a vector x of Boolean variables, with size � 1 " n � ,
such that x j � 1 provided test pattern t j is selected for inclusion in U . Consequently, our goal

is to solve the following integer optimization problem,

minimize ∑x j

subject to D � x � 1 (4.28)

x j � � 0 � 1 � j �7� 1 �ö���� n �
which can also be viewed as an instance of the set covering (or unate covering) problem.

This model was first described in [Hochbaum 96] and some results were obtained with a

set covering algorithm based on linear programming relaxations. Nevertheless, other more

efficient set covering algorithms can be used [Coudert 96], which allow for larger test sets

to be considered. This solution in turn allows considering different test pattern generation

strategies which, in a preliminary phase, may generate a larger number of test patterns that

are later minimized with a set covering algorithm.

It should be noted that, only in the case the test set contains all possible input patterns then

the solution of (4.28) is guaranteed to obtain the minimum size test set for the given circuit.

In practice, the test set that is considered is provided by an ATPG tool, and hence denotes a

small subset of the set of all test patterns. However, as we will see, the experimental results

obtained with these reduced subsets produce satisfactory results when compared other test

set compaction tools.
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t1 t2 t3 t4

f1 1 0 0 1

f2 1 1 0 0

f3 0 0 1 1

f4 0 1 0 1

f5 1 0 1 0

Table 4.6: Covering table for a set of faults.

An Example

As an application example of the model presented in the previous section, let us con-

sider a combinational circuit with fault set � f1 � f2 � f3 � f4 � f5 � such that the set of test patterns� t1 � t2 � t3 � t4 � detects all faults. Let us assume further that the relation between test patterns

and detected faults is as shown in Table 4.6, where an entry � i � j � with value 1 indicates that

test pattern t j detects fault fi, and an entry with value 0 indicates that the fault is not detected

with t j. Using this information, the resulting covering problem can be formulated as follows:

minimize x1 � x2 � x3 � x4 (4.29)

subject to the constraints, *
®®®®®®®®®+

1 0 0 1

1 1 0 0

0 0 1 1

0 1 0 1

1 0 1 0

3°¯¯¯¯¯¯¯¯¯5 �
*
®®®®®®+

x1

x2

x3

x4

3 ¯¯¯¯¯¯5 � *
®®®®®®+

1

1

1

1

3 ¯¯¯¯¯¯5 (4.30)

where each xi, 1 3 i 3 4, is a Boolean variable.

The minimum solution to this covering problem is x1 � 1 and x4 � 1, which indicates

that t1 and t4 can be selected as a reduced set of test patterns for detecting all faults in the
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circuit.

4.4.2 Experimental Results

The model described in the previous section has been applied to test sets computed by

ATALANTA [Lee 93], under different operating conditions, and by COMPACTEST [Pomeranz 93b].

The unate covering algorithm, scherzo [Coudert 96], has been applied to the different

test sets, with the objective of minimizing those test sets. The experimental results are

shown in Table 4.7 and in Table 4.8, respectively for the IWLS [IWLS 89] and for the IS-

CAS’85 [Brglez 85] benchmark circuits. In these tables, FS indicates the utilization of fault

simulation and CPT denotes the application of test compaction using simple dominance re-

lations on the test vectors. NoFS indicates that fault simulation is not applied, which means

that all faults were targeted. Note that ATALANTA computes test patterns with don’t cares,

which enhance dominance relations between test patterns. However, before applying the

unate covering algorithm, the test set compaction tool (MTSC) assigns random 0 5 1 values to

the don’t care bits, in order to increase the number of faults detected by each pattern. We

also observed that the simple dominance-based test compaction is very ineffective when-

ever fault simulation is applied during test generation. Thus, the experimental results from

FS+CPT are identical to the FS+NoCPT and, for simplicity, they are omitted form the tables.

For each experiment the total number of test patterns (#T) is shown, either obtained by the

ATALANTA tool (Atalanta), COMPACTEST tool (Ctest), or after applying the test set compaction

tool (MTSC) that runsscherzo. The CPU time allowed for scherzo was 4,000 seconds on a

SUN Sparc Ultra I/170 workstation with 384 Meg. of physical memory. Table entries with

‘—’ indicate that the CPU time was exceeded.

As can be concluded from the tables of results, test set compaction can in general yield

significant savings in the number of test patterns, even when fault simulation is applied.

Moreover, by not applying fault simulation, and thus by having a significantly larger initial

test set, the test set compaction procedure is able, in the vast majority of cases, to com-

pute test sets smaller than those obtained with fault simulation. Nevertheless, for the larger

circuits, the non-utilization of fault simulation yields a very large number of test patterns,

which the set covering algorithm may then be unable to simplify. One solution to overcome
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FS + NoCPT NoFS + CPT NoFS + NoCPT COMPACTEST

Circuit #T w/ #T w/ #T w/ #T w/ #T w/ #T w/ #T w/ #T w/

Atalanta MTSC Atalanta MTSC Atalanta MTSC Ctest MTSC

9symml 93 78 153 75 750 75 85 77

alu4 132 104 415 83 2696 73 92 85

cht 21 14 14 11 820 — 11 10

cm138a 13 12 15 12 124 11 11 11

cm150a 42 33 48 36 232 33 33 33

cm163a 16 15 13 12 220 12 10 10

cmb 37 30 33 26 248 28 26 26

comp 62 56 75 54 479 48 34 33

comp16 93 72 115 74 960 51 36 36

cordic 52 43 60 41 342 42 36 35

cps 173 145 264 140 4640 133 145 137

cu 34 27 31 25 255 24 26 24

majority 11 11 11 11 54 11 11 11

misex1 21 16 21 16 224 16 16 15

misex2 55 51 40 38 422 45 37 35

misex3 203 152 449 141 2583 134 164 146

mux 40 35 49 36 202 34 33 33

pcle 19 17 20 18 328 16 16 16

pcler8 25 19 21 19 400 18 17 17

term1 77 54 71 43 702 33 35 34

too large 145 103 233 95 1117 85 79 74

unreg 17 14 12 10 448 — 10 10

Table 4.7: Test set compaction results for the IWLS circuits.
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FS + NoCPT NoFS + CPT NoFS + NoCPT COMPACTEST

Circuit #T w/ #T w/ #T w/ #T w/ #T w/ #T w/ #T w/ #T w/

Atlanta MTSC Atalanta MTSC Atalanta MTSC Ctest MTSC

C432 78 60 184 44 520 41 50 44

C499 93 58 276 57 750 52 63 56

C880 69 50 116 44 942 — 30 29

C1355 131 93 523 87 1566 84 96 85

C1908 179 128 520 116 1870 — 137 122

C2670 159 111 300 106 2621 — 69 67

C3540 211 145 137 126 3291 — 113 110

C5315 1781 109 619 — 5291 — 55 55

C6288 36 24 714 — 7114 — 16 16

C7552 288 215 572 149 7292 — 87 86

Table 4.8: Test set compaction results for the ISCAS’85 circuits.

this problem is to compact test patterns by using dominance relations (columns NoFS+CPT

in the tables). In this case, the set covering algorithm is able to optimally solve a larger

number of problem instances. Nevertheless, in the same example the number of test patterns

may still be too large for the set covering algorithm to handle. One additional simplification

technique that was implemented consists in the partition of the test set into k subsets and

simplifying each subset separately. Afterwards, the process is repeated for a selected pair of

subsets. The process is repeated until the minimum (for the given set of vectors) is reached

or a satisfactory reduced test set is obtained.

As one final remark, we should note that the improvements obtained with the test set

compaction procedure also result from the ATPG tool computing test sets that are signifi-

cantly larger than the optimum. Nevertheless, the set covering procedure of Section 4.4.1

can be applied to test sets computed by any ATPG tool (e.g. COMPACTEST [Pomeranz 93b] or

MinTest [Hamzaoglu 98]) whenever these test sets are known not to be optimum. As showed

in Table 4.7 and Table 4.8 the test set compaction tool (MSTC) is able to further reduce, in
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same cases, the number of test vectors generated by the COMPACTEST tool.

4.5 Conclusions

In this chapter we described CNF formulations for the identification of test patterns and

showed how these formulations can be used for constructing integer linear programs (ILP)

for solving optimization problems in testing, in particular the minimum test set problem.

A reference model for the minimum test set problem was described in which the size of

the ILPs is in the worst-case polynomial in the number of circuit nodes. This contrasts with

other solutions [Matsunaga 93], which require worst-case exponential-size representations.

We proposed a new model for the minimum size test set problem which is also worst-case

polynomial in the number of circuit nodes. Nevertheless, we showed that, for benchmark

circuits, the proposed model can reduce the size of the ILPs up to 47.85%. We also pre-

sented some techniques to reduce further the size of the new model. Besides their theoretical

interest, the model can only be used in small-size circuits for validating new heuristics for

test set compaction, e.g. to confirm how close a test set solution, computed heuristically, is

far from the optimum solution. However, for most circuits the proposed ILP formulation is

still too complex to be solved with existing tools.

Therefore, we decided, in the scope of this work, not to implement the new model but,

to describe and evaluate an alternative approximate algorithm for test set compaction. The

algorithm, based on set covering, can be used as a post-processing tool to further compact

test sets obtained with ATPG algorithms. Experimental evidence indicates that in general ad-

ditional test set compaction can be achieved. Moreover, by augmenting the size of the initial

test set, e.g. by not using fault simulation and targeting all faults, we were able to compute

test sets that are in general smaller than those obtained when fault simulation is used. Hence,

whenever the main objective is test set compaction one may consider utilizing highly ef-

ficient ATPG algorithms, targeting all faults (i.e. no fault simulation) and applying the set

covering algorithm for test set minimization. Despite this interesting result, set covering is

an NP-hard problem and consequently existing algorithms may be unable to handle large

test sets. For this problem we proposed different techniques, including precompaction of test
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sets based on dominance relations and test set partitioning. In general, the results obtained

with the developed MTSC compaction tool are satisfactory and showed, in particular, that

compacted test sets obtained heuristic with approaches (eg. COMPACTEST [Pomeranz 93b])

can be further reduced.
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5.1 Introduction

As seen in Chapter 2, automatic test pattern generation (ATPG) for stuck-at faults in

combinational circuits is now a mature field, with an impressive number of highly effective

models and algorithms [Chakradhar 93, Cox 94, Fujiwara 83, Giraldi 91, Goel 81, Silva 94,

Kirkland 87, Kunz 92, Larrabee 92, Lee 93, Schulz 89, Stephan 96, Teramoto 93]. Further-

more, besides being effective at detecting the target faults, recent ATPG tools have targeted

the heuristic minimization (i.e. compaction) of the total number of test patterns required

for detecting all faults in a circuit [Chakrabarty 97, Pomeranz 93b, Niermann 91, Schulz 89,

Hellebrand 95b, Hamzaoglu 98]. The optimization of test sets was discussed in the previ-

ous chapter, where we proposed different deterministic models for the problem. In general,

the degree of test pattern compaction is expected to be related to the number of unspeci-

fied input assignments in each test pattern. In addition, for applications where testing time

and fault coverage requirements can only be achieved with dedicated Finite-State Machine

(FSM) controllers, the computation of test patterns with a large number of unspecified input

assignments may allow for significantly smaller synthesized FSMs. Indeed, if the test set is

used as input to a logic synthesis tool with the purpose of synthesizing BIST logic, then by

maximizing the number of unspecified input assignments, i.e. by maximizing the don’t care

set of each test pattern, the logic synthesis tool is in general able to yield smaller synthesized

logic. Thus, the maximization of the don’t care set of each test pattern, or conversely, the

computation of test patterns of minimum-size, can have significant practical advantages.

Nevertheless, until the work of P. Flores et al. [Flores 98b], there existed no known model

or algorithm for computing test patterns for which the number of unspecified primary input

assignments is maximized. In this chapter we will describe in detail the model proposed. We

start by formalizing the notion of test pattern minimization. We then explain the model for

test pattern generation in the presence of unspecified input assignments, based on proposi-

tional satisfiability (SAT). Next, we derive an integer linear programming (ILP) model for

maximizing the number of unspecified primary input assignments. Finally, we provide a set

of results that justify using the proposed model in medium-size combinational circuits and

describe an ATPG methodology, which can incorporate the proposed model and support-
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ing algorithm and which can also be applied to large-size combinational circuits. Besides

its practical applicability, to our best knowledge this is the first formal non-heuristic model

towards computing minimum size test patterns.

This chapter is organized as follows. In the next section, the CNF models described in

Section 2.2 are generalized for correctly handling unspecified variable assignments. In Sec-

tion 5.3, we introduce the ILP optimization model for minimizing test patterns. In Section 5.4

we discuss some limitations of the proposed model. Finally in Section 5.5 we present exper-

imental results on several practical applications of the model. The proof of the optimization

model correctness is included in the appendix A.

5.2 Test Generation With Unspecified Variable Assignments

Satisfying CNF formulas requires all clauses to be satisfied, hence most, if not all, vari-

ables must be assigned a logic value. For example, consider the simple logic circuit of

Figure 5.1. If we want to assign value 1 to the output e and use the standard CNF formula-

tion, we will end up with a non-optimal solution, regarding the number of specified inputs.

Observe that the optimal solution, � a � b � d � � � X � X � 1 � , does not satisfy the formula (ϕ) that

captures the behavior of circuit and forces output e to 1:

ϕ � � a �_: c � ��� b �_: c � �¥�4: a � : b � c � ��P: c � e � ���4: d � e � ��� d � c � : e � � (5.1)� e �
The formula ϕ is only satisfied if either a or b is assigned value 0, or both to value 1,

which are unnecessary assignments to force the output e to 1, once d is assigned value 1.

Therefore, to compute minimum size test patterns a new model that properly handles

unspecified variable assignments must be developed. In this chapter we develop models

for circuit satisfiability and test generation using CNF formulas that can be satisfied in the

presence of unspecified variable assignments.
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a

b

d
e

c

Figure 5.1: Simple circuit for which we want to force output e � 1.

5.2.1 Modeling Unspecified Variable Assignments

Given a circuit and its associated CNF formula or a fault f and its associated fault de-

tection formula, the existence of unspecified assignments implies that each of the original

circuit variables can now be assigned a value in the set � 0 � 1 � X � . In this situation an assign-

ment x � X indicates that x is unspecified, or that the value assumed by x is an unspecified

assignment1. This signifies that an assignment A is now allowed to leave variables unspeci-

fied.

To decide CNF formula satisfiability, in the presence of unspecified variables, a new set of

variables must be created. This basically consists of duplicating the number of Boolean vari-

ables, which is a common solution for capturing unspecified assignments [Pizzuti 96]. Since

only 3M assignments need to be considered for M variables, the actually minimum number

of Boolean variables required is ± log2 � 3M ��² . However, considering instead 2M variables

greatly simplifies the proposed model. As a result, we propose to represent each Boolean

variable x with two new variables x0 and x1 having the interpretation indicated in Table 5.1.

For this interpretation, x � X indicates that x is unspecified. The simultaneous assignment of

variables x0 and x1 to 1 is not allowed, requiring the inclusion of the following constraint in

the resulting CNF formula,

ϕinv� x � �4: x1 � : x0 � (5.2)

1Note that x ³ ´ 0 $ 1 µ indicates that x is specified, or that the value assumed by x is a specified assignment.
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x � x1 � x0 �
0 � 0 � 1 �
1 � 1 � 0 �
X � 0 � 0 �

Table 5.1: Interpretation of the new variables modeling unspecified assignments.

w1 w2 x� w1
1 � w0

1
� � w1

2 � w0
2
� � x1 � x0 �� 0 � 0 � � 0 � 0 � � 0 � 0 �� 0 � 0 � � 0 � 1 � � 0 � 1 �� 0 � 0 � � 1 � 0 � � 0 � 0 �� 0 � 1 � � 0 � 0 � � 0 � 1 �� 0 � 1 � � 0 � 1 � � 0 � 1 �� 0 � 1 � � 1 � 0 � � 0 � 1 �� 1 � 0 � � 0 � 0 � � 0 � 0 �� 1 � 0 � � 0 � 1 � � 0 � 1 �� 1 � 0 � � 1 � 0 � � 1 � 0 �

Table 5.2: Truth table of a generalized AND (UAND) using the new variables.

for each node x � VC, where VC represents the set of nodes in the circuit (or problem vari-

ables).

In addition, for each basic gate type we need to define the corresponding CNF formula,

considering that each gate input and output must now be replaced by two variables. Let us

consider for example a 2-input AND gate, which will now be denoted by the generalized

form � x0 � x1 � � UAND � w0
1 � w1

1 � w2
1 � w1

2
� . Table 5.2 presents the truth table of this gate using

the new input and output variables. Note that the simultaneous assignment of any pair of

variables to 1 is prevented by (5.2), thus we just need to relate the remaining assignments.

In this table, it can easily be observed that the output variable x0 assumes value 1 provided

at least one input variable w0
1 or w0

2 assumes value 1. Hence, x0 can be expressed as the OR
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x0

x1

w1

w2

x

w0
2

w0
1

w1
1

w1
2

Figure 5.2: Abstract view of a generalized 2-inputs AND gate (UAND).

of the input variables w0
1 and w0

2. Identically, the output variable x1 can only assume value 1

whenever all input variables w1
1 and w1

2 assume value 1. Hence, x1 can be expressed as the

AND of the input variables w1
1 and w1

2. Figure 5.2 provides an abstract view of this general-

ized 2-input AND gate using a binary OR and AND gate. Therefore, the CNF formulas for

the generalized AND are,

ϕu � x0 � �P: w0
1 � x0 � �¥�P: w0

2 � x0 � ��� w0
1 � w0

2 �_: x0 �
(5.3)

ϕu � x1 � � w1
1 �_: x1 � �¥� w1

2 � : x1 � ���4: w1
1 �_: w1

2 � x1 �
Observe that in addition (5.2) should be applied to each node.

