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Abstract

This paper addresses the problem of test pattern generation for single stuck-at faults in combinational circuits,

under the additional constraint that the number of specified primary input assignments is minimized. This problem

has different applications in testing, including the identification of don’t care conditions to be used in the synthesis of

Built-In Self-Test (BIST) logic. The proposed solution is based on an integer linear programming (ILP) formulation

which builds on an existing Propositional Satisfiability (SAT) model for test pattern generation. The resulting ILP for-

mulation is linear on the size of the original SAT model for test generation, which is linear on the size of the circuit.

Nevertheless, the resulting ILP instances represent complex optimization problems, that require dedicated ILP algo-

rithms. Preliminary results on benchmark circuits validate the practical applicability of the test pattern minimization

model and associated ILP algorithm.
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1 Introduction

Automatic test pattern generation (ATPG) for stuck-at faults in combinational circuits is now a mature field, with

an impressive number of highly effective models and algorithms [4-8, 10-13, 19, 22-24]. Furthermore, besides being

effective at detecting the target faults, recent ATPG tools have aimed the heuristic minimization (i.e. compaction) of

the total number of test patterns required for detecting all faults in a circuit [3, 18, 20]. In general, the degree of test

pattern compaction is expected to be related to the number of unspecified input assignments in each test pattern. In

addition, for applications where testing time and fault coverage requirements can only be obtained with dedicated

Finite-State Machine (FSM) controllers, the computation of test patterns with a large number of unspecified input

assignments may allow for significantly smaller synthesized FSMs. Indeed, if the test set is used as input to a logic

synthesis tool with the purpose of synthesizing BIST logic, then by maximizing the number of unspecified input

assignments, i.e. by maximizing the don’t care set of each test pattern, the logic synthesis tool is in general able to

yield smaller synthesized logic. Thus the maximization of the don’t care set of each test pattern, or conversely, the

computation of test patterns of minimum-size, can have significant practical consequences.

Nevertheless, there exists no model or algorithm in the literature for computing test patterns for which the number

of unspecified primary input assignments is maximized. Accordingly, the main objective of this paper is to propose a

first attempt at solving this problem. We start by formalizing the notion of test pattern minimization. We then develop

a new model for test pattern generation, based on propositional satisfiability (SAT), in the presence of unspecified

input assignments. Next, we derive an integer linear programming (ILP) model for maximizing the number of

unspecified primary input assignments. Afterwards, we show that the model is indeed correct and analyze some of its

limitations. Finally, we provide preliminary results that justify using the proposed model in medium-size combina-

tional circuits and describe an ATPG methodology, which can incorporate the proposed model and supporting algo-

rithm and which can also be applied to large-size combinational circuits. Besides its practical applicability, to our best

knowledge this is the firstformal non-heuristic model towards computing minimum size test patterns1.

The paper is organized as follows. We start in Section 2 with several definitions regarding combinational circuits,

Conjunctive Normal Form (CNF) representations of circuits and CNF representations of fault detection problems,

which are used throughout the paper. Afterwards, in Section 3, the CNF models described in Section 2 are general-

ized for correctly handling unspecified variable assignments. The next step is to introduce the ILP optimization model

for minimizing test patterns and prove its correctness. Section 5 includes preliminary experimental results on several

practical applications of the model. We conclude in Section 6 with a brief overview of future research work in the

area of test pattern minimization.

2 Definitions

2.1 Combinational Circuits

We start by introducing unified representations for circuits and fault detection problems. These representations are

1. This problem was addressed before by S. Hellebrand et al. in [9], but using a completely heuristic approach, hence not
based on a formal model.



used throughout the paper. A combinational circuitC is represented as a directed acyclic graph ,

where the elements of , i.e. the circuit nodes, are either primary inputs or gate outputs, with . The set of

edges  identifies gate input-output connections. We shall assume gates with bounded fanin, and so

. For every circuit nodex in , the following definitions apply:

•  denotes thefanout nodes of nodex, i.e. nodesy in  such that .

•  denotes thetransitive fanout of nodex, i.e. the set of all nodesy such that there is a path connectingx toy.

•  denotes thefanin nodes of nodex, i.e. nodesy in  such that .