Let us consider now a generalized AND gate with j-inputs, denoted by the general form� x0 � x1 � � UAND � w0
1 � w1

1 ������ w0
j � w1

j
� . We still can conclude that the output variable x0 as-

sumes value 1 provided at least one input variable w0
j is assigned value 1, and that the output

variable x1 can only assume value 1 if all inputs variables w1
j assume value 1. Thus, we can

say that

x0 � OR � w0
1 ������ w0

j
�

(5.4)

x1 � AND � w1
1 ������ w1

j
�
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Considering the two CNF formulas, in Table 2.2, that describe the simple logic gates OR

and AND,

ϕu � x0 � � j

∏
i � 1

�4: w0
i � x0 � � � � j

∑
i � 1

w0
i �_: x0 �

(5.5)

ϕu � x1 � � j

∏
i � 1

� w1
i � : x1 � � � � j

∑
i � 1

: w1
i � x1 �

the CNF formula for a generic UAND gate with output x becomes

ϕu � x � ϕu � x1
8 ϕu � x0

8 ϕinv� x (5.6)

which properly models unspecified assignments to the inputs and output of an AND gate.

Similar relations can be derived for the other simple gates. Consequently, the CNF for-

mulas for the simple gates given in Table 2.1 (see page 29) can be generalized by following

the same approach used for deriving (5.5). These generalized CNF formulas for the same

simple gates are given in Table 5.3. As a result, and as done in Section 2.2, we can now cre-

ate the CNF formula for the representation of the circuit, (ϕu), in which unspecified variable

assignments are allowed.

ϕu � ,
x . VC

ϕu � x (5.7)

Figure 5.3 illustrates the outcome of applying an incompletely specified assignment to

the primary inputs of a simple circuit. As shown before the assignment d � 1, with inputs a

and b unspecified, represents a sufficient condition for the assignment e � 1 to be satisfied,

although this assignment does not satisfy the traditional CNF formula of the circuit, as given

in (5.1). Using the new variables that model unspecified assignments, the resulting CNF

formula of the circuit becomes



5.2 Test Generation With Unspecified Variable Assignments 123

c ¶¸· 0 ¹ 0 º¼» X

e ¶¸· 1 ¹ 0 º » 1

b ¶¸· 0 ¹ 0 º¼» X

d ¶¸· 1 ¹ 0 º¼» 1

a ¶¸· 0 ¹ 0 º¼» X

Figure 5.3: Example of unspecified assignments for a simple circuit.

ϕG
u � �4: a0 � c0 � �¥�4: b0 � c0 � ��� a0 � b0 �_: c0 � �� a1 �_: c1 � �¥� b1 � : c1 � ���4: a1 �_: b1 � c1 � �

(5.8)� c0 �_: e0 � �¥� d0 �_: e0 � �¥�4: c0 �_: d0 � e0 � ��4: c1 � e1 � �¥�P: d1 � e1 � �¥� c1 � d1 �_: e1 �
where the emphasized literals assume value 1 for the input assignments � a � b � d � � � X � X � 1 � .
Thus, all clauses are satisfied and consequently the whole CNF formula is satisfied.

5.2.2 Test Pattern Generation with Unspecified Input Assignments

We can now generalize the test pattern generation model described on Section 2.2 so that

unspecified variable assignments are allowed. Each circuit node x is still characterized by

three variables:� xG denoting the value in the good circuit. This variable can be unspecified, and so

we use two new variables to characterize its value, xG � 0 and xG � 1, with the semantic

definition given earlier.� xF denoting the value in the faulty circuit. This variable can also be unspecified, and

so we use two new variables to characterize its value, xF � 0 and xF � 1, with the semantic

definition given earlier.
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Gate type Gate function ϕu � xi

AND

x0 � OR � w0
1 ������ w0

j
� � j

∏
i � 1

�4: w0
i � x0 � � � � j

∑
i � 1

w0
i �_: x0 �

x1 � AND � w1
1 ������ w1

j
� � j

∏
i � 1

� w1
i �_: x1 � � � � j

∑
i � 1

: w1
i � x1 �

NAND

x0 � AND � w1
1 ������ w1

j
� � j

∏
i � 1

� w1
i �_: x0 � � � � j

∑
i � 1

: w1
i � x0 �

x1 � OR � w0
1 ������ w0

j
� � j

∏
i � 1

�4: w0
i � x1 � � � � j

∑
i � 1

w0
i �_: x1 �

OR

x0 � AND � w0
1 ������ w0

j
� � j

∏
i � 1

� w0
i �_: x0 � � � � j

∑
i � 1

: w0
i � x0 �

x1 � OR � w1
1 ������ w1

j
� � j

∏
i � 1

�4: w1
i � x1 � � � � j

∑
i � 1

w1
i �_: x1 �

NOR

x0 � OR � w1
1 ������ w1

j
� � j

∏
i � 1

�4: w1
i � x0 �4� ��� j

∑
i � 1

w1
i �_: x0 �

x1 � AND � w0
1 ������ w0

j
� � j

∏
i � 1

� w0
i �_: x1 � � � � j

∑
i � 1

: w0
i � x1 �

NOT
x0 � BUFF � w1

1
� � w1

1 �_: x0 � �¥�4: w1
1 � x0 �

x1 � BUFF � w0
1
� � w0

1 �_: x1 � �¥�4: w0
1 � x1 �

BUFF
x0 � BUFF � w0

1
� � w0

1 �_: x0 � �¥�4: w0
1 � x0 �

x1 � BUFF � w1
1
� � w1

1 �_: x1 � �¥�4: w1
1 � x1 �

Table 5.3: Generalized CNF formulas for simple gates.



5.2 Test Generation With Unspecified Variable Assignments 125� xS denoting the sensitization status of each node. As we will justify below, the sensi-

tization status of each node needs not be unspecified, and so its value is always either

0 or 1.

The CNF formula that describes the good circuit, using the good variables (xG � 0 and xG � 1),

is obtained as described before on Section 2.2. However, to consider unspecified assignments

to the gates inputs and outputs, the generalized formulas presented in Table 5.3 must be used,

for each gate in the circuit.

For completely specified assignments, the CNF formulas used for computing the good

values and the faulty values for each gate are equal, because when the generated test pattern

is applied to the circuit the differences between the good and the faulty circuits results from

faults.

For incompletely specified test patterns the difference between the good and the faulty

circuit results from a fault and/or from the values assigned to unspecified inputs, during the

circuit test. To avoid blocking the fault propagation and make the fault undetectable, for some

realizations of don’t cares values, we prevent propagating a faulty value without knowing the

good value, which are the values using during test. Figure 5.4 shows a circuit (AND gate)

that exemplifies this situation. Note that the set of assignments for the inputs/outputs of

the good circuit and the faulty circuit are valid and will detect the fault stuck-at-1 in node

w1. The fault is activated (wG
1 � 0 and wF

1 � 1) and its effect is observed in the output

(xG � xF � 1). If the test vector � w1 � w2
� � � 0 � X � is applied during circuit testing as � 0 � 1 � ,

the fault is observed and detected. But, if the circuit is tested with the test vector � 0 � 0 � , the

fault is not observed in the output, because its effect is blocked or masked by the assignment

w2 � 0.

Thus, we need to introduce an additional constraint for which an unspecified good value

implies an unspecified faulty value,

� xG � X �½0 � xF � X � (5.9)

this way we guarantee that the good and faulty circuit are always “synchronized” and the

only difference between them are caused by the fault.
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PSfrag replacements

wG
1 � 0

wG
2 � X

xG � 0

wF
1 � 1

wF
2 � 1

xF � 1

Good circuit Faulty circuit

(a) (b)

Figure 5.4: Node variables for (a) good and (b) faulty circuit when w1 is stuck-at-1.

Let us assume that the CNF formula for the faulty value of a node x with completely

specified assignments is given by,

ϕF
x � j

∏
i � 1

ωi (5.10)

Using the new generalized formulas for the gates (from Table 5.3), we will get a new set

of clauses ω �i. Combining the restriction imposed by (5.9), the resulting CNF formula for the

faulty circuit, in the presence of incompletely specified assignments, is defined by,

ϕF
u � x � �4: xF � 0 � xG � 0 � xG � 1 � ���4: xF � 1 � xG � 0 � xG � 1 � � j

∏
i � 1

� ω �i �_: xG � 0 ��: xG � 1 �
� �4: xF � 0 � xG � 0 � xG � 1 � ���4: xF � 1 � xG � 0 � xG � 1 � � j

∏
i � 1

� � ω �i � : xG � 0 � ��� ω �i �_: xG � 1 � �
(5.11)

Hence, the faulty value of a node x is computed by its original formula provided the good

value is specified (i.e., xG � 0 � xG � 1 � 1). In contrast, if the good value is unspecified (i.e.,

xG � 0 � xG � 1 � 0), then the faulty value is forced to also be unspecified.

Modeling unspecified assignments in test generation requires a detailed characterization

of the propagation conditions of the fault effect. Remember from Section 2.2 that the sen-

sitization variable of a node should assume value 1, if in that node we can differentiate the
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good and the faulty circuit, and a value of 0 if that is not possible. Hence, the sensitization

status xS of a node can only assume value 1 when both values of the node in the good and

faulty circuits are specified and assume different logic values. Moreover, this requirement

also causes the value of a node in the faulty circuit to be specified only when the value of that

node in the good circuit is also specified. These constraints indicate that propagation of the

fault effect to a node can only be guaranteed when the values in the good and faulty circuit

are specified for that node.

The relationship between the value of xS and the possible values of xG and xF is shown

in Table 5.4. The first four entries are similar to the model for completely specified assign-

ments, xS assumes value 1 if and only if xG and xF assume opposing logic values, provided

that both xG and xF are specified. The next three entries define the sensitization variable as 0

whenever the value in the faulty circuit is unspecified. The last two entries with a ‘ 6 ’ denote

invalid value assignments, for which the CNF formula for xS must assume value 0. Observe

that (5.9) prevents these combinations of values from occurring. The simplification of the

truth Table 5.4 yields the following CNF formula for the sensitization status of node x, xS:

ϕS
u � x � � xG � 0 � xF � 0 �_: xS � �¥� xG � 0 � : xF � 0 � xS � �� xG � 1 � xF � 1 �_: xS � �¥� xG � 1 � : xF � 1 � xS � � (5.12)

The formulas for ϕS
u � x and for ϕF

u � x are defined so that an unspecified good value imme-

diately implies an unspecified faulty value and xS � 0. Thus, propagation of the error signal

is only permitted in the presence of properly specified values for the good circuit variables.

Otherwise, we could be propagating a false error condition, because it could became blocked

by some assignment of the unspecified inputs during the circuit testing.

Furthermore, we note that the remaining CNF formulas of Table 2.2, i.e. propagation

blocking conditions ϕB and fault detection requirements ϕR, remain unchanged, whereas

the fault activation conditions ϕA must be updated to the new set of variables. As a result,

the complete CNF formula for a given stem fault z stuck-at-v is summarized in Table 5.5.

Observe that in Table 5.5 we refer to ϕD
u as the fault-detection formula in the presence of

unspecified variable assignments. Similarly, we can derive the CNF formula for a fanout-

branch fault.



128 5. Minimum Size Test Patterns

xG xF xS

0 0 0

0 1 1

1 0 1

1 1 0

X X 0

0 X 0

1 X 0

X 0 6
X 1 6

Table 5.4: Truth table for the sensitization status.

5.3 Computing Minimum Size Test Patterns

In this section we develop the optimization model for computing minimum-size test pat-

terns. This optimization model is based on test pattern generation in the presence of incom-

pletely specified primary input assignments.

5.3.1 The Complete Optimization Model

The main objective of test pattern minimization is to identify the minimum number of

primary input assignments which detect the fault. Hence, our goal is to minimize the number

of specified primary input assignments such that the given fault is still detected. As a result

we obtain the following optimization model,

minimize ∑
x . PI

� x0 � x1 �
(5.13)

subject to ϕD
u



5.3 Computing Minimum Size Test Patterns 129

Sub-formula/Condition Clause Set

Good Circuit ϕG
u � ,

x . VC

ϕG
u � x

Faulty Circuit ϕF
u � ,

x . O /10 z 2 ϕF
u � x

Node Sensitization ϕS
u � ,

x . O / 0 z 2 ϕS
u � x

Propagation Blocking Conditions ϕB
u � �4: xS � x � KO � z �=6 O % � z �

Fault Activation Conditions ϕA
u �

���������� ���������!
� zS � ���4: zG � 1 � ��� zG � 0 �� zF � 1 � �¥�P: zF � 0 � if v � 1

� zS � ��� zG � 1 � �¥�4: zG � 0 ��4: zF � 1 � ��� zF � 0 � if v � 0

Fault Detection Requirement ϕR
u � � ∑

x . PO " x . O /�0 z 2 xS �
Detection of Fault z stuck-at-v ϕD

u � ϕG
u
8 ϕF

u
8 ϕS

u
8 ϕB

u
8 ϕA

u
8 ϕR

u

Table 5.5: Definition of the fault detection problem for the stem fault z stuck-at-v.
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which basically requires that the total number of assigned input variables be minimized under

the constraint that the fault be detected. (Observe that we have 0 3 x0 � x1 3 1 given (5.2),

which implies an upper bound on the value of the cost function of  PI  .) Given the map-

ping between CNF clauses and linear inequalities [Pizzuti 96] we immediately conclude

that (5.13) corresponds to an integer linear program, and so different integer linear optimiza-

tion packages can be used for solving the test pattern minimization problem. Nevertheless,

the constraints of (5.13) are tightly related with propositional satisfiability. Consequently,

and as shown in Section 3.4, SAT-based ILP solvers are preferable for solving ILPs for

which the constraints correspond to CNF formulas.

Furthermore, we note that the optimization model of (5.13) can be viewed as a formaliza-

tion of guided pseudo-exhaustive ternary simulation on the primary inputs of a combinational

circuit, with the objective of minimizing the number of specified primary inputs assignments,

and given the constraint that the fault is detected. The proposed model casts this basic idea

into an ILP formulation, thus providing a formal framework for describing the problem and

allowing a significant number of algorithms and theoretical results from integer optimization

to be used.

The size of the ILP formulation (5.13) for the computation of minimum size test patterns

on a circuit with N nodes is O � N � . Note that, for a circuit with N nodes and gates with a

maximum number of j inputs, we will need, at most, � 6 j � 2 � N to represent ϕG
u . The same

value holds for the faulty circuit representation, ϕF
u , since this circuit can only be as large as

the good circuit. The size of the node sensitization formula, ϕS
u, has an upper limit of 18N

literals, and the size of the propagation blocking conditions formula, ϕB
u , is less than N. The

fault activation conditions formula, ϕA
u , requires a constant number of 5 literals. Finally, the

fault detection requirement takes one literal for each primary output (PO), which are less

than the number of nodes in a circuit. Thus, we can conclude that the size of the model is

linear on the size of the original circuit.
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out

s-a-0
G3

G2

G1
G0

s � X

v � 1

Figure 5.5: Minimum-size test pattern for which no propagation path exists.

5.4 Limitations of the Model

In general there may exist faults for which it is possible to identify test patterns with a

smaller number of specified assignments, but which do not uniquely identify a set of sensi-

tization paths, which propagate the fault effect to the outputs. Let us consider the example

circuit in Figure 5.5. Let the target fault be node v stuck-at-0. From the circuit it is clear

that any assignment to the selection variables s permits detecting the fault. Hence a valid test

pattern is T � � � s � X � � � v � 1 � � , since any assignment to the remaining variable will detect

the fault. However, observe that T by itself does not yield any sensitization path for the fault

to be detected. Only the additional assignment to the remaining primary input (s) allows the

fault effect to propagate to the primary outputs. The fault will propagates throw gates (G1,

G3) or gates (G2, G3), when s � 0 or s � 1 during the circuit testing, respectively. Con-

sequently, any test generation model based on the D-calculus [Abramovici 90] or any of its

derivations is by itself unable to identify such test patterns, since for some cases propagation

does not actually take place and only the propagation conditions are implicitly validated.

The same holds true with respect to existence of a justification path for the fault activa-

tion. Let us now consider fault on node out to be stuck-at-0, in the circuit of Figure 5.5. The

test vector T is also qualified to activate and detect the fault, because any assignment to the
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input s will yield out � 1. However, observe that T by itself does not define any justification

path from the fault node. Only the additional assignment to the remaining primary input s

defined an explicit fault/node justification path for the fault activation. Note that in some

cases we may need to define justification paths from others nodes than the fault node.

As a result, we can conclude that our proposed model yields the minimum-size test pat-

terns which guarantee, given the specified assignments, the fault justification to the primary

inputs and propagation of the fault effect to a primary output by explicitly defining one or

more justification and sensitization paths, respectively.

In Appendix A we defined the notion of justification path, sensitization path and formally

establish the validity of the proposed optimization model.

5.5 Experimental Results

In this section we present some experimental results which illustrate the applicability of

the model in the generation of test patterns with don’t cares.

The model was integrated in a test pattern generation framework for the computation

of minimum size test patterns referred to as Minimum Test Pattern generator (MTP), which

uses the SAT-based ILP algorithm bsolo, described in Section 3.3.2, and the fault simulator

provided with ATALANTA [Lee 93]. Figure 5.6 presents the block diagram of the MTP test

pattern generator. The dash processes are optional (controlled through program switches)

and should only be used if we want to get a compact test set.

The results included below were obtained with the IWLS benchmark suite

[IWLS 89] and with the ISCAS’85 benchmark suite [Brglez 85]. In all cases MTP was run

with a bound on the amount of allowed search (i.e. the total number of conflicts, 1000 by

default). This permits MTP to identify acceptable solutions, which in some cases may not be

necessarily optimal. Moreover, in order to speed up convergence to the optimal solutions,

MTP can use the solution computed by ATALANTA (or by any other ATPG tool) as the Startup

Solution. These solutions provide an initial upper bound on the value of the optimal solution.
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Figure 5.6: MTP Block Diagram (dash processes/data are optional).

If ATALANTA aborts the fault, then TG-GRASP [Silva 97b] is used for computing a startup test

pattern.

Table 5.6 contains the results for the IWLS benchmarks for both ATALANTA and MTP.

ATALANTA is an ATPG tool that can generate test patterns with don’t cares. For each bench-

mark all faults were targeted and no compaction was performed in order to allow for a mean-

ingful comparison between the two algorithms. Columns #PI, #G, #F, #R and #A denote,

respectively, the number of primary inputs, gates, faults, redundant faults and aborted faults.

%X denotes the percentage of don’t care bits over all test patterns; ∆ denotes the variation

in percentage from ATALANTA to MTP; %Opt denotes the percentage of faults for which MTP

was able to find the actual minimum-size test pattern. Finally, Sec/fault denotes the average
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time in seconds spent solving the ILP for each fault. Note that the average time per fault

for ATALANTA is not shown, but it is limited to 0  05 seconds for the most of the benchmarks,

except for the C2670, C6288 and C7775 benchmarks, that had an average time per fault of

1  79, 17  64 and 12  30 seconds, respectively.

From these results several conclusions can be drawn. First, MTP allows validating the

heuristics used in ATALANTA for computing test patterns with don’t cares. Indeed, for several

benchmarks, ATALANTA already identifies the minimum-size test patterns for all faults. Nev-

ertheless, for other benchmarks, the test patterns computed by ATALANTA can be far from the

minimum-size test patterns. For these cases the percentage of don’t cares computed with MTP

can be as much as 15% above the values computed by ATALANTA. Finally, we observe that

for medium-size circuits MTP is able to compute the actual minimum-size test patterns for all

faults in the circuit in a reasonable amount of time per fault. For larger circuits, MTP finds

solutions that are better than those computed by ATALANTA, but which are not guaranteed to

be optimal.

Table 5.7 contains the results for the ISCAS’85 circuits. For these benchmarks the search

effort was limited to 100 conflicts. This leads to smaller run times but, consequently, less op-

timal results. ATALANTA aborts several faults for C432, C2670, C6288 and C7552. For those

cases, MTP uses TG-GRASP [Silva 97b] as the startup ATPG tool, and consequently does not

abort any fault. Once more we can conclude that MTP is able to improve over the results of

ATALANTA, but in this case the improvements are in general smaller, since it becomes harder

for the ILP solver bsolo to find optimal solutions for these larger circuits (as shown, the

percentage of optimal solutions found ranges from 0 to 20 percent). For some of these cir-

cuits we ran MTP with a larger number of allowed conflicts (i.e. 1000 conflicts). The obtained

results are shown in Table 5.8. As can be observed, a larger percentage of unspecified input

assignments is obtained at the cost of a larger search effort per fault. Accordingly, the time

per fault also increases.
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ATALANTA MTP

Circuit #PI #G #F #R #A %X #R #A %X ∆ %Opt
Sec/

fault

9symml 9 157 752 2 0 1.4 2 0 8.9 7.5 100 2.04

cht 47 209 820 0 0 93.6 0 0 94.4 0/8 100 0.64

cm138a 6 26 124 0 0 16.7 0 0 16.7 0.0 100 0.02

cm150a 21 62 232 0 0 68.4 0 0 71.0 2.6 100 1.55

cm163a 16 54 220 0 0 70.7 0 0 72.8 2.1 100 0.28

cmb 16 54 248 0 0 29.6 0 0 30.0 0.4 100 0.07

comp 32 105 480 1 0 24.0 1 0 39.6 15.6 2 10.64

comp16 35 221 960 0 0 30.7 0 0 32.9 2.2 4 13.66

cordic 23 74 342 0 0 30.7 0 0 40.2 9.5 37 6.28

cu 14 51 262 7 0 53.0 7 0 57.1 4.1 100 0.14

majority 5 12 54 0 0 8.5 0 0 8.5 0.0 100 0.01

misex1 8 52 224 0 0 49.8 0 0 54.4 4.6 100 0.17

misex2 25 84 422 0 0 73.5 0 0 75.8 2.3 100 0.20

misex3 14 533 2590 7 0 24.4 7 0 37.7 13.3 76 25.29

mux 21 47 202 0 0 67.3 0 0 75.8 8.5 100 0.94

pcle 19 76 328 0 0 73.3 0 0 74.9 1.6 99 0.45

pcler8 27 94 400 0 0 78.1 0 0 79.2 1.1 98 1.97

term1 34 155 708 6 0 72.2 6 0 74.42 2.2 86 4.35

too large 38 234 1132 15 0 54.9 15 0 62.2 7.3 20 18.27

unreg 36 103 448 0 0 90.6 0 0 91.7 1.1 86 0.93

Table 5.6: Experimental results for the IWLS benchmarks (allowing 1000 conflicts per

faults).
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ATALANTA MTP

Circuit #PI #G #F #R #A %X #R #A %X ∆ %Opt
Sec/

fault

C432 36 160 524 3 1 56.2 4 0 60.8 4.6 0 3.21

C499 41 202 758 8 0 17.1 8 0 18.7 1.6 0 4.35

C880 60 383 942 0 0 82.2 0 0 83.8 1.6 12 2.54

C1355 41 546 1574 8 0 13.3 8 0 13.7 0.4 0 9.12

C1908 33 880 1878 8 0 44.7 8 0 48.4 3.7 0 9.61

C2670 233 1193 2746 97 20 92.0 117 0 92.4 0.4 23 10.99

C3540 50 1669 3425 134 0 74.6 134 0 77.3 2.7 15 16.81

C5315 178 2307 5350 59 0 92.6 59 0 92.9 0.3 14 9.34

C6288 32 2416 7744 34 387 22.2 34 0 25.1 2.9 1 36.65

C7552 207 3512 7550 77 181 86.9 131 0 86.9 0.0 4 17.46

Table 5.7: Experimental results for the ISCAS’85 benchmarks (allowing 100 conflicts per

fault).

ATALANTA MTP

Circuit #PI #G #F #R #A %X #R #A %X ∆ %Opt
Sec/

fault

C432 36 160 524 3 1 56.2 4 0 64.1 7.9 2 27.04

C499 41 202 758 8 0 17.1 8 0 19.5 2.4 0 33.71

C880 60 383 942 0 0 82.2 0 0 85.6 3.4 40 22.34

C1355 41 546 1574 8 0 13.3 8 0 15.2 1.9 0 64.86

C1908 33 880 1878 8 0 44.7 8 0 60.0 15.3 1 73.44

C2670 233 1193 2746 97 20 92.0 117 0 93.0 1.0 25 83.46

Table 5.8: Experimental results for some of the ISCAS’85 benchmarks (allowing 1000 con-

flicts per fault).
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5.6 Conclusions

Automatic test pattern generation for combinational circuits is a mature field in electronic

design automation industry. Very efficient models and algorithms exist for generation of

test patterns for stuck-at faults, regarding to fault coverage, test set size and running time.

Although, due to the heuristic nature of those algorithms, test patterns have, in general, more

specified bits than actually needed to detect a fault.

In this chapter we presented a SAT-based integer linear programming model for com-

puting minimum-size test patterns. The applicability of the model has been illustrated by

computing minimum size test patterns for the IWLS and ISCAS’85 benchmarks circuits.

From these experimental results we can draw the following conclusions:� For some circuits, the heuristics used by ATALANTA (as well as by other structural

ATPG algorithms) are extremely effective and MTP can be used to formally prove this

result.� Whenever the main goal is maximizing the number of don’t care bits, then MTP can be

run on top of ATALANTA (or any other ATPG algorithm), thus in general allowing for

an increased number of unspecified bit assignments. The improvements obtained by

MTP are related to the amount of allowed search effort, and MTP is always guaranteed

to produce results that are no worse than the startup tool (in our case ATALANTA or

TG-GRASP).

In the following chapters we will present some practical applications that are based on

this model and/or which benefit from the existence of a large number of unspecified inputs in

the test set. Chapter 6 proposes a model for compression of the test set, towards a reduction

of the testing time and the size of built-in self-test generators. And, Chapter 7 presents a low-

power testing technique, based on a reordering of the test vectors, which takes advantage of

the unspecified inputs in the test set.
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6.1 Introduction

In this chapter we propose a test pattern generation model targeting the reduction of the

overhead introduced by Built-In Self-Test techniques. This model is based on the test pattern

generation model with don’t cares and on the SAT solver algorithm presented in the previous

chapters.

Built-In Self-Test (BIST) denotes the ability of a circuit (or system) to test itself. This

paradigm for testing integrated circuits is widely used in the VLSI industry because it can po-

tentially eliminate the need for external test equipment and introduces the capability for test-

ing devices after the circuit is integrated in a system, in the field (on-line testing) [Abramovici 90].

The increasing use of electronics in safety critical applications also demands the use of on-

line testing. Such systems in general require testing to have a high fault coverage and be as

fast as possible. Test vectors are generated on the chip by a Test Pattern Generator (TPG)

circuit and the circuit responses are examined by an Output Response Analyzer (ORA) that

determines the correct operation of the integrated circuit [Abramovici 90, Chen 95].

One of the key challenges in BIST is the design of the TPG. An optimal TPG will gener-

ate the minimum number of test vectors (to reduce testing time) that guarantees the highest

fault coverage while introducing the minimum area overhead and performance penalty in the

circuit (in terms of circuit delay, power dissipated, etc). All these design goals are difficult to

meet simultaneously, and several architectures for TPG have been proposed [Abramovici 90].

Two alternative architectures with respect to area overhead and testing time are the ROM-

based architectures and the counter-based architectures [Abramovici 90]. The ROM-based

architectures use a ROM to store the vectors generated by an Automatic Test Pattern Genera-

tor (ATPG). Thus, high fault coverages and short testing times can be achieved. Conversely,

the area overhead introduced by this method (ROM, counter, address decoder, etc.) is in

general prohibitive for practical applications. In counter-based architectures the test patterns

are generated by counter or counter-like circuits, which introduce a small area penalty. The

main disadvantage of this method is that long test sequences may be required to achieve

acceptable fault coverages, which result in longer testing times, a drawback for time-critical

applications.
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In this chapter we describe a model for ATPG targeting counter-based TPG architec-

tures. Constraints are imposed during test pattern generation which target the reduction of

the number of bits (width) of the counter used in the test generation circuit. The method

guarantees a high fault coverage (100% of non-redundant faults) with a shorter test time.

The proposed solution is based on an integer linear programming (ILP) formulation which

builds on the Propositional Satisfiability (SAT) model for test pattern generation described

in previous chapters.

This chapter is organized as follows. In the next section we start by identifying the

model and the width compression technique upon which the proposed solution is based. In

Section 6.3 we summarize the model for the generation of test patterns with unspecified

inputs presented in Chapter 5. Afterwards, in Section 6.4 we introduce the ILP test gen-

eration model that targets width compression. This model is based on the identification of

compatibility relations between primary inputs of the circuit under test. Since don’t cares

in test patterns are of key relevance for increasing the compatibility relations, we will use

the framework presented in Chapter 5 for computing test patterns with unspecified input as-

signments. In Section 6.5 we discuss some limitations of the proposed model which result

from the framework used (i.e. the supporting base model and the model solver). Finally,

on Section 6.6 we describe an ATPG tool referred as Minimum Test Pattern generator with

Width Compression (MTP-C) and include experimental results on the practical application of

the model.

6.2 BIST Circuit Generator

A large number of techniques exist for designing TPGs circuits for BIST

[Abramovici 90, Chakrabarty 98, Al-Asaad 98, Devadas 98]. A general model for a BIST

scheme is shown in Figure 6.1. The test generator circuit produces a sequence of patterns w

bits wide that can be regarded as compressed or encoded test patterns. The decoder circuit

expands or decodes these patterns into n bits wide tests, where n is the number of inputs in

the Circuit Under Test (CUT). In general, w  n and the test generator circuit can be some

type of counter-like that generates all 2w patterns.
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Figure 6.1: Generic test pattern generator model [Chakrabarty 97].

The most common TPGs circuits used in BIST are counter-based, in which the number of

flip-flops is, in general, equal to the number of inputs of the CUT, thus the decoder circuit is

inexistent (w � n). The most hardware-efficient test generator circuits, when compared with

the area of dedicated FSMs or counters, are the Linear Feed Back Registers (LFSR). These

circuits are made of flip-flops and XOR gates interconnected in certain simple configura-

tions, that present a fairly regular structure and which are able to generate exhaustive and/or

pseudo-random test sequences. Identification and design of good LFSRs, in order to produce

exhaustive and/or pseudo-random test sequences, involve detailed mathematical background

beyond the scope and purpose of this chapter1. However, tables describing common ex-

haustive LFSR can be easily found [Abramovici 90]. The example presented in Figure 6.2

illustrates that a LFSR must be carefully designed so it can be used as a TPG for BIST. The

two LFSRs presented are very similar, but only the first one (Figure 6.2(a)) can generate all

combinations of 4 bits, with the exception of 0000, for an initial non-zero vector. The second

LFSR (Figure 6.2(b)) just generates a subset of all possible combinations according to the

initial vector.

1See for example [Golomb 82, Yarmolik 88] for additional details.
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Figure 6.2: Example of two a Linear Feed Back Register (LFSR). (a) “Exhaustive” and (b)

non-exhaustive test generators for any initial vector.

The various forms of BIST in which LFSRs are the base of the TPG are: basic exhaustive

testing, pseudo-exhaustive testing or pseudo-random testing.

Exhaustive testing deals with the testing of an n input combinational circuit where all the

2n input combinations are applied. The TPG can be implemented as a binary counter or as a

modified exhaustive LFSR, which includes the all-zero state [Wang 86]. It is guaranteed that

all detectable faults will be detected. Although this approach is usually not practical if the

number of inputs exceeds 25–30 bits (depending on the clock rate).

Pseudo-exhaustive testing usually requires far fewer test patterns than exhaustive test-
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ing to achieve the same fault coverage. This technique relies on the partition of the CUT

in smaller logic blocks with p inputs � p  n � , which greatly reduce the total number of

patterns to generate. Then, each block is exhaustively tested and, if possible, this is done

concurrently [Abramovici 90].

Pseudo-random testing uses a “randomly” generated subset of the 2n test patterns. Thus,

not all inputs combinations are used and the fault coverage must be determined by fault

simulation once the test generator circuit is defined. In general, long test sequences are

necessary to achieve high fault coverage, in particular for circuits that contain random-

pattern resistant faults (i.e. circuits with many hard to detect faults). Several techniques

have been proposed in order to reduce the test length at the cost of increasing the com-

plexity of the test generator circuit and/or the decoder circuit. In weighted random test-

ing [Hartmann 93, Muradali 90, Pomeranz 93a, Wunderlich 98] an extra circuit biases the

pseudo-random sequence, imposing some inputs of the CUT to predefined values based in

pre-computed weighted sets. Other techniques try to encode or include a deterministic test

set in the test generator circuit either searching the appropriate seeds [Lempel 95] or by using

multiple seeds and select the LFSR that best covers the test set through the use of reconfig-

urable LFSRs [Dufaza 91, Hellebrand 95a, Hellebrand 95b] or by using some mapping logic

between the test generator circuit and the CUT [Chatterjee 95, Touba 95a, Touba 95b].

Previous work in BIST [Chakrabarty 97, Chen 95] has led to a new procedure for the

generation of test generator circuits which target the minimization of the number of required

flip-flops. This procedure is based on the compression of the width (i.e. the number of bits)

of the original test patterns. Therefore, a smaller counter-based FSM is used to generate the

compressed test patterns (with a width of w bits, such that w  n) which are then fed to the

decoder circuit. The test pattern generated by the decoding logic is then applied to the circuit

under test. The main advantage of this technique is that at the same time we are reducing the

area of the test generator circuit, we are also cutting down the test time, without introducing

additional logic in the decoder circuit. Note that the counting time is cut by half for each bit

reduced and consequently, the power dissipated during the test is also reduced.

Width compression was proposed by Chen and Gupta [Chen 95] who observed that in

many cases, some inputs of the CUT can be physically connected to the same output of the
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Figure 6.3: (a) The C17 benchmark circuit. (b) A set of test vectors for C17.

test generator circuit, without introducing redundant stuck-at faults, thus not reducing the

fault coverage of the circuit. Note that, in general connecting two or more primary inputs of

a circuit may introduce redundant faults because the controllability and/or observability of

some node may change. For example, consider we connect together the inputs x2 and x7 in

the C17 ISCAS’85 [Brglez 85] benchmark circuit presented in Figure 6.3(a). The stuck-at 1

fault in node x19 will be now redundant (impossible to detect), because we can not observe

its effect in any output, x16 � 0 is a controlling value of the output gates. Using the approach

proposed by Chen and Gupta no redundant stuck-at faults are introduced and the width w
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Figure 6.4: Test pattern generators for the C17 circuit using: (a) 3 bits; (b) 2 bits with inverted

outputs [Chakrabarty 97, Chen 95].

of the test generator circuit is reduced, without using additional logic in the decoder circuit.

Under these conditions the decoder circuit consists only of interconnecting lines, without

any area penalty.

Consider again the C17 benchmark circuit in Figure 6.3(a) which can be tested using

the set of vectors shown in Figure 6.3(b). Note that for each test vector, the inputs x2 and

x6 always assume equal values, therefore they can be driven by the same output of the test

generator circuit, as shown in Figure 6.4(a). Inputs with this characteristic are called directly

compatible. Inputs x3 and x7 are also directly compatible. Observe that input x1 is always the

complement of input x2, thus they can be derived one from the other using an inverter. This

inverter does not increase the complexity of the test generator circuit if we consider that we

are using flip-flops with inverted and non-inverted outputs. Inputs exhibiting this relationship

are referred to as inversely compatible. As shown in Figure 6.4(b) this type of compatibility

reduced one bit in the test generator circuit width. Note that, in this circuit and using both

types of compatibilities, we observe an overall reduction of 3 bits in the required width of

the test generator circuit. Other types of compatibility are possible between the inputs, but in

general they require some logic in the decoder circuit which of course will introduce some

area overhead [Chakrabarty 97, Chakrabarty 98].
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The utilization of pre-computed test patterns with don’t cares can significantly simplify

the test generator circuit by reducing its width w. Test sets with don’t cares are in general

larger than full specified test sets, but the number of compatibility inputs may be greater,

because don’t care bits can be chosen to force some type of compatibility, reducing the

test generator circuit width. Nevertheless, using a general ATPG which produces test sets

with don’t cares may not be sufficient for a good width compression, because each vector

is determined to detect a fault without any consideration regarding input compatibilities of

already computed test patterns.