•  denotes thetransitive fanin of nodex, i.e. the set of all nodesy such that there is a path connectingy to x.

•  denotesimmediate fanout cone of influence of x, being defined as follows:

. (1)

•  denotesimmediate fanin cone of influence of x, being defined as follows:

. (2)

The set of primary inputs can also be referred to asPI, and the set of primary outputs asPO. Simple gates are

assumed: AND, NAND, OR, NOR, NOT and BUFF. Finally, the number of stuck-at faults in the circuit isM, with

, since , and are numbered . The example in Figure 1 illustrates the previous def-

initions.
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Figure 1: Example circuit — C17 [2]
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2.2 Conjunctive Normal Form Formulas

A conjunctive normal form (CNF) formula  onn binary variables  is the conjunction (AND) ofm

clauses  each of which is the disjunction (OR) of one or moreliterals, where a literal is the occurrence of

a variable  or its complement . A formula  denotes a uniquen-variable Boolean function  and

each of its clauses corresponds to an implicate off. An assignment for a formula  is a set of variables and their cor-

responding Boolean values, represented as variable/value pairs; for example .

Alternatively, assignments can be denoted as . In general we will consider complete

assignments, which involveall variables. In this situation, the value assumed by a formula  given an assignmentA

is denoted by . (Note that if we allow partial assignments, which might not involve all variables, the

value assumed by a formula  could also beX.)

The CNF formula of a circuit is the conjunction of the CNF formulas for each gate output, where the CNF formula

of each gate denotes the valid input-output assignments to the gate. For an AND gate, , the

resulting CNF formula is [12, 22, 23],

(3)

A complete list of the CNF formulas for simple gates with an arbitrary number of inputs can be found in [22]. If we

view a CNF formula as a set of clauses, the CNF formulaϕ for the circuit is defined by the set union of the CNF for-

mulas for each gate with outputx, :

(4)

Given the CNF formula  for a circuit and an assignmentA to the primary inputs, then the assignment  denotes

the values on the circuit nodes obtained fromA by implying the assignments on all gate outputs [1].

2.3 Test Pattern Generation

For Automatic Test Pattern Generation (ATPG), the single stuck-at line (SSF) fault model is assumed [1]2.

Definition 1. We say that a stuck-at fault isdetectable if and only if there exists an assignment of logic values to the

circuit primary inputs such that the effect of the discrepancy caused by the fault (i.e. the error signal) can be observed

on at least one of the circuit primary outputs (i.e. the value in the good and faulty circuit differ).

When referring to primary input assignments, or test patterns, we may in general assume that some primary inputs

may be unspecified.

Definition 2. We define a test patternT as an assignment to the primary inputs, such that some assignments may be

2. See [1] for ATPG definitions used throughout the paper.
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unspecified, i.e. .

Definition 3. A test patternT is completely specified whenever . Otherwise, we

say thatT is said to beincompletely specified.

In the remainder of this section we shall assume that test patterns are completely specified. The generation of

incompletely specified test patterns is addressed in Section 3.

CNF representations of circuits and fault detection problems have been extensively used and studied in ATPG [4,

12, 22, 23]. In this section we describe a simple CNF representation of combinational circuits and fault detection

problems, which will be used throughout the remainder of the paper.

In the context of test pattern generation, and for capturing the fault detection problem, each nodex is characterized

by three propositional variables:

•  denotes the logic value assumed by the node in thegood circuit.

•  denotes the logic value assumed by the node in thefaulty circuit.

•  denotes whether  and  assume different logic value [12]. We shall refer to this variable as the

sensitization status of nodex.

Given the definition of variable , the following relationship must hold:

(5)

which basically states that the logic values of  and  differ if and only if  assumes logic value 1.

Let  denote the CNF formula associated with gate outputx. The notation  denotes the CNF formula forx in

the good circuit, i.e. using  variables, whereas  denotes the CNF formula forx in the faulty circuit, i.e. using

 variables. For astem fault z s-a-v, the CNF representation of the associated fault detection problem contains the

following components:

• CNF formula for the circuit, denoting the good circuit.

• CNF formula for the circuit, denoting the faulty circuit. This formula only needs to contain the CNF formulas

for the nodes that are relevant for detecting the given fault, i.e. nodes in the transitive fanout of nodez.

• CNF formulas for defining the sensitization status of every node in the transitive fanout of the fault site, i.e. node

z. Hence, for each of these nodes,  is given by (5), which requires  if and only if .

• Clauses that prevent each nodex from being sensitized, by having , wheneverx is not in the transitive

fanout ofz but at least one fanout node ofx is in the transitive fanout ofz, i.e. . (Observe that

this condition on a nodex also implies . Moreover, this condition permits reducing the number of

and  variables that must be considered.)
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• Clauses capturing conditions foractivating the fault, i.e. by requiring  and by forcing a suitable logic

value on .

• Finally, we guarantee that the fault effect is observed at a primary output by requiring that for at least one primary

outputx, .

The formula for detecting a faultz s-a-v is summarized in Table 1 and will henceforth be referred to as thefault

detection formula, .

The CNF formula for fanout-branch faults can be similarly defined [22]. In addition, the model described above

can be improved with additional clauses which further constrain the problem definition [4, 12, 22, 23].

3 Test Generation With Unspecified Variable Assignments

The SAT-based test generation model described in the previous section requires all clauses to be satisfied, hence

most if not all variables must be assigned a logic value. However, we want to develop a test generation model that

properly handles unspecified variable assignments, since our goal is to compute minimum size test patterns. As a

result, in this section we develop models for circuit satisfiability and test generation using CNF formulas that can be

satisfied in the presence of unspecified variable assignments.
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3.1 Modeling Unspecified Variable Assignments

Given a circuit and its associated CNF formula or a faultf and its associated fault detection formula, the existence

of unspecified assignments implies that each of the original circuit variables can now be assigned a value in the set

. In this situation an assignment  indicates thatx is unspecified, or that the value assumed byx is an

unspecified assignment. In contrast  indicates thatx is specified, or that the value assumed byx is a spec-

ified assignment. In this situation, an assignmentA is allowed to leave variables unspecified. Furthermore, the value

of a CNF formula  for an assignmentA can also beX, .

With the purpose of deciding CNF formula satisfiability, in the presence of unspecified variables, a new set of vari-

ables is created. This basically consists of duplicating the number of Boolean variables, which is a common solution

for capturing unspecified assignments [17]. (Observe that since only  assignments need to be considered forM

variables, the actually required number of Boolean variables is , since there are only three possible

assignments to each of the original variables. Nevertheless, considering instead  variables greatly simplifies the

proposed model.) As a result, we propose to represent each Boolean variablex with two new variables  and

having the interpretation indicated in Figure 2-a. For this interpretation,  indicates thatx is unspecified. The

simultaneous assignment of variables  and  to 1 is not allowed, requiring the inclusion of the following con-

straints in the resulting CNF formula,

(6)

for each node , where  represents the set of nodes in the circuit. In addition, for each basic gate type we

need to define the corresponding CNF formula. However, using the ideas above, each gate input and output must now

be replaced by two variables. Let us consider for example an AND gate, which will now be denoted by the general-

ized form , and which allows unspecified assignments on the gate inputs

and output. Since the simultaneous assignment of any pair of variables  to 1 is prevented by (6), then we just

need to relate the remaining assignments. The output variable  can only assume value 1 whenever all input vari-

ables  also assume value 1. Hence, we can say that . In addition, the output variable
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assumes value 1 provided at least one input variable  assumes value 1. Hence, we can say that

. As a result we obtain from [12, 22],

(7)

Furthermore, the CNF formula for an AND gate with outputx now becomes,

(8)

which properly models unspecified assignments to the inputs and output of an AND gate. Similar relations can be

derived for the other simple gates. Consequently, the CNF formulas for simple gates given in [22] can be generalized

by following the same approach used for deriving (7). These generalized CNF formulas are given in Table 2. As a

result, and as was done in Section 2.2, we can now create the CNF formula for the circuit, one in which unspecified

variable assignments are allowed. In Figure 2-b, we illustrate the outcome of applying an incompletely specified

assignment to the primary inputs of C17. As can be seen, the assignments  and  represent a sufficient

condition for the assignment  to be observed.