It is important that the notion of compatibility be present during the ATPG process, so

that each vector detects one or more target faults but, at the same time, keeps the compati-

bility between inputs as much as possible. In our model we only consider direct and inverse

compatibilities in the situations where test patterns exhibit don’t cares. The objective will be

to minimize the width w of the test generator circuit such that all non-redundant circuit faults

are detected.

6.3 Test Generation With Unspecified Variable Assignments

In order to maximize the number of compatibility relations, test patterns are required to

exhibit don’t cares, thus we base our approach on the test generation model presented in

Section 5.2. In summary, we recall that:� Each circuit node variable x was split in two new variables x1 and x0, according to

the mapping presented in Table 5.1 (page 120). The invalid combination � 1 � 1 � was

excluded by the inclusion of the additional constraint ϕinv � x (5.2) for each node.� The CNF formulas that represent the valid assignments of each gate were re-written

so that the inputs and the output exhibit the correct behavior in the presence of don’t

cares. The resulting generalized CNF formulas for the simple gates that use the new

variables were presented in Table 5.3 (page 124).� The CNF formulas for computing the faulty values of a node are similar to the ones

that compute the good values for the same node. Although, as shown in (5.9), an
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unspecified value in the good variables implies an unspecified assignment in the faulty

variables. Hence, the resulting CNF formula (5.11), for a faulty node xF , avoids

propagating a specified value in the faulty circuit while in the real circuit the node

value is not defined as 0 or 1.� The definition of the sensitization status variable xS of each node was also changed

to consider unspecified inputs. Table 5.4 (page 128) shows the new definition of

the sensitization status variables. It reflects the usual XOR behavior between good

and faulty variables, when both are specified, and assumes value 0 when the faulty

variables is specified with a don’t care value. This guarantees the correct propagation

of the fault effect independently of the values that unspecified variables assume during

real circuit testing.

In the remainder of this chapter we use the framework proposed for computing test pat-

terns with don’t cares that is summarized in Table 5.5 (see page 129).

6.4 Computing Test Patterns for Width Compression

In this section we develop a greedy optimization model for computing test patterns aim-

ing at the reduction of the width of the test set. As already mentioned, this optimization

model is based on test pattern generation in the presence of incompletely specified primary

input assignments.

6.4.1 Forcing Compatibility Classes

A compatibility class is defined as a set of inputs which can be connected together, or

through an inverter. Thus, such inputs can be driven only by one output of the test generator

circuit throughout the application of the complete test sequence. Formally we can define

directly and inversely compatibility inputs as follows:
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Definition 6.1 (Compatible inputs) Consider a set of test vectors V � � T1 � T2 �������� TN � . Two inputs xi and x j are directly compatible in the set V if

ý
Tp � V Tp þ i ÿ(� Tp þ j ÿ or Tp þ i ÿ9� X or Tp þ j ÿ9� X

and are inversely compatible in set V if

ý
Tp � V Tp þ i ÿ(� Tp þ j ÿ or Tp þ i ÿ9� X or Tp þ j ÿ9� X

Two inputs are totally compatible in a set V if they are simultaneously directly and in-

versely compatible, and just compatible if they are compatible in any of the previous ways.

We can now define sets of compatibility classes and the set of compatibility pairs using

the compatibility relations defined above. The former will identify the sets of inputs that will

be driven by one output (and its negation) of the test generator circuit. The latter, will list all

the pairs of inputs that are compatible. Formally, these sets are defined as follows:

Definition 6.2 (Compatibility class) A compatibility class, Θi, is a maximal set of inputs

that are compatible amongst themselves, for a given group of test vectors.

Definition 6.3 (Set of compatibility pairs) The set of compatibility pairs, Ω, is the set of all

pairs of inputs that, for a given group of test vectors, are compatible (directly or inversely).

For example, in the C17 benchmark circuit and considering the set of test vectors, V �� T1 � T2 � T3 � T4 � , presented in Figure 6.3(b). As shown before, in this set of test vectors,� x2 � x6
� and � x3 � x7

� are directly compatible pairs of inputs, and � x1 � x2
� and � x1 � x6

� are in-

versely compatible pairs of inputs. So, the set compatibility pairs for the test vectors in V

is Ω � � � x2 � x6
� � � x3 � x7

� � � x1 � x2
� � � x1 � x6

� � . The two existing compatibility classes for these

vectors are Θ1 � � x1 � x2 � x6 � and Θ2 � � x3 � x7 � .
Finding the optimum set of compatibility classes for a set of test vectors can be reduced to

the clique problem2, by representing our problem on a graph whose vertices are the primary

inputs and the edges correspond to the compatibility relation between the inputs. Deter-

mining the maximal clique size on this graph, which is an NP-complete problem [Aho 74,

2See footnote on page 47 for a clique definition.
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Cormen 90], corresponds to identifying the optimum set of compatibility classes. The usual

approaches for solving these problems are based on heuristic or approximation algorithms.

Therefore, we use a heuristic approach to efficiently generate good classes in practice.

A heuristic algorithm that produces a good set of compatibility classes is presented

in [Chakrabarty 97]. We will use this algorithm as our general procedure for identifying,

at the end when the whole set of vectors is determined, the resulting compatibility classes.

Basically, this algorithm identifies directly and inversely compatible inputs, for a given test

set, and represents them on a graph as described above. Then, heuristically, the proce-

dure identifies an initial set of cliques with size 3, which can be identified in polynomial

time [Garey 79, Chakrabarty 97]. Finally, vertices are iteratively added to the cliques if the

compatibility is maintained between all the nodes in the clique.

When determining a test vector for a given target fault we would like to keep the same

cardinality on the set of compatibility pairs (cp �  Ω  ) already found from previous test

vectors. Note that, for each new vector that is added to the set of test vectors V , the new

value of cp may only be equal to or less than the previous value. It will be equal, if the

existing compatibilities between pairs of inputs are not broken by the new vector and less

otherwise. Hence, from all the vectors that detect a new target fault, we would like to select

the one that does not decrease cp, thus keeping the number of compatible inputs as large as

possible. We will define some extra boolean variables that constrain the search process with

the objective of finding such vectors.

The compatibility variables, Ci � j, are associated with each element in the set of compat-

ibility pairs, Ω. The role of this variable in the model is to identify which pair of inputs� xi � x j
� � Ω are still compatible after a new vector is computed. As shown in Table 6.1 this

variable assumes value 1 when the compatibility between inputs xi and x j does not hold due

to the new vector, and 0 otherwise. Considering that each circuit node x is represented in the

model by two variables, x0 and x1, according to Table 5.1, the CNF clauses ϕCi � j which define

the compatibility variables for direct and inverse compatible inputs are the following3:

3Each CNF formula is a product-of-sums of the consistency function (ξ) of the function that define the Ci � j
variable, as presented in Table 6.1.
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Inputs Ci � j Ui � j Si � j
xi x j Direct Total Inverse

X X 0 0 0 0 0

X 0 0 0 0 1 0

X 1 0 0 0 1 0

0 X 0 0 0 1 0

0 0 0 0 1 1 1

0 1 1 0 0 1 1

1 X 0 0 0 1 0

1 0 1 0 0 1 1

1 1 0 0 1 1 1

Table 6.1: Definition of variables Ci � j, Ui � j and Si � j.

ϕCi � j �
���������������� ���������������!

�4: x1
i �_: x0

j � Ci � j � �¥� x1
i � x1

j �_: Ci � j � � if xi and x j are�4: x0
i �_: x1

j � Ci � j � �¥� x0
i � x0

j �_: Ci � j � directly compatible

�4: Ci � j � if xi and x j are totally compatible

�4: x1
i �_: x1

j � Ci � j � �¥� x1
i � x0

j �_: Ci � j � � if xi and x j are�4: x0
i �_: x0

j � Ci � j � �¥� x0
i � x1

j �_: Ci � j � inversely compatible

(6.1)

Moreover, in order to enhance future compatibility classes we add to our model two

more types of boolean variables. The use of these new variables will allow us to select vec-

tors that, besides detecting a target fault and hold the compatibility between pairs of inputs� xi � x j
� � Ω, they also have a lower number of specified values on those input pairs. Note

that, according to Definition 6.1, inputs with unspecified values can be simultaneous directly

and inversely compatible. So, by selecting vectors with unspecified inputs in the compat-

ibility pairs, we are postponing the exclusion of some compatibility types. For example,



6.4 Computing Test Patterns for Width Compression 153

let us consider two test sequences in the inputs pair � xi � x j
� : S1 � � � X � 0 � � � 1 � 0 � � � 0 � 0 � � and

S2 � � � X � 0 � � � X � 1 � � � 0 � 0 � � . For the S1 set of assignments direct compatibility is excluded

by the second vector and the inverse compatibility by the third vector, which turns these two

inputs as not compatible. For the set of assignments S2, only the third vector excludes inverse

compatibility, which keeps these two inputs as compatible. Therefore, the definition of the

new variables types should let us distinguish for each pair of inputs � xi � x j
� � Ω, of a new

vector, the following three situations:

1. both inputs are unspecified;

2. one of the inputs is specified and the other is unspecified;

3. both inputs are specified.

The unity variables, Ui � j, allow us to identify when any pair of inputs in a set of compat-

ibility pairs of a new test vector is specified. Using this variable we will give preference to

vectors with both inputs unspecified (case Ui � j � 0). Table 6.1 presents the values assigned

to this variable for any valid combination of the bit values in a pair of previously compatible

inputs. The CNF formula ϕUi � j that captures the Ui � j behavior is:

ϕUi � j � �4: x0
i � Ui � j � ���4: x1

i � Ui � j � �¥�4: x0
j � Ui � j � �¥�P: x1

j � Ui � j � �� x1
i � x0

i � x1
j � x0

j � : Ui � j � (6.2)

The simultaneity variables, Si � j, let us determine when both of the inputs are specified.

Table 6.1 also describes the values assigned to simultaneity variables, Si � j, for any valid

combination of two inputs in the set of compatibility pairs. By selecting test vectors with

this variable equal to 0, we guarantee that at most one of the two inputs is unspecified. The

CNF formula ϕSi � j that captures this behavior is:
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ϕSi � j � �4: x0
i �_: x0

j � Si � j � �¥�P: x0
i � : x1

j � Si � j � ��� x1
i � x0

i �_: Si � j � ��4: x1
i �_: x0

j � Si � j � �¥�P: x1
i � : x1

j � Si � j � ��� x1
j � x0

j �_: Si � j � (6.3)

As we will explain below, with these variables we are able to increase the number of

unspecified inputs in each test pattern within a compatibility class.

In Figure 6.5 we present an example that exemplifies the use of these new variables and,

at the same time, illustrates the advantage of selecting test patterns with unspecified values

in compatible inputs. We assume a circuit with 4 inputs, � x1 � x2 � x3 � x4
� , for which we want

to detect several faults (A, B, C, �� ). In this circuit the fault A is detected by the unique test

pattern TA � � 0 � 0 � 0 � 0 � and the fault C is detect by the unique test pattern TC � � 0 � 0 � 1 � 0 � . For

the detection of fault B is sufficient to force x3 � 0 and x4 � 1, so, we have 32 � 9 possible

test patterns which detect the fault B. Note that we are assuming that assignments to other

inputs can be unspecified. Let us consider four distinct cases represented by the patterns

TB1 � � 0 � 1 � 0 � 1 � , TB2 � � 0 � 0 � 0 � 1 � , TB3 � � X � 0 � 0 � 1 � and TB4 � � X � X � 0 � 1 � . Figure 6.5 shows

the values of the variables Ci � j, Ui � j and Si � j for the compatible inputs x1 and x2. By selecting

the vector with the lower value of the arithmetic sum on variables on Ci � j, Ui � j and Si � j we can

identify the test pattern for which the compatibility is preserved and has more unspecified

inputs.

Figure 6.5 also shows the evolution of the compatibility graph and the corresponding

compatibility classes, Θi, for the different sequences of test patterns. Note that it may seem

indifferent to select any test pattern TBi to detect fault B, because all the resulting test se-

quences present two compatibility classes (but with a different number of compatible inputs,

as seen in the number of edges in each the graph). However, the next test pattern which

detects fault C breaks the compatibility between inputs � x1 � x3
� and � x2 � x3

� , thus only the

sequence with the test pattern TB4 maintains two compatibility classes while all others se-

quences increase them to three, and thus requiring one more bit in the counter of the TPG.

For this reason, the selection promotes vectors with more bits unspecified in the compatible

inputs pairs.
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Figure 6.5: Test sequences that show the use of Ci � j, Ui � j and Si � j variables and the evolution

of the compatibility graph.
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6.4.2 The Complete Optimization Model

The main objective in the computation of test patterns for width compression is to iden-

tify a test pattern that detects a fault but, if possible, does not increase the number of existing

compatibility classes, which are defined by the test vectors already computed. Hence, our

goal is to minimize the number of extra compatibility classes such that the given fault is

still detected. Additionally, we also would like to increase the number of unspecified bits

in compatible inputs. An input with an unspecified value is compatible with any other in-

put, according to compatibility Definition 6.1. This way, we increase the likelihood that our

heuristic class compatibility identification procedure will subsequently find other set of com-

patibility classes with the same cardinality, even if this particular vector splits some of the

existing compatibility classes. As a result we obtain the following optimization model,

minimize ∑0 i � j 2 . Ω

§ � cp � 1 � 2 � Ci � j � � cp � 1 � � Ui � j � Si � j ¨
(6.4)

subject to, ,0 i � j 2 . Ω

� ϕCi � j � ϕUi � j � ϕSi � j �
ϕD

u

where cp �  Ω  and ϕD
u denote the set of clauses for detecting a fault allowing unspecified pri-

mary input assignments as presented in Table 5.5 (see page 129). This formulation basically

requires that the total number of existing compatibility classes and assigned input variables

in the set of compatible pairs be minimized4 under the constraint that the fault be detected.

The usage of the variables Ci � j, Ui � j and Si � j in the cost function for each compatible input

pair will give preference to those solutions that do not decrease the compatibility classes

and exhibit unspecified inputs, as seen in the example of Figure 6.5. Note that, multiplying

each variable Ci � j � Ui � j and Si � j by the coefficients � cp � 1 � 2 � � cp � 1 � and 1, respectively, we

4Minimizing the number of compatibility classes implies maximizing the cardinality of the set of compati-

bility pairs.
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are promoting the selection of a vector that satisfies our objectives in terms of compatibility,

besides detecting the fault (imposed by the constraints (6.4)). Having this cost function is

equivalent to say that we are selecting vectors using the following rules:

� first, from the vectors that detect the given fault, we select the ones which have the

minimum number of input compatibilities breaks (Ci � j � 0),� then, from these set we choose the vectors that have the minimum number compati-

bilities inputs pairs with any bit specified (Ui � j � 0),� finally, from these we select the vector that in all pairs of compatible inputs has a

minimum number of specified inputs (Si � j � 0).

Notice that, when there are no compatibility classes, which implies an empty set of com-

patibility pairs (Ω � /0), none of the variables for compatibility, unity and simultaneity are

defined. In that case, the cost function to minimize is redefined to minimize the number of

specified inputs in the test pattern, as described in the previous chapter, Section 5.3, thus the

cost function will then be:

minimize ∑
xi . PI

� x0
i � x1

i
� (6.5)

Observe that, once there exist no more compatibility inputs pairs (Ω � /0), the number

of specified inputs in future test vectors is irrelevant with respect to input compatibility.

However, if we have a test set with more don’t cares we expect to synthesize a smaller

counter based test generator circuit (FSM).

Given the mapping between CNF clauses and linear inequalities described in Section 3.3,

the optimization problem (6.4) can be viewed as an integer linear program, and so different

integer linear optimization packages can potentially be applied. Nevertheless, the constraints

of (6.4) are tightly related with propositional satisfiability. Consequently, and as shown in
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Section 3.4, SAT based ILP solvers are preferable for solving ILPs for which the constraints

correspond to CNF formulas.
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6.5 Model/Solver Limitations

Since our model is based on the model presented in Chapter 5, for computing test patterns

with don’t cares, we are limited to compute vectors for which one or more sensitization paths

are defined, as described in Section 5.4.

Due to current limitations of the bsolo SAT solver, which only accepts variables with

unity weight in the cost function to minimize, we had to change our cost function. Thus,

we are limited to use the compatibility, unity and simultaneity variables, Ci � j, Ui � j and Si � j,
respectively, with a weight coefficient of 1. As a result we use the following relaxed cost

function:

minimize ∑0 i � j 2 . Ω
� Ci � j � Ui � j � Si � j � (6.6)

Note that according to Table 6.1 (see page 152), for a pair of compatible inputs (xi � x j),

each item in the cost function (6.6) assumes only four discrete values:� 0 if both inputs are unspecified, � Ci � j � 0 � Ui � j � 0 � Si � j � 0 � ;� 1 if only one of the inputs is specified, � Ci � j � 0 � Ui � j � 1 � Si � j � 0 � ;� 2 if both inputs are specified but the compatibility is maintained, � Ci � j � 0 � Ui � j �
1 � Si � j � 1 � ;� 3 otherwise, � Ci � j � 1 � Ui � j � 1 � Si � j � 1 � , meaning that existing compatibility (directly

or inversely) is broken between inputs i and j.

With this cost function, a vector that breaks one input compatibility input pair has a

lower cost than any other vector that has 4 compatible inputs with only one input specified

or with two compatible inputs specified without compatibility violation. However, as shown

by our experimental results presented in the next section, this relaxed cost function is able to

generate, for several benchmarks, a set of test vectors that presents significant with reductions

in the TPG.
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6.6 Experimental Results

The model described in the previous section (with the relaxed cost function (6.6)) has

been integrated in a test pattern generation framework for the computation of test patterns

referred to as Minimum Test Pattern generator with Width Compression (MTP-C), which uses

the SAT-based ILP algorithm bsolo (described in Section 3.3.2) and the fault simulator

provided with ATALANTA [Lee 93]. The results included below were obtained with the IWLS

benchmark suite [IWLS 89] and with the ISCAS’85 benchmark suite [Brglez 85]. In all

cases MTP-C was run with a bound on the amount of allowed search (i.e. the total number of

conflicts was limited to 1000). This permits MTP-C to identify acceptable solutions, which in

some cases may not necessarily be optimal. Moreover, in order to facilitate the optimization

process, MTP-C uses the solution computed by ATALANTA (or by any other ATPG tool) as

the startup assignment. These assignments provide an initial upper bound on the value of

the optimal solution. If ATALANTA aborts the fault, then TG-GRASP [Silva 97b] is used for

computing a startup test pattern.