3.2 Test Pattern Generation with Unspecified Input Assignments

We can now generalize the test pattern generation model of Section 2.3 so that unspecified variable assignments

are allowed. Each circuit nodex is still characterized by three variables:

•  denoting the value in the good circuit. This variable can be unspecified, and so we use two new variables to

characterize its value,  and , with the semantic definition given earlier.

•  denoting the value in the faulty circuit. This variable can also be unspecified, and so we use two new

variables to characterize its value,  and , with the semantic definition given earlier.

•  denoting the sensitization status of each node. As we will justify below, the sensitization status of each node

needs not be unspecified, and so its value is always either 0 or 1.

Modeling unspecified assignments in test generation requires a detailed characterization of the propagation of the

fault effect. Hence, the sensitization status  of a node can only assume value 1 when both the values of node in the

good and faulty circuits arespecified and assume different logic values. Moreover this requirement also causes the

value of a node in the faulty circuit to be specifiedonly when the value of that node in the good circuit is also speci-

fied. These constraints indicate that propagation of the fault effect to a node can only be guaranteed when the values

in the good and faulty circuit are specified for that node.

Consequently, the relationship between the value of  and the possible values of  and  is shown in Figure
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3. Entries with a ‘—’ denote invalid value assignments, for which the CNF formula for  must assume value 0.

Similarly to the model for completely specified assignments,  assumes value 1 if and only if  and  assume

opposing logic values, provided that both  and  are specified. The simplification of the truth table in Figure 3

yields the following CNF formula for the sensitization status of nodex, :

Gate type Gate function

AND

NAND

OR
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Table 2: Generalized CNF formulas for simple gates
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(9)

The next step is to describe the modifications to the CNF formula used for computing the faulty values, which for

completely specified assignments are equivalent to the CNF formula for the good value. For incompletely specified

assignments the same holds true but, as justified above, we introduce the additional constraint that an unspecified

good value implies and unspecified faulty value,

(10)

Let us assume that the CNF formula for the faulty value of a nodex with completely specified assignments is given

by,

(11)

As a result of (10), the CNF formula for the faulty circuit, in the presence of incompletely specified assignments, is

defined by,
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Figure 3: Truth table for the sensitization status
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(12)

Hence, the faulty value of a nodex is computed by its original formula provided the good value is specified (i.e.

). In contrast, if the good value is unspecified (i.e. ), then the faulty value is

forced to also be unspecified.

The formulas for  and for  are defined so that an unspecified good value immediately implies an

unspecified faulty value and . Thus propagation of the error signal is only permitted in the presence of prop-

erly specified values for the good circuit variables.

Furthermore, we note that the remaining CNF formulas of Table 1, i.e. propagation blocking conditions  and

fault detection requirements , remain unchanged, whereas the fault activation conditions  must be updated to

the new set of variables. As a result the complete CNF formula for a given stem faultz s-a-v is summarized in

Table 3. Similarly, we can derive the CNF formula for a fanout-branch fault. Furthermore, we refer to  as the

fault-detection formula in the presence of unspecified variable assignments.
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Table 3: Definition of the fault detection problem for the stem fault z s-a-v
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4 Computing Minimum Size Test Patterns

In this section we develop the optimization model for computing minimum-size test patterns. This optimization

model is based on test pattern generation in the presence of incompletely specified primary input assignments. More-

over, stem faults are assumed throughout, even though the same approach is readily applied to fanout-branch faults.

4.1 The Complete Optimization Model

The main objective of test pattern minimization is to identify the minimum number of primary input assignments

which detect the fault. Hence, our goal is to minimize the number of specified primary input assignments such that

the given fault is still detected. As a result we obtain the following optimization model,

(13)

which basically requires that the total number of assigned input variables be minimized under the constraint that the

fault be detected. (Observe that we have  given (6), which implies an upper bound on the value of the

cost function of .) Given the mapping between CNF clauses and linear inequalities described in [15, 17] we

immediately conclude that (13) corresponds to an integer linear program, and so different integer linear optimization

packages can be used for solving the test pattern minimization problem. Nevertheless, the constraints of (13) are

tightly related with propositional satisfiability. Consequently, and as shown in [15], SAT-based ILP solvers are prefer-

able for solving ILPs for which the constraints correspond to CNF formulas. For the experimental results given in

Section 5, the SAT-based ILP solver of [15] was used.

Furthermore, we note that the optimization model of (13) can be viewed as a formalization of guided pseudo-

exhaustive ternary simulation on the primary inputs of a combinational circuit, with the objective of minimizing the

number of specified primary inputs assignments, and given the constraint that the fault is detected. The proposed

model casts this basic idea into an ILP formulation, thus providing a formal framework for describing the problem

and allowing a significant number of algorithms and theoretical results from integer optimization to be used.

In Appendix 1 we formally establish the validity of the proposed optimization model.

4.2 Limitations of the Model

In general there may exist faults for which it is possible to identify test patterns with a smaller number of specified

assignments, but which do not uniquely identify a set of sensitizable paths [1]. Let us consider the example circuit in

Figure 4. Let the target fault bex s-a-1. From the circuit it is clear that any assignment to the selection variabless per-

mits detecting the fault. Hence a valid test pattern is , since any assignment to the remaining variable

permits detecting the fault. However, observe thatT by itself does not yield any sensitization path for the fault to be

detected. Only the additional assignment to the remaining primary inputs allows the fault effect to propagate to the

primary outputs. Consequently, any test generation model based on theD-calculus [1] or any of its derivations is by
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itself unable to identifyall of these test patterns, since for some cases propagation does not actually take place and

only the propagation conditions are implicitly validated. As a result, our proposed model yields the minimum-size

test patterns which guarantee, given the specified assignments, propagation of the fault effect to a primary output by

defining one or more sensitizable paths.

5 Experimental Results

The model described in the previous section has been integrated in a test pattern generation framework for the

computation of minimum size test patterns referred to asMinimum Test Pattern generator(MTP), which uses the

SAT-based ILP algorithm ofbsolo[15] and the fault simulator provided with ATALANTA [13]. The results included

below were obtained with the IWLS’89 benchmark suite [14] and with the ISCAS’85 benchmark suite [2]. In all

cases MTP was run with a bound on the amount of allowed search (i.e. the total number of conflicts [15]). This per-

mits MTP to identify acceptable solutions, which in some cases may not be necessarily optimal. Moreover, in order to

speed up convergence to the optimal solutions, MTP uses the solution computed by ATALANTA (or by any other

ATPG tool) as the startup assignment. These assignments provide an initial upper bound on the value of the optimal

solution. If ATALANTA aborts the fault, then TG-GRASP [22] is used for computing a startup test pattern.

Table 4 contains the results for the IWLS’89 benchmarks for both ATALANTA [13] and MTP. ATALANTA is an

ATPG tool that can generate test patterns with don’t cares. For each benchmarkall faults were targeted in order to

allow for a a meaningful comparison between the two algorithms. Columns #PI, #G, #F, #R and #A denote, respec-

tively, the number of primary inputs, gates, faults, redundant faults and aborted faults. %X denotes the percentage of

don’t care bits in all test patterns;∆ denotes the variation in percentage from ATALANTA to MTP; %Opt denotes the

percentage of faults for which MTP was able to find the actual minimum-size test pattern. Finally, time/fault denotes

the average time in seconds spent solving the ILP for each fault.

From these results several conclusions can be drawn. First, MTP allows validating the heuristics used in ATAL-

ANTA for computing test patterns with don’t cares. Indeed for several benchmarks, ATALANTA already identifies

the minimum-size test patterns for all faults. Nevertheless, for other benchmarks, the test patterns computed by ATA-

LANTA can be far from the minimum-size test patterns. For these cases the percentage of don’t cares computed with

MTP can be as much as 15% above the values computed by ATALANTA. Finally, we observe that for medium-size

circuits MTP is able to compute the actual minimum-size test patterns for all faults in the circuit in a reasonable

amount of time per fault. For larger circuits, MTP finds solutions that are better than those computed by ATALANTA,

but which are not guaranteed to be optimal.