Table 6.2 contains the results for the IWLS benchmarks for both ATALANTA and MTP-C.

Columns #PI, #V and W denote, respectively, the number of primary inputs, the number of

test vectors and the width of test set after compression. The last two columns represent the

number of bits gained by our ATPG over ATALANTA and the average time to solve the model

for each vector (on a Sun Sparc-Ultra I with 384 Meg. of memory).

From these results we can conclude that the model implemented by the MTP-C ATPG

decreases the number of bits necessary to fully test a circuit. This is achieved by computing

fewer test vectors than ATALANTA and, in some cases, reducing the width, in the number of

bits, necessary to “store” the test patterns. We should notice that a reduction by one bit in

the width of the test patterns will reduce to half the number of test patterns produced by the

BIST generator, thus will cut down to half the time required to fully test the circuit.

Table 6.3 contains the results for the ISCAS’85 circuits. Once more we can conclude

that MTP-C is able to improve over the ATALANTA results, and in this case the improvements

are in general higher. This may happen because now we are dealing with larger circuits, so

the number of distinct vectors that can detect a given fault is in general greater, therefore it
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ATALANTA MTP-C #bits Sec/
Circuit #PI

#V W #V W red. Vect.

9symml 9 94 9 84 9 0 1.5

alu4 14 239 14 197 12 2 12.4

cht 47 194 5 178 4 1 2.3

cm138a 6 13 6 12 6 0 0.1

cm150a 21 65 10 44 7 3 4.3

cm163a 16 44 8 35 8 0 0.2

cmb 16 39 12 30 12 0 0.1

comp 32 68 32 50 20 12 15.5

comp16 35 111 33 94 28 5 18.8

cordic 23 59 21 45 17 4 7.7

cu 14 49 13 36 10 3 0.1

dalu 75 740 26 601 25 1 33.3

majority 5 11 5 11 5 0 0.1

misex1 8 28 5 22 5 0 0.1

misex2 25 77 14 65 14 0 0.4

misex3 14 289 14 241 14 0 13.0

mux 21 64 10 43 7 3 2.0

pcle 19 75 11 53 11 0 0.2

pcler8 27 90 12 74 12 0 0.4

term1 34 135 17 102 16 1 4.4

too large 38 226 31 162 31 0 12.1

unreg 36 133 5 122 5 0 3.2

Table 6.2: Experimental results for IWLS benchmarks.
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ATALANTA MTP-C #bits Sec/
Circuit #PI

#V W #V W red. Vect.

C432 36 148 31 107 24 7 25.7

C499 41 103 41 66 40 1 42.4

C880 60 393 30 289 29 1 28.2

C1355 41 145 41 96 37 3 77.9

C1908 33 291 31 181 29 2 46.3

C2670 233 780 55 600 52 3 91.0

C3540 50 718 30 530 31 -1 98.4

C5315 178 1393 38 993 44 -6 224.7

C6288 32 248 32 58 32 0 326.3

C7552 207 919 101 706 93 8 166.8

Table 6.3: Experimental results for ISCAS’85 benchmarks.

will be “easier” for the ILP solver to find vectors that meet the restrictions on compatibility

classes. The results obtained on circuits C3540 and C5315 show that our greedy approach

and/or the use of the relaxed cost function may not produce good results for all circuits.

6.7 Conclusions

In this chapter we introduce a SAT-based integer linear programming model for com-

puting test patterns for width compression. Based on the model for computing test patterns

with unspecified inputs, presented in Chapter 5, we describe an ATPG tool (MTP-C) which

incorporates several heuristics. The applicability of the model using a relaxed cost function

was illustrated by computing test patterns for the IWLS and ISCAS’85 benchmarks circuits.

From these results we can conclude that for some circuits our approach can reduce the test

patterns width, which has a significant impact on the test time and area of the test generator

circuit.

The heuristics incorporated in the MTP-C ATPG tool ought to be tuned in order to achieve
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better width compression in a wider range of circuits. Introducing a fault ordering mech-

anism process and improving the compatibility selection algorithm are some of the tech-

niques that should be considered for further improvement. In addition, a solver that ac-

cepts generic linear cost functions should be used. We should also note that counter-based

test generation circuits are only practical provided we are able to reduce the width to no

more than 25–30 bits. Hence, for several of the benchmarks, additional width compres-

sion is required. We should consider determining new types of compatibility (such as d-

compatibility [Chakrabarty 97] or based on simple logic functions, i.e. OR, AND or other

2-inputs simple gates) to be incorporated in the model with the objective of reducing the

test patterns width without a significantly increase in the area of the decoder. In addition,

the techniques developed for pseudo-exhaustive testing (partition of the CUT in small logic

blocks to reduce the testing time) should also be studied for inclusion in the model.
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7.1 Introduction

We have seen that many circuits today include on-chip structures that enable circuit self-

testing, known as built-in self-test (BIST) [Abramovici 90]. Initially designed to make the

testing of circuits out of the fabrication line easier, they also allow for the periodic testing

of the circuit. This can be especially important for circuits used in safety-critical and/or

mobile devices. Clearly the penalty to pay is the extra circuitry required for BIST. As dis-

cussed in Chapter 6, one approach to reduce this overhead is to use a simple linear feedback

shift register (LFSR) to generate a pseudo-random input sequence, which is run until a target

fault coverage has been achieved [Abramovici 90, Chakrabarty 97]. The disadvantage of this

solution is that for high fault coverages the run time may become too long and the power dis-

sipated too high. Techniques to cope with these problems have been proposed [Manich 00],

based on filtering the non-detecting vectors (to avoid stimulating the circuit under test with

non-detecting vectors) and/or by re-seeding the LFSR (to skip a set of undesired vectors

until the next detecting vector). A different approach is to use an automated test-pattern

generator (ATPG) tool to obtain a (ideally minimum) set of test patterns necessary for the

desired fault coverage. Then, the BIST structure, that generates each of these patterns se-

quentially, reduces to a counter-type finite state machine (FSM) which could benefit from the

techniques presented in Chapter 6. Even though this solution in general requires larger area,

it is also clear that it provides shorter test sequences, thus being the option of choice for spe-

cific applications where power, and not area, is the most important design goal. Moreover,

the increased use of periodic testing in safety-critical and/or mobile devices raises concerns

about the power that is consumed during this process. Consequently, techniques for reducing

the power dissipation during testing are particularly relevant for these devices.

In this chapter we address the problem of power reduction during testing. Even though

solutions for solving this problem have so far consisted on reordering sequences of com-

pletely specified test patterns [Chakravarty 94], one might expect the potential existence of

don’t cares in test patterns to help further reducing the power dissipation during testing. The

main purpose of this chapter is to propose solutions for this problem and provide compre-

hensive empirical evidence that the existence of don’t cares in test patterns can in fact play a
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significant role in reducing power dissipation during testing.

This chapter is organized as follows. We start in Section 7.2 by introducing the power

dissipation model for CMOS digital circuits. In Section 7.3 we describe a model for reducing

power dissipation during testing whenever test patterns are completely specified. Moreover,

we relate this problem to the problem of minimizing the sum of the Hamming distances

between pairs of tests in a test sequence. In this same section we also consider approaches

for using test patterns containing don’t cares and analyze the problem of reducing power

during the application of these test pattern sequences. Afterwards, in Section 7.4, we derive a

formal optimization model for the problem of minimizing Hamming distances in a sequence

of patterns with don’t cares. Given the complexity of the proposed model, we then present, in

Section 7.5, heuristic algorithms for solving the test pattern reordering problem. Section 7.6

presents experimental results validating the proposed power reduction approach.

7.2 Power Dissipation Model

The main sources of power dissipation in CMOS devices are summarized by the follow-

ing expression [Weste 94]:

P � 1
2
� C � V 2

DD � f � N � QSC � VDD � f � N � Ileak � VDD (7.1)

where P denotes the total power dissipated by the CMOS gate, with a VDD supply voltage,

and a frequency of operation f .

The first term in (7.1) corresponds to the power involved in charging and discharging

circuit nodes. C represents the gate output node capacitances and N is the switching ac-

tivity, i.e. the number of gate output transitions per clock cycle (also known as transition

density [Najm 93]). The product 1
2 � C � V 2

DD is the energy involved in charging or discharging

a circuit node with capacitance C and f � N is the average number of times per second that

the node switches.

The second term in (7.1) represents the power dissipation due to current flowing directly

from the supply to ground during the (hopefully small) period that the pull-up and pull-down
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networks of the CMOS gate are both conducting during the output switches. This current is

often called short-circuit current. The factor QSC represents the quantity of charge carried

by the short-circuit current per transition.

The third term in (7.1) is related to the static power dissipation due to leakage current

Ileak. The transistor source and drain diffusions in a MOS device form parasitic diodes with

bulk regions. Reverse bias currents in these diodes dissipate power. Subthreshold transistor

currents also dissipate power. Ileak accounts for both these small currents.

These three factors for power dissipation are often referred to as dynamic power, short-

circuit power and leakage current power respectively.

It has been shown [Chandrakasan 92] that during normal operation of well designed

CMOS circuits the switching activity power accounts for over 90% of the total power dissi-

pation. Thus power optimization techniques at different levels of abstraction target minimal

switching activity power. The model for power dissipation for a gate i in a logic circuit is

simplified to:

Pi
� 1

2
� Ci � V 2

DD � f � Ni (7.2)

Both simulation-based (e.g., [Burch 92]) and probabilistic (e.g., [Costa 97]) techniques

have been proposed for the computation of Ni. Simulation-based techniques use a logic

or timing simulator. The circuit is simulated with a sufficiently large number of randomly

generated input vectors to obtain an average transition count at every gate in the circuit.

Simulation-based techniques can be very efficient for loose accuracy bounds. Increasing the

accuracy may require a prohibitively high number of simulation vectors.

Probabilistic techniques use some statistical information of the inputs and, based on prob-

abilistic methods, propagate this information through the logic circuit obtaining statistics

about the switching activity at each node in the circuit. Only one pass through the circuit

is needed, thus making these methods potentially very efficient. Still, modeling issues like

correlation between signals can make these methods computationally expensive.
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Figure 7.1: Graph representation of completely specified test patterns.

7.3 Reordering Test Patterns for Power Reduction

7.3.1 Model for Completely Specified Test Patterns

For the testing of the circuit, the only requirement is that all the test-patterns generated

by the ATPG are applied to the circuit. Thus, one degree of freedom that can be explored is

the order by which these patterns are applied [Chakravarty 94].

Let � T1 � T2 ������ Tm � be a given sequence of completely specified test patterns. The prob-

lem of power reduction during testing can be formulated as the identification of a permu-

tation 	 i1 ������ im � such that the overall power consumption is minimized. This problem can

be naturally reduced to the traveling salesperson problem (TSP) [Johnson 96]. Let each test

pattern be a vertex in a graph and let the cost ckl of the edge between vertices vk and vl

be the power that is consumed due to the sequence of input vectors Tk and Tl . The cycle	 vi1 � vi2 ���� vim � vi1
� that visits every vertex in the graph with minimum sum of the edge costs

is the optimum solution to the power minimization problem.

Moreover, the power consumption between every possible input-vector pair � Tk � Tl
� can

be heuristically approximated by the Hamming distance between the input vectors. The ar-

gument is that by minimizing the switching activity at the inputs we will also be minimizing

the switching activity on internal nodes in the circuit. Although this is not always true (one

transition in a given input may cause many transitions in internal nodes, whereas several

inputs changing may cause fewer internal transitions), it is a good approximation for typical

circuits, as confirmed by the results presented in Section 7.6.
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Figure 7.2: Graph representation of a incompletely specified test patterns.

Figure 7.1 shows the graph representation of a completely specified test set of four pat-

terns. Note that each pattern in the graph is represented by a vertex and each edge has a

unique cost value, the Hamming distance.

Even though the traveling salesperson problem is NP-hard, several efficient

polynomial-time approximation algorithms exist [Johnson 96], in particular, if the resulting

TSP instances are symmetric (ckl � clk) and satisfy the triangle inequality (c jl 3 c jk � ckl ,

see Appendix C) for every vertex in the graph. This is the case when the power dissipated is

heuristically approximated by the Hamming distance. In Section 7.5 we modify one of these

approximation algorithms to obtain an efficient power reduction algorithm in the presence of

don’t care conditions.

7.3.2 Reordering Test Patterns with Don’t Cares

We consider now the changes to the power reduction model described in the previ-

ous section whenever test patterns are allowed to be incompletely specified. In general,

ATPG algorithms attempt to generate test patterns with a maximal number of don’t cares,

so that compaction of test patterns becomes facilitated. Hence, power reduction techniques

for circuit testing should address the potential advantages of exploiting the don’t cares in

the test set. We have resorted to two different ATPG algorithms, ATALANTA [Lee 93] and

MTP [Flores 98b]. As mentioned before, ATALANTA heuristically generates test patterns with

don’t cares, whereas MTP, as presented in Chapter 5, implements a formal model for the

computation of test patterns with the maximum number of don’t cares.
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It can readily be concluded that if test patterns contain don’t cares, then the straightfor-

ward mapping of the power reduction problem to the TSP is no longer valid. Indeed, the

existence of test pattern with don’t cares implies that the Hamming distances between test

patterns becomes conditional, and depends on the final assignments of the unspecified bits.

Let us consider the incompletely specified test set of Figure 7.2. Under these circumstances,

each edge has a fixed cost value, for transitions between fully specified patterns, or a range

of values, for transitions that involves at least one unspecified test pattern. For example, the

Hamming distance between T1 to T4 is 1 while between T1 and T2, and between T2 and T3 the

distance can range from 2 to 3 and from 1 to 3, respectively. Moreover, knowing the distance

between T2 and T3 is not sufficient to determine other distances containing these patterns

unless the value of the unspecified bits are defined.

In the next section we propose a formal optimization model for reducing the sum of

the Hamming distances in pattern sequences, hence with clear potential application to mini-

mizing power during BIST. However, the proposed optimization model denotes a complex

optimization problem, and consequently we then propose heuristic algorithms for approxi-

mating the solution to this problem.
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7.4 A Formal Model for Pattern Sequence Reordering Us-

ing Don’t Cares

In this section we derive a formal integer linear optimization model for pattern reordering

under the assumption that patterns exhibit don’t cares, which is also valid for completely

specified patterns. The cost function assumed is given by the sum of the Hamming distances

between each pair of patterns, which will be henceforth referred to as the Hamming cost for

the pattern sequence. As empirically confirmed in Section 7.6, we assume that a reduction

in the sum of the Hamming distances accurately measures the reduction in power associated

with the sequence of patterns.

For the case where the patterns are fully specified we can always map an instance of the

TSP into an instance of integer linear programming (ILP), in particular into one where the

variables assume binary values (i.e. 0-1 ILP) [Nemhauser 88].

Consequently, our goal is to modify this model in order to also capture don’t care condi-

tions. The resulting model basically allows for conditional costs (i.e. conditional Hamming

distances) between each pair of vertices (i.e. patterns). We start by reviewing a 0-1 ILP model

for the TSP, following the approximating in [Nemhauser 88], and then proceed to develop an

optimization model in the presence of don’t cares.

7.4.1 A 0-1 ILP Model for the TSP

Let Ti ��	 bi1 ������ bin
� and Tj ��	 b j1 ������ b jn

� denote two patterns, and let ci j denote the

Hamming distance between Ti and Tj. Further, let xi j denote a Boolean variable such that

xi j � 1 provided Tj follows Ti in the sequence of patterns, and xi j � 0 otherwise. Finally, let

V � � 1 ������ m � denote a set of vertices where each i is associated with pattern Ti. Conse-

quently, from [Nemhauser 88], the resulting instance of TSP can be polynomially formulated

as follows,

minimize ∑
i � j ci j � xi j (7.3)
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subject to the following constraints,

∑1 i: 0 i � j 2b. V « V 3 xi j � 1 j � V

∑1 j: 0 i � j 2b. V « V 3 xi j � 1 i � V (7.4)

ui
6 u j � m � xi j 3 m 6 1 � i � j � � V " V � i �� 1 � j �� 1

xi j �7� 0 � 1 � i � j � V

ui � ℜ i � V

where the first and the second set of constraints state that each pattern is entered and left

exactly once, respectively. The ui variables can assume any real value such that the con-

straints ui
6 u j � m � xi j 3 m 6 1 are met, which guarantee that no subtours will be selected,

hence, only complete tours satisfy the constraints. A full proof of this fact can be found in

Appendix B. Here, we only note that the real variables ui are solely used for satisfying each

constraint ui
6 u j � m � xi j 3 m 6 1, and cancel out in proving that no subtours are allowed.

7.4.2 An ILP Model for Pattern Reordering Using Don’t Cares

Assuming that each pattern can exhibit don’t care bits then, as mentioned in Section 7.3.2,

the distance ci j between test patterns is a conditional number, whose final value is imposed

by how the don’t care bits are actually assigned.