Figure 4: Minimum-size test pattern for which no propagation path exists

x

s



Table 5 contains the results for the ISCAS’85 circuits3. For these benchmarks a smaller search effort (i.e. 100 con-

flicts) was allowed. This leads to smaller run times and, consequently, less optimal results. Once more we can con-

clude that MTP is able to improve over the ATALANTA results, but in this case the improvements are in general

smaller, since it becomes harder for the ILP solver [15] to find optimal solutions. (As can be concluded the percentage

of optimal solutions found ranges from 0 to 20 percent.) For some of these circuits we run MTP with a larger number

of allowed conflicts (i.e. 1000 conflicts). The obtained results are shown in Table 6. As can be observed, a larger per-

centage of unspecified input assignments is obtained at the cost of a larger search effort per fault. Accordingly, the

time per fault also increases.

From the previous experimental results for the IWLS’89 and ISCAS’85 benchmarks we can draw the following

3. Observe that ATALANTA aborts several faults for c432, c2670, c6288 and c7552. For those cases, MTP uses TG-
GRASP [22] as the startup ATPG tool, and consequently does not abort any fault.

Benchmark #PI #G #F

ATALANTA [13] MTP

#R #A %X #R #A %X ∆ %Opt
time/
fault

9symml 9 157 752 2 0 1.4 2 0 8.9 7.5 100 2.04

cht 47 209 820 0 0 93.6 0 0 94.4 0.8 100 0.64

cm138a 6 26 124 0 0 16.7 0 0 16.7 0.0 100 0.02

cm150a 21 62 232 0 0 68.4 0 0 71.0 2.6 100 1.55

cm163a 16 54 220 0 0 70.7 0 0 72.8 2.1 100 0.28

cmb 16 54 248 0 0 29.6 0 0 30.0 0.4 100 0.07

comp 32 105 480 1 0 24.0 1 0 39.6 15.6 2 10.64

comp16 35 221 960 0 0 30.7 0 0 32.9 2.2 4 13.66

cordic 23 74 342 0 0 30.7 0 0 40.2 9.5 37 6.28

cu 14 51 262 7 0 53.0 7 0 57.1 4.1 100 0.14

majority 5 12 54 0 0 8.5 0 0 8.5 0.0 100 0.01

misex1 8 52 224 0 0 49.8 0 0 54.4 4.6 100 0.17

misex2 25 84 422 0 0 73.5 0 0 75.8 2.3 100 0.20

misex3 14 533 2590 7 0 24.4 7 0 37.7 13.3 76 25.29

mux 21 47 202 0 0 67.3 0 0 75.8 8.5 100 0.94

pcle 19 76 328 0 0 73.3 0 0 74.9 1.6 99 0.45

pcler8 27 94 400 0 0 78.1 0 0 79.2 1.1 98 1.97

term1 34 155 708 6 0 72.2 6 0 74.42 2.2 86 4.35

too_large 38 234 1132 15 0 54.9 15 0 62.2 7.3 20 18.27

unreg 36 103 448 0 0 90.6 0 0 91.7 1.1 86 0.93

Table 4: Experimental results for the IWLS’89 benchmarks (allowing 1000 conflicts per fault)



conclusions:

• For some circuits the heuristics used by ATALANTA, as well as by other structural ATPG algorithms, are

extremely effective and MTP can be used to formally prove this result.

• Whenever the main goal is maximizing the number of don’t care bits, then MTP can be run on top of

ATALANTA (or any other ATPG algorithm), thus in general allowing for an increased number of unspecified

bit assignments. The improvements obtained by MTP are related to the amount of allowed search effort, and

MTP is always guaranteed to produce results that are no worse than the startup tool (in our case ATALANTA or

TG-GRASP).

Benchmark #PI #G #F

ATALANTA [13] MTP

#R #A %X #R #A %X ∆ %Opt
time/
fault

c432 36 160 524 3 1 56.2 4 0 60.8 4.6 0 3.21

c499 41 202 758 8 0 17.1 8 0 18.7 1.6 0 4.35

c880 60 383 942 0 0 82.2 0 0 83.8 1.6 12 2.54

c1355 41 546 1574 8 0 13.3 8 0 13.7 0.4 0 9.12

c1908 33 880 1878 8 0 44.7 8 0 48.4 3.7 0 9.61

c2670 233 1193 2746 97 20 92.0 117 0 92.4 0.4 23 10.99

c3540 50 1669 3425 134 0 74.6 134 0 77.3 2.7 15 16.81

c5315 178 2307 5350 59 0 92.6 59 0 92.9 0.3 14 9.34

c6288 32 2416 7744 34 387 22.2 34 0 25.1 2.9 1 36.65

c7552 207 3512 7550 77 181 86.9 131 0 86.9 0.0 4 17.46

Table 5: Experimental results for the ISCAS’85 benchmarks (allowing 100 conflicts per fault)