Hence, we start by introducing a Boolean variable (di jk) which identifies the distance in

each bit position of any two test patterns Ti �
	 bi1 ������ bik ������ bin
� and Tj �
	 b j1 ������ b jk ������ b jn

� ,
di jk � � bik � b jk

�() xi j i � j � V � k ��� 1 ������ n � (7.5)

where k denotes each of the possible bit positions that range from 1 to n, the number of the

primary inputs (PI) of the circuit. We note that di jk assumes value 1 if and only if Tj follows
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Ti in the pattern sequence and bit k in Ti differs from bit k in Tj. In addition, this condition

can be represented in CNF format as follows [Silva 97b],

ϕi jk � � bik � : b jk �_: xi j � di jk
� �¥�4: bik � b jk �_: xi j � di jk

� � (7.6)� bik � b jk �_: di jk
� ���4: bik �_: b jk �_: di jk

� ��� xi j �_: di jk
�

Moreover, and using the straightforward mapping presented in Section 3.3, these clauses

can be written as linear inequalities,

ϕi jk � � bik
6 b jk

6 xi j � di jk
� 6 1 �9) � 6 bik � b jk

6 xi j � di jk
� 6 1 �9) (7.7)� bik � b jk

6 di jk
�

0 �9) � 6 bik
6 b jk

6 di jk
� 6 2 �() � xi j

6 di jk
�

0 �
Note that, for each test pattern Ti, if bit bik is a don’t care (its value is not specified in

the problem), then by imposing that bik � � 0 � 1 � it will become one of the problem variables.

Otherwise, the value of bik is specified by pattern Ti.

We can now define the integer conditional cost-distance, si � j, between Ti and Tj as the

sum of all bit distance between the two patterns,

si � j � n

∑
k � 1

di jk (7.8)

where clearly si � j �7� 0 ������ n � , with n being the number of primary inputs of the circuit.

Finally, the total cost function must also be modified to account for all the conditional

costs. Hence, we modify the cost function as follows,

minimize ∑
i � j si � j (7.9)
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This definition as well as the above constraints complete the formulation of the model

for patterns reordering using don’t cares. Using restrictions (7.4), (7.7) and equation (7.8)

the resulting ILP model becomes,

minimize ∑
i � j ∑k

di jk

subject to,

∑1 i: 0 i � j 2b. V « V 3 xi j � 1 j � V

∑1 j: 0 i � j 2b. V « V 3 xi j � 1 i � V (7.10)

ui
6 u j � m � xi j 3 m 6 1 � i � j � � V " V � i �� j � j �� 1

xi j ��� 0 � 1 � � ui � ℜ i � j � V

ϕi jk i � j � V � k � � 1 ������ n �
bik � di jk � � 0 � 1 � i � j � V � k � � 1 ������ n � � bik

�� Ti

where the variables si � j were replaced by their definition in (7.8), and where bik
�� Ti denotes

that bik is an unassigned bit for pattern Ti.

Theorem 7.1 The solution to ILP problem (7.10) denotes an assignment to the don’t care

bits and a reordering of the pattern sequence which minimizes the overall sum of Hamming

distances in the selected ordering of patterns.

Proof. From [Nemhauser 88], and using (7.5), for each assignment to the variables bik,

the ILP problem (7.10) becomes an instance of TSP. Over all possible assignments to the

variables, the minimum tour cost of (7.9) and associated completely specified patterns will

be identified.

Assigning values for don’t cares and minimizing the Hamming cost of the patterns se-

quence, using the ILP model (7.10), does not guaranty the minimum power dissipation dur-

ing the circuit testing. This model limitation results from the assumption that, reducing the

activity in the primary inputs of the circuit we are reducing the activity in the whole circuit,
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and consequently the power dissipated. Although, this is true for most of the typical cir-

cuits, as shown by the results presented in Section 7.6, there exist circuits for which these

parameters may not be correlated.

The proposed model denotes a complex integer optimization problem, clearly no easier

than TSP. Consequently, and in order to evaluate the practical usefulness of pattern sequence

reordering in the presence of don’t cares, we propose in the next section different heuristic

algorithms for computing approximated solutions to the pattern reordering problem. As will

be empirically illustrated in Section 7.6, don’t cares can actually be particularly useful for

minimizing the Hamming cost of pattern sequences.

7.5 Power Reduction Algorithms

As mentioned in Section 7.3.1, for completely specified test patterns, the straightforward

representation of the power reduction problem as an instance of the TSP problem immedi-

ately yields a wealth of approximation algorithms [Johnson 96]. Our approach is to modify

an existing approximation algorithm for the TSP instead of solving the model proposed in

the previous section with an ILP solver. We chose to adapt the 2-Opt local search approxi-

mation algorithm for the TSP [Johnson 96]. The algorithm modification to use incompletely

specified patterns is explained below. Before, we describe the overall power reduction algo-

rithm, for pattern reordering with don’t cares. Figure 7.3 presents the block diagram of the

resulting power reduction algorithm that is organized as follows:

1. Use a dedicated algorithm for computing a test set where each test pattern contains

don’t cares. Either MTP (from Chapter 5) or ATALANTA [Lee 93] or any other ATPG

that generates test patterns with don’t cares can be used.

2. Apply an heuristic procedure for identifying an initial tour. Several different heuris-

tics have been implemented and are described below.

3. Use the modified 2-Opt local-search approximation algorithm for the TSP to reorder

the test patterns. Repeat this step while the tour cost can be reduced.
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Figure 7.3: Block diagram of power reduction algorithm.

The initial order of the pattern will define the initial tour which can greatly limit the

performance the local optimization algorithm. The following five initial ordering heuristics

have been implemented (which will henceforth be referred to as H1 through H5):

H1 – Randomly order the test patterns.

H2 – Order test patterns by decreasing number of don’t cares in each test pattern. By choos-

ing for the first test patterns those with more don’t cares one can expect that the

distances between the first test patterns be the lowest possible.

H3 – Select the most unspecified test pattern as the first vector. Afterwards, greedily select

the next test pattern as one that minimizes the distance from the current test pattern.

This heuristic goes one step further in minimizing the distances between the first test

patterns by choosing the second best test pattern, and then the third best, and so on.
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H4 – In this heuristic for each bit position the don’t care bits are set to the values that occurs

more often for that bit. By using this method the test patterns are expected to become

more similar between each other. Next the test patterns are ordered to approximate

the Gray coding. This approach attempts to order the test patterns in such a way that

the average distances between test patterns is minimized.

H5 – This last heuristic sets the don’t cares in the same manner in the heuristic 4. Af-

terwards, with all the test patterns temporarily specified, the Christofides TSP ap-

proximation algorithm is used for defining the initial tour [Christofides 76]. (A brief

explanation of this algorithm can be found in Appendix C.) This heuristic permits

using a TSP approximation algorithm in a tour where the test patterns are expected to

be similar to each other.

The class of locally optimization algorithms for TSP in which 2-Opt fits are based on

operations that convert one tour into another. Given a initial feasible tour, the algorithm

repeatedly performs operations (i. e. exchanges or moves), so long as each one reduces the

length of the current tour, until a tour is reached for which no operation yields an improve-

ment. The move carried out by the 2-Opt algorithm consists of deleting two edges, thus

breaking the tour into two paths, and then reconnects those paths in the other possible way

to create a unique tour. Figure 7.4 presents a move carried by the 2-Opt algorithm in a set of

eight test patterns.

Therefore, after having the initial tour of the test patterns, obtained by one of the previews

heuristics H1 through H5, the following modified 2-Opt is applied [Johnson 96]:

1. Evaluate the initial tour cost by specifying the don’t care bits which minimize the

distance between consecutive test patterns.

2. Reverse the action taken in Step 1 to get the original test patterns with don’t cares.

3. Apply a 2-Opt move for every edge in the graph. This means that for every pair of test

patterns (Ti and Tj), cut the link between those test patterns and the next ones (Ti 5 1

and Tj 5 1), and link Ti with Tj and Ti 5 1 with Tj 5 1. For this new ordering obtain the

tour cost as in Step 1.
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Figure 7.4: A 2-Opt move: (a) orginal tour and (b) resulting tour.

4. If the lowest tour cost found in Step 3 is lower than the initial tour cost then keep

the order for that lowest tour cost and repeat Step 1 for that ordering. Otherwise the

algorithm terminates.

Finally, the test sequence that will be used for circuit testing, and which will be provided

to the power estimator of SIS [Sentovich 92], is the result of the modified 2-Opt, with the

don’t care bits specified in such a way that the Hamming distance between consecutive test

patterns is minimized.

7.6 Experimental Results

This section includes results of applying the algorithm described in the previous section

to the IWLS benchmark circuits [IWLS 89] and to the ISCAS’85 benchmark circuits [Brglez 85].

The ATPG tool ATALANTA [Lee 93] was used on all the experiments. As mentioned before

ATALANTA allows the generation of test patterns with don’t cares and was used to generate

both completely and incompletely specified test patterns. The MTP tool (from Chapter 5) was

used in the IWLS benchmark circuits to illustrate that, in general, minimizing the number of

specified bits yields larger power reductions, even if the number of vectors increase.

The experimental procedure consisted of first generating a set of completely specified
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test patterns with ATALANTA and subsequently reordering them such that the Hamming cost

was minimized. For this minimization procedure, the Christofides approximation algorithm

was used (as the initial tour finder) with the 2-Opt local optimization algorithm. This input

pattern sequence is then used to compute the reference values for the Hamming costs and

power consumption used in subsequent comparisons.

Afterwards, the set of incompletely specified test patterns was generated. The algorithm

described in the previous section was used to generate the best ordering and don’t-care as-

signment for the different initial ordering heuristics proposed.

7.6.1 IWLS Benchmarks

We first present in Table 7.1 results for the IWLS benchmark circuits on the reduction

of the Hamming cost by exploiting the don’t cares in the incompletely specified set of test

patterns (generated by ATALANTA), which is the figure of merit that we are directly targeting.

For each of the different heuristics, the percentage savings relative to the optimal sequence

of completely specified pattern sequence is shown. It can be observed that for many of the

examples significant reductions in the Hamming cost are obtained. These savings can vary

widely from circuit to circuit, yet the difference between heuristics is not large, with a slight

advantage for heuristic H3.

Still in Table 7.1 we give the CPU time in seconds used by the ordering and assign-

ment algorithm under the different heuristics on a Sun Ultra I with 384MB of main memory.

These values are reasonably small, confirming the efficiency of the proposed technique, be-

ing heuristics H3 and H5 the least time consuming.

The power reduction results obtained for the same circuits and using the same test vectors

are shown in Table 7.2. The columns labeled completely specified indicate the percentage

power reductions that result from ordering a sequence of completely specified test patterns,

and the number of computed test patterns (#TP). The columns labeled incompletely speci-

fied indicate the power reductions from exploiting the don’t cares in incompletely specified

test patterns over an already ordered sequence of completely specified test patterns for each
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Circuit H1 H2 H3 H4 H5

% CPU % CPU % CPU % CPU % CPU

9symml 7.7 17.3 10.5 17.9 16.1 2.0 14.7 18.4 14.7 4.1

alu4 24.3 153.1 22.7 156.9 30.5 16.2 22.7 129.0 29.0 47.6

cht 59.0 0.0 60.3 0.0 59.7 0.0 59.0 0.0 59.0 0.0

cm138a 18.0 0.0 16.0 0.0 16.0 0.0 16.0 0.0 14.0 0.0

cm150a 61.4 1.4 65.5 1.5 65.5 0.2 64.7 1.0 71.3 1.0

cm163a 40.5 0.0 48.6 0.0 43.2 0.0 45.9 0.0 48.6 0.0

cmb 32.6 0.1 32.6 0.0 32.6 0.0 32.6 0.0 32.6 0.0

comp 67.2 12.3 67.9 13.0 70.7 4.8 67.2 12.5 65.8 5.0

comp16 50.8 131.0 59.3 98.7 61.7 11.8 50.3 98.1 60.7 22.1

cordic 56.2 3.9 61.1 3.1 61.1 0.7 59.2 3.5 61.1 0.7

cu 48.3 0.2 48.3 0.1 52.6 0.1 50.5 0.1 50.5 0.0

majority 14.0 0.0 16.0 0.0 14.0 0.0 16.0 0.0 14.0 0.0

misex1 43.4 0.0 39.1 0.0 47.8 0.0 47.8 0.0 43.4 0.0

misex2 72.9 1.6 96.0 1.5 96.0 0.4 76.5 1.9 74.4 0.7

misex3 27.0 815.1 24.1 744.5 35.8 67.6 25.8 667.7 28.7 309.2

mux 67.9 1.2 66.2 1.3 69.5 0.5 68.7 1.2 67.9 0.6

pcle 47.6 0.0 49.5 0.0 47.6 0.0 49.5 0.0 49.5 0.0

pcler8 59.7 0.2 58.7 0.2 59.7 0.1 60.8 0.2 61.9 0.1

term1 71.3 3.7 73.0 4.2 74.7 2.3 74.4 4.5 74.4 2.5

too large 57.7 817.1 60.8 745.8 63.3 217.5 58.6 604.9 63.3 335.5

unreg 64.1 0.0 63.2 0.0 63.2 0.0 64.1 0.0 63.2 0.0

AVERAGE 47.2 93.2 49.5 85.2 51.5 15.4 48.8 73.5 49.9 34.7

Table 7.1: Hamming cost reduction and CPU times for the IWLS benchmark circuits.

heuristic1. In all cases a power estimator tool integrated in SIS [Sentovich 92] was used for

1The absolute value of power reduction percentage can be easily calculated using the table values.
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estimating the actual power dissipation from applying the test sequences [Costa 97].

As can be readily concluded, large power savings ranging from 30% to 60% are achieved

in most cases. This is particularly significant since these results measure the percentage

power savings over the already ordered sequence of test patterns. Finally, we note that the

number of test patterns (#TP) does not change significantly from completely specified to

incompletely specified test patterns. In addition, the results from Table 7.1 and Table 7.2

indicate that the measured reduction in power dissipation correlates well in most circuits

with the achieved reduction in Hamming cost.

Table 7.3 presents the power reductions obtained for incompletely specified patterns gen-

erated by the MTP ATPG tool (with fault simulation and reverse fault simulation but no com-

paction). Thus, the number of don’t cares in each test pattern increases, so as the number

of computed test patterns for the same fault coverage (100%). This boost the number of

available combinations for selecting the low cost tour and assigning of the don’t care bits.

Therefore, Table 7.3 shows that in most cases larger power savings are achieved with these

patterns, than with the ones generated with ATALANTA. In most cases the power reduction

ranges from 40% to 80%. In some few cases (9symml, cm138a, cm150a, comp and majority)

the power reduction is less than expected (when compared with the vectors from ATALANTA),

because even with an “optimal” order and bit assignment the selected test sequence will ac-

tually dissipate more power. This kind of results are somehow expected, and they may be

caused by longer test sequences and/or resulting from the “unconstrain” selection of the test

vectors by the ATPG, which are “randomly” choose regarding to power dissipation.
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Completely specified Incompletely specified

(ordered vs. unordered) versus ordered completely specified

Circuit [ATALANTA ATPG] [ATALANTA ATPG]

#TP % power #TP % power reduction

reduction H1 H2 H3 H4 H5

9symml 78 43.9 80 3.8 7.2 15.3 11.1 17.1

alu4 100 29.0 128 12.2 11.7 18.3 13.7 20.4

cht 17 5.6 10 25.3 27.9 24.7 17.9 23.0

cm138a 12 36.3 12 20.9 20.7 11.0 16.2 17.5

cm150a 34 16.5 39 38.6 46.2 53.6 42.4 45.3

cm163a 15 15.6 14 31.2 34.7 40.0 35.4 42.7

cmb 30 43.2 27 16.9 17.7 21.9 13.8 15.1

comp 56 27.1 60 57.0 56.9 60.6 58.7 57.7

comp16 72 38.9 99 40.6 47.6 44.2 46.6 42.3

cordic 43 36.6 47 49.3 56.2 61.5 54.0 59.4

cu 27 35.6 26 23.4 34.3 36.4 13.1 30.3

majority 11 36.1 11 9.6 15.9 5.1 10.9 4.6

misex1 18 14.3 17 36.2 26.5 24.9 26.7 33.0

misex2 47 20.5 37 41.7 48.7 52.6 52.5 51.6

misex3 154 38.3 178 21.0 24.6 27.9 19.1 24.5

mux 35 20.5 38 28.7 31.2 36.9 41.4 32.0

pcle 17 16.6 20 28.1 37.1 47.2 31.2 42.7

pcler8 19 20.4 21 35.4 23.7 43.2 27.5 37.8

term1 43 14.4 43 43.6 49.5 47.2 39.6 46.9

too large 103 32.1 146 36.1 41.2 49.9 42.1 46.3

unreg 15 15.8 10 12.4 12.5 12.0 11.2 17.2

Table 7.2: Power reduction results for the IWLS benchmarks with vectors generated by

ATALANTA.
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Completely specified Incompletely specified

(ordered vs. unordered) versus ordered completely specified

Circuit [ATALANTA ATPG] [MTP ATPG]

#TP % power #TP % power reduction

reduction H1 H2 H3 H4 H5

9symml 78 43.9 83 4.8 8.0 13.5 2.6 11.2

alu4 100 29.0 217 33.2 33.0 52.7 38.1 46.1

cht 17 5.6 184 83.0 89.8 90.7 90.0 91.4

cm138a 12 36.3 12 0.5 0.5 13.5 17.8 8.1

cm150a 34 16.5 43 36.9 49.6 49.7 34.7 59.9

cm163a 15 15.6 35 70.3 73.0 76.4 73.4 71.2

cmb 30 43.2 30 24.7 22.7 26.5 30.2 21.9

comp 56 27.1 70 53.7 54.7 57.2 52.5 58.4

comp16 72 38.9 138 55.2 56.6 56.1 48.8 54.1

cordic 43 36.6 48 60.0 55.6 65.8 60.1 60.5

cu 27 35.6 36 44.2 47.9 46.6 42.8 46.7

majority 11 36.1 11 10.1 -13.9 -3.0 9.6 6.3

misex1 18 14.3 21 39.8 29.1 45.1 41.7 44.6

misex2 47 20.5 69 66.7 68.5 66.9 69.0 70.1

misex3 154 38.3 247 36.3 34.9 45.0 30.5 39.7

mux 35 20.5 42 40.0 48.9 47.5 38.2 37.7

pcle 17 16.6 46 67.3 76.2 77.2 73.5 73.0

pcler8 19 20.4 65 74.1 80.8 77.2 75.1 78.2

term1 43 14.4 109 69.9 76.0 74.0 74.2 73.1

too large 103 32.1 194 52.5 53.0 64.4 53.8 60.4

unreg 15 15.8 116 78.4 86.2 88.3 81.2 87.6

Table 7.3: Power reduction results for the IWLS benchmarks with vectors generated by MTP.
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7.6.2 ISCAS Benchmarks

The results in the previous section validate the proposed approach for reducing power

dissipation for medium-size circuits. We now apply the power reduction procedure to the

ISCAS’85 benchmark circuits with test patterns generated by ATALANTA. The results are

shown in Table 7.4. As can be concluded, once again, large power savings can be obtained

by generating test patterns with don’t cares, reordering the test sets and specifying the unas-

signed bits so that the dissipated power is minimized. From Table 7.4, we can conclude that

with specified test patterns, the power savings from reordering the test patterns range from

10% to 30%. In addition, after generating test patterns with don’t cares we obtain, over the

already ordered (but completely specified) test sequence, power savings that range from 10%

to 70%. Moreover, for the majority of benchmarks the power savings are between 40% and

60%. Consequently, we can conclude that test pattern reordering in the presence of don’t

cares leads to large power savings over already ordered test sequences.