Benchmark #PI #G #F

ATALANTA [13] MTP

#R #A %X #R #A %X ∆ %Opt
time/
fault

c432 36 160 524 3 1 56.2 4 0 64.1 7.9 2 27.04

c499 41 202 758 8 0 17.1 8 0 19.5 2.4 0 33.71

c880 60 383 942 0 0 82.2 0 0 85.6 3.4 40 22.34

c1355 41 546 1574 8 0 13.3 8 0 15.2 1.9 0 64.86

c1908 33 880 1878 8 0 44.7 8 0 60.0 15.3 1 73.44

c2670 233 1193 2746 97 20 92.0 117 0 93.0 1.0 25 83.46

Table 6: Experimental results for some of the ISCAS’85 benchmarks (allowing 1000 conflicts per fault)



6 Conclusions

In this paper we introduce a SAT-based integer linear programming model for computing minimum-size test pat-

terns. The applicability of the model has been illustrated by computing minimum size test patterns for several bench-

mark circuits. The next step of this work is to study the application of minimum-size test patterns to the synthesis of

BIST logic, with the objective of evaluating the reduction in size of the synthesized logic obtained from using MTP.

Additional research work involves further constraining the ILP formulation so that larger problem instances can be

solved optimally. Furthermore, the tradeoffs between minimum-size test pattern computation, fault simulation and

fault compaction need to be studied. Finally, a long-term objective of this work is the integration of the proposed

model in a complete testing environment, thus enabling the use of minimum-size test patterns for different purposes,

such as the validation of test pattern minimization heuristics or the synthesis of reduced-size FSMs for BIST in spe-

cific target applications.
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Appendix 1

In order to establish the validity of the proposed model we must first formally define the notion of test pattern min-

imization. This notion in tightly related with the way error signals propagate from the fault site to the primary out-

puts.

Definition 4. Given incompletely specified test patterns  and , we say thatspecializes  provided there

exists at least one variablex, such that  and , which is unspecified in  and specified in

, i.e. . Moreover, any specified assignment in  is also a specified assignment in , i.e.

. Conversely, we say that covers .

Definition 5. For a faultf ans-path (i.e. sensitization path) denotes a sequence of nodes , connecting

the fault site  to a primary output  such that . For a given faultf and a test pattern

T, the set ofs-paths is denoted by .

Definition 6. We say that an assignment  iss-irrelevant (i.e. sensitization irrelevant) with respect to a faultf if

and only if the fault is detectable given a test pattern  with , and for a new test pattern  that spe-

cializes  such that , we have .

Definition 7. For a given faultf we say that a test pattern  imposess-irrelevancy if and only if any specialization

 of  is such that .

For example for the C17 circuit in Figure 1,  represents a test

pattern for fault  s-a-0, which in this case imposess-irrelevancy. Indeed any assignment to nodes  or  does

not change any of the fault effect propagation conditions defined by .

The above definitions basically allow us to introduce the following definition of minimum size test pattern.

Definition 8. Let T be a test pattern, we define the size of T, , as the number of specified assignments in T, i.e.

.
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x v1,( ) T1∈ x v2,( ) T2∈ T1

T2 v1 X= v2 0 1,{ }∈∧ T1 T2
x v,( ) T1∈ v 0 1,{ }∈∧ x v,( ) T2∈⇒ T1 T2

x1 x2 … xk, , ,〈 〉
x1 xk PO∈ xi

S
1= i 1 … k, ,{ }∈,

PS T f,( )

x v,( )
T1 x X,( ) T1∈ T2

T1 T2 T1 x X,( ){ } x v,( ){ }∪–= PS T1 f,( ) PS T2 f,( )⊆

T1
T2 T1 PS T1 f,( ) PS T2 f,( )⊆

T x1 1,( ) x2 X,( ) x3 1,( ) x6 1,( ) x7 X,( ), , , ,{ }=

x1 x2 x7
T

T

T x v,( ) T∈ v 0 1,{ }∈{ }=



Definition 9. Let  be the set of all test patterns which detect a given faultf. Let  be a test pattern such that

imposess-irrelevancy and any other test pattern  which imposess-irrelevancy is such that . In such a

situation,  is said to be aminimum-size test pattern (with respect to s-irrelevancy).

As the previous definition implies, in general there may be smaller test patterns which do not imposes-irrelevancy.

These other test patterns are studied in the Section 4.2.

In the remainder of this appendix we show that the proposed optimization model can indeed be used for computing

minimum-size test patterns. The sequence of formal results basically shows that any implied good and faulty circuit

node assignments, due to a given test patternT, will not be modified by any specialization ofT. This is particularly

relevant for path sensitization, because it ensures that any computed test patternT with unspecified assignments, that

detects a given faultf, still detects that same fault if some of the unspecified assignments ofT become specified. Thus

T is a test for the fault and implicitly represents a set of tests for the same fault (i.e. all of its specializations). We con-

clude by showing that any solution to (13) must be of minimum size.

Lemma 1. Let  be a CNF formula for a circuit and letT be an assignment to the primary inputs such that

. Let  be a circuit node assignment implied byT. In this situation and given any special-

ization ofT, the assignment  is also implied.

Proof: Given a gate connected solely to the primary inputs of the circuit, if its output is specified givenT is either

because all inputs assume a non-controlling value or because at least one input assumes a controlling value.

(Observe that for NOT and BUFF gates the analysis is similar.) Clearly, the value of the output of this gate can-

not change by any specialization ofT. By induction on the topological level of a circuit, the same reasoning

applies on all gates, and the results follows.

Proposition 1.Given a faultf and a test patternT and a circuit nodey for which , then for any specialization

of T,  holds.

Proof: From Lemma 1 we know that any specified good value of any node in the circuit cannot change with any

specialization ofT. Furthermore, the faulty value of a node is only specified when the good value is also speci-

fied from (10). Again applying Lemma 1 to the faulty values, we can conclude that a specified faulty value can-

not change with any specialization ofT. Finally, since specified good and the faulty values cannot change for

any specialization ofT, then any assignment  cannot change.

Corollary 1. Given a faultf and a test patternT such that , then any unspecified assignment  is

s-irrelevant with respect tof. Moreover, test patternT imposess-irrelevancy.

Proof: The proof follows from Proposition 1.

Proposition 2.A fault f is detectable if and only if the corresponding CNF formula  is satisfiable.

Proof: Let us consider a detectable faultf. It is known that for completely specified test patterns,  is satisfied if

and only if faultf is detectable [22]. Sincef is detectable we can always find a completely specified test pattern

T for which  is satisfied. Thus, we can identify at least one path connecting the fault site to a primary output

such that for any nodex in the path . Consequently, and by the definition of ,T must also satisfy

T f( ) Tm Tm
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.

Conversely, let us consider an assignment for which  is satisfiable. This necessarily implies the exist-

ence of at least one primary outputx for which . By construction, the value of the good variable for

every node in at least one path from the fault site to primary outputx must be specified, and such that for each

such node the good value differs from the faulty value. Given thatT imposess-irrelevancy (from Corollary 1),

then any complete specialization ofT still satisfies . Using the reverse mapping to the original set of vari-

ables, then  is also satisfied and from [22] the faultf is detected.

Corollary 2. Given a faultf and a test patternT such that , then the fault effect is observable on at least

one primary output.

Proof: Since , then we must necessarily have . Thus we have a primary outputx such that

. Consequently, , and so the fault effect is observable on primary outputx.

Corollary 3. Given a faultf and a test patternT such that , then there exists ans-path from the fault site to

at least one primary output.

Proposition 3.Given a faultf, the solution of ILP (13) is a minimum-size test pattern with respect tos-irrelevancy.

Proof: From Proposition 2 we know that  if and only if the fault is detectable. Hence the constraints of

the ILP (13) are only satisfied for test patterns detecting the fault. Suppose now that  is the computed solu-

tion of (13) and suppose further that there exists  such that  also detects the fault and . How-

ever, since  detects the fault, it also satisfies the constraints of (13), and so it would be a better solution than

the computed solution of the ILP; a contradiction.
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