Furthermore, we noticed that the percentage of power savings in general increases as

the size of the circuit and number of test patterns increases. Hence, for large circuits we

expect the proposed power reduction algorithm to lead to similar or greater power savings.

Regarding the heuristics proposed in Section 7.5 for constructing the initial tour, the results

do not identify a clear best heuristic, even though the greedy heuristic H3 performs better

in most cases. Finally, these experimental results clearly indicate that exploiting don’t cares

in sequences of test patterns may prove extremely useful whenever power reduction during

testing is the main objective.

For the ISCAS’85 benchmarks we noticed that the proposed (and non-optimized) 2-Opt

algorithm would take a couple of hours of CPU time for the examples with a larger number

of test patterns, and would take more than 24 hours of CPU time for C7552. As a result,

we restricted the 2-Opt algorithm so that only 500 random links were examined at each

iteration of the 2-Opt algorithm (instead of a number that is quadratic in the number of test

patterns). Using this restrained 2-Opt algorithm all the ISCAS’85 benchmarks ran in less

than ten minutes. The results obtained are shown in Table 7.5. As can be concluded, for

the benchmarks with a larger number of test patterns, the new results can be significantly

worse, thus indicating a tradeoff between the computational effort spent with the reordering
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Completely specified Incompletely specified

(ordered vs. unordered) versus ordered completely specified

Circuit [ATALANTA ATPG] [ATALANTA ATPG]

#TP % power #TP % power reduction

reduction H1 H2 H3 H4 H5

C432 58 16.9 75 36.7 48.6 43.5 41.3 43.0

C499 60 28.9 61 18.3 14.8 17.4 18.5 15.9

C880 51 10.4 79 52.1 46.8 44.9 44.9 54.2

C1355 94 30.5 96 9.7 7.8 10.8 11.4 10.7

C1908 128 27.4 175 44.8 45.2 50.3 44.7 50.8

C2670 117 14.2 156 68.0 68.5 68.7 66.2 69.4

C3540 159 18.7 253 30.7 33.6 44.2 33.9 47.4

C5315 116 11.0 158 50.1 49.9 52.9 50.7 53.6

C6288 25 18.6 54 55.6 57.7 57.5 57.1 53.9

Table 7.4: Power reduction results for the ISCAS’85 benchmarks.

algorithm and the attained power savings.

Note that, the results for the ISCAS’85 benchmark circuits with patterns generated by

MTP are not shown, because the number of generated test patterns for each of these circuits

is too large. Thus, running our heuristic algorithm over those patterns will require several

days. Even with the use of the restricted 2-Opt algorithm the number of links to be examined

must be significantly reduced, when compared with the available number of links, so that

a optimized solution is obtained within a predefined time budget (that we choose to be 24

hours). As expected, and already shown, analyzing such a reduced number of links will

produce a less optimized solution. Therefore, comparisons of the achieved power reductions

with the ones obtained using ATALANTA vectors would be expected to be meaningless.
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Completely specified Incompletely specified

(ordered vs. unordered) versus ordered completely specified

Circuit [ATALANTA ATPG] [ATALANTA ATPG]

#TP % power #TP % power reduction

reduction H1 H2 H3 H4 H5

C432 58 10.4 75 48.4 45.9 49.0 45.1 51.3

C499 60 30.5 61 5.3 5.9 7.8 5.7 5.1

C880 51 27.4 79 33.5 38.6 49.6 35.5 48.5

C1355 94 14.2 96 58.1 64.5 68.6 63.2 66.9

C1908 128 18.7 175 20.3 21.7 42.4 30.8 43.4

C2670 117 16.9 156 37.2 40.7 44.9 35.2 45.6

C3540 159 28.9 253 13.5 8.1 18.8 14.2 20.1

C5315 116 11.0 158 47.5 45.5 51.2 44.8 51.5

C6288 25 18.6 54 54.0 54.9 55.6 56.3 50.9

C7552 217 15.1 347 39.7 49.6 64.1 52.7 67.8

Table 7.5: Power reduction results for the ISCAS’85 benchmarks with the restricted 2-Opt

algorithm (500 links examined).

7.7 Conclusions

In this chapter we propose a formal optimization model for reducing the Hamming cost

in pattern sequences with unspecified bits. The solution of the model will identify not only

the pattern sequence but also the values of the unspecified bits. Moreover, and due to the

complexity in solving the proposed model, we described a heuristic algorithm for obtaining

approximated solutions. This algorithm is then applied to reducing the power dissipation

during testing by exploiting the order of the patterns and the don’t cares in test pattern se-

quences. We provide experimental evidence that the Hamming cost of a test sequence cor-

relates well with the power dissipated during testing and that exploiting don’t cares in test

sequences can lead to very significant savings in dissipated power. In designs where periodic

testing is required, these power reduction techniques may play a key role in the design of
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BIST hardware. Moreover, the use of ATPGs that can generate test sequences with large

number of unspecified bits, as the MTP ATPG proposed in Chapter 5, can play an important

role to achieve considerable power savings. However, for large test sequences there should

be a balance between the aimed power savings and the running time of the algorithm, since

the proposed algorithm has time complexity of O � n2 � .
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8.1 Contributions and Conclusions

The increasing complexity of the digital circuits integrated in a single chip, with a re-

duced number of I/O pins, is driving the testing of circuits to become a very complex task

and one of the major costs in the integrated circuit industry. Although the research area of

testing has existed for several decades, most problems, in particular optimization problems

in ATPG, have been solved using heuristic approaches.

Discrete algorithms, especially satisfiability search algorithms, have been shown to be a

promising technique to solve decision and optimization problems in many areas of science

and engineering. In particular, the capability to use these algorithms to solve either ATPG

problems and also specific forms of optimization problems, casted as zero-one ILPs, lead us

to propose formal and exact optimization models for ATPG problems.

Therefore, the main contribution of the research work developed in this thesis is the

definition of these formal optimization models for ATPG problems. We considered key opti-

mization problems that directly impact testing time, complexity of BIST and power dissipa-

tion during test. Besides their theoretical interest, the proposed models provide also a formal

basis that can be used to evaluate most heuristic approaches, e.g. by computing optimum

solutions with the formal optimization models, for small-size circuits, and then comparing

how close the heuristic solutions are from those.

For the first time we used a SAT-based algorithm using a branch-and-bound procedure

for optimization. An evaluation of the bsolo tool, that implements this new algorithm, was

performed and showed that bsolo is faster and can solve more zero-one specific classes of

ILP instances than other tools based on satisfiability algorithms or other generic optimization

algorithms. For this reason, we have used the bsolo tool to solve the zero-one ILP instances

for the models proposed in the thesis.

We have proposed a new exact model to find the minimum-size test set for a combina-

tional circuit. To our best knowledge, only two other non-heuristic proposals exist for this

problem. One has a worst-case exponential representation size and the other, that we consid-

ered as the reference model, has a worst-case representation size that is cubic in the number

of nodes of the circuit. The new proposed model also has a worst-case polynomial represen-
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tation size that is cubic, but we have showed that for typical circuits the resulting size of the

ILP representation is significantly reduced (up to 47% when compared with equivalent in-

stances for the reference model). Moreover, we describe several techniques to further reduce

the size of the new model. However, the size of the resulting ILP instances, for large circuits,

is still too large for practical use. Therefore, we considered an alternative post-generation

method for computing minimal test sets and implemented a tool (MTSC) that uses the set cov-

ering model to compact the test sets. MTSC can be used in conjunction with any ATPG tool

to eliminate vectors from a test set without reducing its fault coverage. Using this test set

compaction tool we studied the effect of ATPG fault simulation in the size of the final test

set. Experimental results indicate that additional test set compaction can be achieved, even

for ATPGs that use heuristics to obtain minimal test sets. Moreover, whenever the goal is a

minimal test set one may consider using efficient ATPG algorithms targeting all faults, i.e.

using a collapsed fault set but without using fault simulation. This increases the size of the

initial test set, but enables the computation of final test sets that are in general smaller than

those obtained when fault simulation is used.

Other contribution of this thesis was the proposal of an extension to existing satisfi-

ability-based ATPG models to compute test patterns with don’t cares. The existing models

and algorithms for generation of test patterns compute, in general, test patterns with more

specified bits than actually needed for detecting a fault. This results from the heuristic nature

of the algorithms and from the use of models which assume only two logic values (0 and

1) when mapping the circuit representation into an algebraic formula. We proposed a new

ATPG satisfiability model that is adequate to directly represent the don’t care values. This

model was cast into an ILP problem to compute test patterns with don’t cares and under the

additional constraint that the number of specified primary input assignments be minimized.

The limitations of the proposed model were presented and its correctness was proved. We de-

veloped an ATPG tool (MTP) that implements this optimization model and used it to illustrate

the applicability of the model by computing minimum size test patterns for the IWLS and

the ISCAS’85 benchmark circuits. We showed that the heuristics used by structural ATPG

algorithms are able to produce test sets with don’t cares but, when the goal is maximizing

the number of don’t care bits, the MTP tool can augment the number of unspecified bit as-
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signments from the test sets computed by ATPG algorithms. As expected, the improvements

obtained by MTP are limited by the amount of allowed search effort, which directly impacts

the computation time.

We have also derived a new ATPG model targeting the development of a minimal BIST

circuit generator. The most common BIST architectures for test patterns generators are based

on LFSRs. These architectures introduce some area penalty to reduce the testing time with-

out compromising the fault coverage of the circuit. We used a counter-based test generator

architecture that is able to reduce simultaneously the testing time and the test generator area

overhead, guaranteeing a 100% fault coverage. The reduction is as large as the number of

primary inputs that can be declared compatible for testing purposes. The derived ATPG

model uses the previously developed model for test pattern generation with don’t cares with

additional constraints for identifying the maximum number of compatible inputs. This model

was implemented in the MTP-C ATPG tool using a relaxed cost function due to the limitations

imposed by the bsolo optimizer. Despite using this relaxed cost function we showed the ap-

plicability of the model by computing test patterns for the IWLS and ISCAS’85 benchmark

circuits. The resulting test sets exhibit, in general, a larger number of compatible inputs than

the test sets obtained using traditional ATPG algorithms. However, for some circuits, the

final number of bits in the counter of the test pattern generator exceeds 25–30 bits. For those

circuits, additional compression techniques should be considered so that the counter-based

test generator architecture be worthwhile in practice.

Finally, we proposed a model for test pattern sequence reordering and bit assignment

to reduce the power dissipated during circuit testing. As the power dissipation in a circuit

gains importance, for example due to mobile computing, techniques to reduce power dis-

sipated during BIST also become important, in particular for circuits in which testing is

performed periodically. We considered the Hamming distance between pairs of vectors in a

test sequence as a metric for the corresponding power dissipation in a CMOS circuit. The

proposed exact ILP model identifies simultaneously the optimum test pattern sequence and

the don’t care assignment that minimizes the total cost of the Hamming distance. Given the

complexity of the proposed model we implemented an approximation algorithm (using an

heuristic approach) for solving the problem of test pattern reordering with unspecified bits
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to minimize the power dissipated during test set application. The experimental results for

benchmark circuits confirm that the Hamming cost correlates well with the power dissipated

during testing, and that the existence of don’t cares in the test sequence has a direct impact

in the reduction of the dissipated power.

As a final conclusion, we could say that in this thesis we try to answer to the following

question: is it possible to have formal and exact optimization models for ATPG problems?

Indeed, formal optimization models, based on propositional satisfiability, can be devised for

ATPG problems. But, their use is somehow limited due to the size of the models proposed

or to the computational effort (CPU time) needed to solve each model and to find optimum

solutions. Considering that, in general, solving discrete optimization problems is harder than

solving satisfiability problems, it was not expected that the complexity of ATPG optimization

problems scaled well with the size of the circuits. Observe that while for optimization prob-

lems the whole search tree has to be traversed (explicitly or hopefully implicitly) to compute

a solution, for satisfiability problems any successful traversal suffices to determine a solu-

tion. Therefore, most ATPG problems have been solved using heuristic approaches and we

have ourselves proposed heuristic algorithms for some optimization problems. These heuris-

tics are either new, in the sense that they solve new optimization test problems, or different

approaches to well-known optimization problems. However, because of the inexistence of

formal models until now, it was not possible to compute fully optimized test sets, even if one

was willing to pay a high computational cost. Upholding an expensive test pattern generation

process might actually be desirable when the computational effort and cost to get an optimal

test set, that is done once per circuit, is compensated by the savings obtained in testing the

target circuit millions of times, in the production line and/or on the system. Moreover, using

the proposed satisfiability-based optimization algorithm one may limit the amount of search

to a predefined value and obtain, in a reasonable amount of time, an approximate solution

to the given problem. From our experience this solution is, in general, superior to the one

computed using heuristic approaches.
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8.2 Future Research Work

As noted, the problems addressed in this thesis are known to be computationally hard

and, consequently, we can always construct test cases for which the proposed models and

algorithms perform poorly. The main purpose of future research work is the development

of techniques that reduce the number of cases where the proposed models and algorithms

perform poorly.

In general, we should further investigate the possibility of simplification of the proposed

models considering two distinct approaches. One approach should focus on reducing the

size of the models themselves. The other approach should focus on adding additional con-

straints to speed-up the search process to find the optimum solution. These two apparently

contradictory approaches, should take into consideration the way the entire model is defined

and/or the specific characteristics of the problem which we are optimizing. Additionally,

the computation of better approximate solutions for optimizing testing problems, using less

resources (CPU time and/or memory), should also be considered. In this case, further re-

search should pursue the following non-exclusive approaches: use the proposed models, or

some simplified version of them, with existing heuristics, improve the proposed algorithmic

heuristics or develop new heuristic algorithms. In the next paragraphs we will give some

examples that illustrate these different approaches.

The model proposed for computing the minimum test set, presented in Section 4.3, is too

large for practical circuits. However, this model may be simplified and used to determine

a test vector that detects simultaneously a designated set of k target faults, assuming one

exists. This simplified version of the model uses only one good circuit description (ϕG) and

a faulty circuit description for each fault (ϕFC
1 ������ ϕFC

k ) with the respective miter circuits

(λ1 ������ λk). Note that by eliminating the inputs and output multiplexers we are significantly

reducing the size of the model. This simplified model becomes a multiple target fault test

generator that could be used within the existing heuristics of test set compaction algorithms

namely, essential fault pruning (EFP), two-by-one (TBO) or essential fault reduction (EFR)1.

The implementation of the heuristic set covering algorithm to reduce test set size, pre-

1Algorithms EFP, TBO and EFR were described in Section 2.4 (see page 44).
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sented in Section 4.4.1, has the capability to use test set partitions to reduce the size and

complexity of the problem. Additional research should be performed to identify the best

set of partitions regarding their size and the test patterns to be included in each partition

considering the circuit structure and the faults detected by each test vector.

In Section 6.4 we proposed a solution for the identification of minimal BIST test pattern

generators. The proposed greedy algorithm may be enhanced with a heuristic pre-processing

phase which should sort the fault list to increase the number of compatibility relations and/or

reduce the total computation time. One alternative solution to identify the maximum number

of compatibility classes might consider using the proposed model as a post-generation width

compressor. In this approach the test set is generated using a generic ATPG, and then, a

compatibility graph is built for identifying the vectors responsible for each compatibility vi-

olation. If, using the proposed model, we can replace these vectors with new ones that detect

the same essential faults and simultaneously reduce the number of compatibility classes, we

determine a smaller BIST test pattern generator.

In any case, to further reduce the width of the counter in the test generator circuit we

should consider the incorporation in the model of new types of compatibility. However,

these new types should be restricted to simple logic functions (such as OR, AND, XOR

or other 2-input logic functions), so that the area of the decoder circuit does not increase

significantly.

A comparative study of the fault coverage achieved by pseudo-random testing using tra-

ditional BIST architectures based on simple LFSRs, and the architecture used should also

be done. Special attention should be given for circuits in which some compatible inputs

are identified but the final width of the counter exceeds 25–30 bits, thus not all input com-

binations can be applied to the CUT. In general, we should study how the existing BIST

techniques (e.g. pseudo-exhaustive, LFSR and seed selection, etc) can take advantage of the

input compatibility identified by the proposed model, regarding fault coverage, testing time

and total BIST circuit area.

The algorithmic solution proposed for reordering test patterns with don’t care assign-

ment, in Section 7.5, is limited by the size of the test set because its time complexity is

O � n2 � . As future research work we intend to develop a more flexible configuration of the
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local search optimization algorithm (2-opt), that will permit to control the number of iter-

ations implemented by the algorithm and, consequently, its execution time and the amount

of power savings. Additional research work involves experimenting with the proposed for-

mal optimization model with the goal of estimating the gains obtained with respect to the

heuristic algorithm. The impact of reordered test sequences in the resulting BIST logic area

must also be evaluated, even though power and not area is currently the key metric for some

applications.

Finally, a long-term objective of this work is the integration of the proposed models and

algorithms in a complete testing environment, thus enabling a framework for faster devel-

opment of new optimization models and algorithms for specific target applications. In this

environment we intend to support different SAT and ILP solvers, in particular, an extend

version of bsolo that accepts a generic linear cost function. Additional, we should consider

using dedicated hardware to implement and accelerate the SAT/ILP solver algorithms. An

attractive solution to this problem is to use reconfigurable hardware, based on Field Pro-

grammable Gate Array (FPGA) architectures, and investigate its customization to a specific

algorithm and optimization model. In this environment, we also plan to read circuit descrip-

tions using different hardware description languages, such as blif, VHDL and Verilog. In

addition, this framework could promote studying algorithms for the synthesis of BIST test

pattern generators optimized according to some cost function. The parameters selected for

the cost function should consider the fault coverage, testing time, power dissipation, cir-

cuit area, among others. Other CAD problems, not directly related with test, could also be

considered for optimization within the proposed framework with further research and devel-

opment of new specific ILP/SAT models for those problems (e.g. schedule and allocation

tasks in high level synthesis [Flores 97]).
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Appendix A

Model Validation and Limitations

In order to establish the validity of the proposed model for the computation of minimum

size test patterns, we must first formally define the notion of test pattern minimization. This

notion in tightly related with the way lines are justified to the primary inputs and the way

error signals propagate from the fault site to the primary outputs. Before proving the validity

of the model we will introduce some useful definitions which are based on the combinational

circuit definitions presented in Section 2.2 (see page 23).

Definition A.1 (Specialization/Cover) Given incompletely specified test patterns T �
� x1 � x2 ������ xn
�

and T �ª� � x �1 � x �2 ������ x �n � , we say that T � specializes T provided there exists at least one vari-

able xi, i � � 1 ������ n � , such that xi � X in T and x �i � � 0 � 1 � in T � , meaning that input i is

unspecified in T but specified in T � . Moreover, any specified assignment in T is also a speci-

fied assignment in T � with the same value, i.e. xi � v ) v � � 0 � 1 � 0 x �i � v. Conversely, we

say that T covers T � .
Definition A.2 (S-Path) For a fault f a s-path (i.e. a sensitization path) denotes a sequence

of nodes 	 y1 � y2 ������ yk
� , connecting the fault site y1 to a primary output yk � PO such that

the sensitization variable yS
j � 1 � j �7� 1 ������ k � . For a given fault f and a test pattern T , the

set of all s-paths is denoted by PS � T � f � .
Definition A.3 (S-Irrelevant assignment) We say that an assignment xi � v is s-irrelevant

(i.e. sensitization irrelevant) with respect to a fault f and a test pattern T , if and only if,
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Figure A.1: The C17 circuit with a test pattern for fault x11 stuck-at-0 that imposes

s-irrelevancy.

the fault is detectable given a test pattern T with xi � X, and for a new test pattern T � that

specializes T with x �i � v, we have PS � T � f � � PS � T � � f �9) PS � T � f ���� /0.

Definition A.4 (S-Irrelevancy) For a given fault f we say that a test pattern T imposes

s-irrelevancy if and only if any specialization T � of T is such that PS � T � f � � PS � T � � f �=)
PS � T � f ���� /0.

For example, in the C17 circuit presented in Figure A.1, T � � � x1 � X � � � x2 � 1 � � � x3 �
0 � � � x6 � X � � � x7 � X � � represents a test pattern for fault x11 stuck-at-0, which in this case

imposes s-irrelevancy. Indeed, any assignment to nodes x1, x6 or x7 does not change any of

the conditions for the fault effect (or error) propagation defined by T . The unique s-path for

fault x11 stuck-at-0 and the test pattern T is highlighted in the figure and does not depend

on the values of inputs x1, x6 or x7. Note that vector T � that specializes T with assignment

x7 � 0, defines another s-path, 	 x11 � x16 � x23
� , but PS � T � f � � PS � T � � f � .

Definition A.5 (Node justification) A node y in a circuit is said to be justified and is re-

ferred as is / justi f ied � y � , if the following conditions are verified:
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Figure A.2: The C17 circuit with a test pattern for fault x11 stuck-at-0 that imposes

j-irrelevancy.

is / justi f ied � y � � ���� ���! y � X

y � PI

y � fy
� I � y � � ) ý

z j . I 0 y 2 is / justi f ied � z j
� (A.1)

where I � y � denotes the fanin nodes of y and fy
� I � y � � denotes the output logic value of the

nodes that drive y calculated from the values currently assigned to the fanin nodes of y.

Definition A.6 (J-Path) For a fault f in a circuit where all nodes are justified, i.e.
ý

xi . VC

is / justi f ied � xi
� , a j-path (i.e. justification path) denotes the sequence of nodes 	 y1 � y2 ������ yk

�
connecting node y1 to a primary input yk � PI such that y j

�� X and yS
j � 0, for j � � 1 ������ k � .

For a given fault f and a test pattern T , the set of all j-paths is denoted by PJ � T � f � .
Definition A.7 (J-Irrelevancy) For a given fault f we say that a test patterns T imposes

j-irrelevancy if and only if any specialization T � of T is such that PJ � T � f � � PJ � T � � f �=)
PJ � T � f ���� /0.

Similarly to the definition of s-irrelevancy, which states that any specialization of a test

pattern does not modify the error propagation path, the j-irrelevancy definition enunciates
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that any specialization of a test pattern does not change the existent justification paths. Fig-

ure A.2 shows the C17 circuit with a test pattern that detects the fault x11 stuck-at-0 and in

which all nodes of circuit are justified. The existent j-paths for this test pattern are high-

lighted and any specialization does not alter these paths, although new ones might appear.

Definition A.8 (SJ-Irrelevancy) For a given fault f we say a test pattern T imposes sj-

irrelevancy if and only if T imposes both s-irrelevancy and j-irrelevancy.

The above definitions basically allow us to introduce the following definition of minimum

size test pattern.

Definition A.9 (Size of a test pattern) Let T be a test pattern, we define the size of T, = T = ,

as the number of specified assignments in T , i.e. = T =ö�?>>>
,t� xi � v � s  t 

i �7� 1 ������ n � ) v ��� 0 � 1 � . >>> .
Definition A.10 (Minimum-size test pattern) Let @Tf be the set of all test patterns which

detect a given fault f . Let T � @Tf be a test pattern that imposes sj-irrelevancy and T � � @Tf

be any other test pattern which imposes sj-irrelevancy, such that = T = 3 = T �A= . In such a

situation, T is said to be a minimum-size test pattern (with respect to sj-irrelevancy).

As the previous definition implies, in general there may be smaller test patterns which do

not impose s-irrelevancy or j-irrelevancy (or both). An example of a test patterns that does

not impose s-irrelevancy was analyzed in the Section 5.4. Figure A.3 presents a circuit for

which the test pattern T � � � s � X � � � v � 1 � � detects the fault stuck-at-0 on node out, but for

which no j-irrelevancy is imposed.

In the remainder of this appendix we show that the proposed optimization model can

indeed be used for computing minimum-size test patterns. The sequence of formal results

basically shows that any implied good and faulty circuit node assignments, due to a given test

pattern T , will not be modified by any specialization of T . This is particularly relevant for

path sensitization and line justification, because it ensures that any computed test pattern

T with unspecified assignments that detects a given fault f , still detects that same fault

if some of the unspecified assignments of T become specified. Thus T is a test for the

fault and implicitly represents a set of tests for the same fault (i.e. all of its specializations).
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Figure A.3: Minimum-size test pattern for which no justification path is needed.

We conclude by showing that any solution to the proposed optimization model (5.13) (see

page 128) must be of minimum size.

Lemma A.1 Let ϕG
u be a CNF formula for a circuit and let T be an assignment to the

primary inputs such that ϕG
u  T � 1. Let y � v, v �f� 0 � 1 � , be a circuit node assignment

implied by T . In this situation and given any specialization of T , the assignment y � v is also

implied.

Proof. Given a gate connected solely to the primary inputs of the circuit, if its output

is specified given T is either because all inputs assume a non-controlling value or because

at least one input assumes a controlling value. (Observe that for NOT and BUFF gates

the analysis is similar.) Clearly, the value of the output of this gate cannot change by any

specialization of T . By induction on the topological level of a circuit, the same reasoning

applies on all gates, and the results follows.

Lemma A.2 Let ϕG
u be a CNF formula for a circuit and let T be an assignment to the

primary inputs such that ϕG
u  T � 1, then all circuit nodes in the circuit are justified, i.e.

ý
xi . VC

is / justi f ied � xi
� .

Proof. Given a node y which is neither unspecified (y �� X ) nor a primary input (y 5�
PI), but for which the assigned value, y � v1 and v1 � � 0 � 1 � , is different from the logic

function that drives the node, fy � I � y ��� � v2 and v2 �7� 0 � 1 � , then we have an inconsistent set

of assignments on the gate that drives y. In this situation, the consistency function of the gate
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is false and the clauses in ϕG
u that represent this gate are not satisfied. Therefore, ϕG

u could

not be satisfied.

Proposition A.1 Given a fault f and a test pattern T and a circuit node y for which the

sensitization variable is 1, yS � 1, then for any specialization of T , yS � 1 holds.

Proof. From Lemma A.1 we know that any specified good value of any node in the

circuit cannot change with any specialization of T . Furthermore, the faulty value of a node

is only specified when the good value is also specified, from (5.9) (see page 125). Again

applying Lemma A.1 to the faulty values, we can conclude that a specified faulty value

cannot change with any specialization of T . Finally, since the specified good and the faulty

values cannot change for any specialization of T , then any assignment yS � 1 can also not

change.

Corollary A.1 Given a fault f and a test pattern T such that ϕD
u  T � 1, then all nodes in the

circuit are satisfied and any unspecified assignment xi � X in T is s-irrelevant with respect

to f . Moreover, test pattern T imposes sj-irrelevancy.

Proof. The proof follows from Lemma A.2 and Proposition A.1.

Proposition A.2 A fault f is detectable if and only if the corresponding CNF formula ϕD
u is

satisfiable.

Proof. Let us consider a detectable fault f . It is known that for completely specified test

patterns, ϕD is satisfied if and only if fault f is detectable [Silva 97b]. Since f is detectable

we can always find a completely specified test pattern T for which ϕD is satisfied. Thus, all

nodes are justified and we can identify at least one path connecting the fault site to a primary

output such that for any node y in the path yS � 1. Consequently, and by the definition of ϕD
u ,

T must also satisfy ϕD
u .

Conversely, let us consider an assignment for which ϕD
u is satisfiable. This necessarily

implies that all nodes are justified and that at least one primary output y for which yS � 1

exits. By construction, the value of the good variable for every node in at least one path from

the fault site to primary output y must be specified, and such that for each such node the good
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value differs from the faulty value. Given that T imposes s-irrelevancy (from Corollary A.1),

then any complete specialization of T still satisfies ϕD
u . Considering the reverse mapping

to the original set of variables, then ϕD is also satisfied and from [Silva 97b] the fault f is

detected.

Corollary A.2 Given a fault f and a test pattern T such that ϕD
u  T � 1 , then the fault effect

is observable on at least one primary output and a s-path exists from the fault site to that

primary output.

Proof. Since ϕD
u  T � 1 , then ϕR

u  T � 1. Thus we have a primary output y such that

yS � 1. Consequently, yG �� yF ) yG � � 0 � 1 � , and so the fault effect is observable on primary

output y. Note also that a gate whose output is sensitized has at least one input sensitized,

apart from the fault site. Therefore, we can always identify a path, the s-path, from the output

node y to the fault site z, where by definition we have zS � 1 due to the fault.

Proposition A.3 Given a fault f , the solution of ILP (5.13) is a minimum-size test pattern

with respect to sj-irrelevancy.

Proof. From Proposition A.2 we know that ϕD
u  T � 1 if and only if the fault is detected

given T . Hence the constraints of the ILP (5.13) are only satisfied for test patterns detecting

the fault. Suppose now that T is the computed solution of (5.13) and suppose further that

there exists T � such that T � also detects the fault and = T �A= B= T = . However, since T � is a test

for the fault, it also satisfies the constraints of (5.13) due to Proposition A.2, and so it would

be a better solution than the computed solution of the ILP; a contradiction.



208



Appendix B

Subtours Elimination Proof

In this appendix we will prove that the constraints imposed in equations (7.4) and (7.10)

(see pages 174 and 176, respectively) will exclude any subtour from the solution, without

eliminating valid solutions (complete tours).

Let us consider a graph G ��� V � E � , where V denotes a finite set of m vertices and E a

binary relation on V that represents the edges between the vertices. A tour or a cycle on

a graph is a set of distinct vertices � v1 � v2 ������ vk � v1 � such that there exists an edge in E

for consecutive vertices, (i.e. the pair � vi � vi 5 1
� � E � V " V ). Note that a tour could also

be determined by the set of edges which link the vertices sequence � v1 � v2 ������ vk � v1 � . A

complete tour is a tour where all the m vertices of the graph are included, while a subtour is

a tour where only some vertices are included.

Let xi � j denote a Boolean variable such that xi � j � 1 if vertex vi follows vertex v j in a

selected tour, and xi � j � 0 otherwise. For the TSP problem we know that if xi � j satisfies the

constraints

∑1 i: 0 i � j 2 . V « V 3 xi j � 1 j � V

(B.1)

∑1 j: 0 i � j 2 . V « V 3 xi j � 1 i � V

then the solution is a complete tour or a set of subtours in which all vertices are included.

Proposition B.1 (Subtours Elimination Constraints)
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Let X be a tour, identified by its set of edges xi � j � 1 which satisfies (B.1). The set of con-

straints

ui
6 u j � m � xi j 3 m 6 1 � i � j � � V " V � i �� 1 � j �� 1 � ui � ℜ (B.2)

for some ui � ℜ, are only satisfied for complete tours .

Proof. If X satisfies (B.1) and does not represent a complete tour, then X has at least

two subtours, one of which does not contain vertex 1. The sum of (B.2) over the edges of a

subtour X � that does not include vertex 1 gives

m � ∑0 i � j 2 . X � xi � j 3  X �  ���� m 6 1 � (B.3)

Note that all ui are canceled in any subtour X � and xi � j is 1 on a subtour, so their sum over the

edges of a subtour is  X �4 , which turns the proposition (B.3) to false. Thus, (B.2) excludes all

subtours that do not contain node 1 and hence excludes all solutions that contains subtours.

Now we prove that no complete tours are excluded by constraints (B.2). We will show

that for any complete tour there exists a set of values for ui which satisfies (B.2). One of

these sets is obtained using the assignment ui � p, where p is the position (2 3 p 3 m) of

the node i in the tour. Thus, if xi � j � 0 then, the left side of (B.2) reduces to ui
6 u j where

ui and u j are not consecutive, so we always have ui
6 u j 3 m 6 2. If xi � j � 1, which implies

that ui � p and u j � p � 1 for some p, the left side of (B.2) becomes ui
6 u j � mxi � j � m 6 1.

Hence the solutions of (B.1) and (B.2) represent only complete tours.

Other type of constraints to eliminate subtours for the TSP problem can be found in [Nemhauser 88].
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The Christofides Algorithm

In this appendix we will describe the Christofides algorithm used in the heuristics pro-

posed in Section 7.5 (see page 177) to determine the initial order of the test vectors.

The Christofides algorithm was developed in 1976 by Christofides [Christofides 76]. This

algorithm shows the best results regarding the length of the initial tour for the Travel Sales-

man Problem (TSP) [Johnson 96]. It has been proven that the worst case ratio between the

length of the initial tour and the length of the optimal tour is just 3
2 , assuming the triangle in-

equality [Cornuejols 76]. This inequality say that the direct path between vertices is always

the shortest route or the lower cost path. Formally, the triangle inequality is defined as

ci j 3 cik � ck j
ý

i � j � k .^1 1 �DCECEC �m 3 (C.1)

where ci j is the cost between the two vertices vi and v j, and m is the total number of vertices.

Before describing the Christofides algorithm we will introduce some useful definitions [Aho 74,

Cormen 90].

Definition C.1 (Minimum Spanning Tree) The minimum spanning tree of a undirected graph

G � � V � E � , where V denotes a finite set of m vertices and E a binary relation on V that rep-

resents the edges between the vertices, is a subset of edges, T � E, that connects all of the

vertices without cycles and minimizes the total cost

C � T � � ∑0 i � j 2 . T

ci j (C.2)
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Definition C.2 (Vertex Degree) The degree of a vertex in an undirected graph is the number

of edges incident on it.

Definition C.3 (Matching) Given a undirected graph G � � V � E � , a matching is a subset of

edges M � E such that for all vertices v � V , at most one edge of M is incident on v.

Definition C.4 (Euler Tour) An Euler tour in a undirected graph G � � V � E � is a cycle that

traverses each edge of G exactly only once, although it may visit a vertex more than once.

The Christofides heuristic algorithm proceeds as follows.

1. First, we construct a minimum spanning tree T for the set of edges in the graph. Note

that the length of such tree can not be longer than the optimal solution, since deleting

an edge from the optimal tour yields a spanning tree.

2. Next, we compute a minimum-length matching M on the vertices of odd degree in T .

3. Combining M and T we obtain a connected graph in which every vertex has even

degree. This graph must contain an Euler tour, which can be easily found.

4. A travel salesman tour of no greater cost can then be constructed by traversing this

Euler tour while taking shortcuts to avoid multiple visited cities. Each shortcut re-

places a path between two vertices by a direct edge between them. By the triangle

inequality (C.1) the direct path cannot have greater cost than the paths it replaces.
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Inteira. Technical report, Relatório interno INESC/IST, Maio 1997.

[Flores 98a] Paulo F. Flores, Horácio C. Neto, Krishnendu Chakrabarty, and João

P. Marques Silva. A Model and Algorithm for Computing Minimum-

Size Test Patterns. In IEEE European Test Workshop (ETW), pages

147–148, May 1998.

[Flores 98b] Paulo F. Flores, Horácio C. Neto, and João P. Marques Silva. An Exact

Solution to the Minimum-Size Test Pattern Problem. In Proceedings of

the IEEE International Conference on Computer Design (ICCD), pages

510–515, October 1998.

[Flores 98c] Paulo F. Flores, Horácio C. Neto, and João P. Marques Silva. An Exact

Solution to the Minimum-Size Test Pattern Problem. In IEEE/ACM In-

ternational Workshop on Logic Synthesis (IWLS), pages 452–470, June

1998.
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