In IEEE/ACM International Workshop on Logic Synthesis (IWLS), pages 452-470, June 1998.

An Exact Solution to the Minimum-Size Test Pattern Problem

Paulo F. Flores, Hor4cio C. Neto and Jo&o P. Marques Silva

Instituto Superior Técnico
Cadence European Laboratories/INESC
R. Alves Redol, 9, 1
1000 Lisboa, Portugal
{pff,hcn,jpms}@inesc.pt

Abstract

This paper addresses the problem of test pattern generation for single stuck-at faults in combinational circuits,
under the additional constraint that the number of specified primary input assignments is minimized. This problem
has different applications in testing, including the identification of dont care conditions to be used in the synthesis of
Built-In Self-Test (BIST) logic. The proposed solution is based on an integer linear programming (ILP) formulation
which builds on an existing Propositional Satisfiability (SAT) model for test pattern generation. The resulting ILP for-
mulation is linear on the size of the original SAT model for test generation, which is linear on the size of the circuit.
Nevertheless, the resulting ILP instances represent complex optimization problems, that require dedicated ILP algo-
rithms. Preliminary results on benchmark circuits validate the practical applicability of the test pattern minimization
model and associated ILP algorithm.

1 Introduction

Automatic test pattern generation (ATPG) for stuck-at faults in combinational circuits is now a mature field, with
an impressive number of highly effective models and algorithms [4-8, 10-13, 19, 22-24]. Furthermore, besides being
effective at detecting the target faults, recent ATPG tools have aimed the heuristic minimization (i.e. compaction) of
the total number of test patterns required for detecting all faults in a circuit [3, 18, 20]. In general, the degree of test
pattern compaction is expected to be related to the number of unspecified input assignments in each test pattern. In
addition, for applications where testing time and fault coverage requirements can only be obtained with dedicated
Finite-State Machine (FSM) controllers, the computation of test patterns with a large number of unspecified input
assignments may allow for significantly smaller synthesized FSMs. Indeed, if the test set is used as input to a logic
synthesis tool with the purpose of synthesizing BIST logic, then by maximizing the number of unspecified input
assignments, i.e. by maximizing the don'’t care set of each test pattern, the logic synthesis tool is in general able to
yield smaller synthesized logic. Thus the maximization of the don’t care set of each test pattern, or conversely, the
computation of test patterns of minimum-size, can have significant practical consequences.

Nevertheless, there exists no model or algorithm in the literature for computing test patterns for which the number
of unspecified primary input assignments is maximized. Accordingly, the main objective of this paper is to propose a
first attempt at solving this problem. We start by formalizing the notion of test pattern minimization. We then develop
a new model for test pattern generation, based on propositional satisfiability (SAT), in the presence of unspecified
input assignments. Next, we derive an integer linear programming (ILP) model for maximizing the number of
unspecified primary input assignments. Afterwards, we show that the model is indeed correct and analyze some of its
limitations. Finally, we provide preliminary results that justify using the proposed model in medium-size combina-
tional circuits and describe an ATPG methodology, which can incorporate the proposed model and supporting algo-
rithm and which can also be applied to large-size combinational circuits. Besides its practical applicability, to our best
knowledge this is the firébrmal non-heuristic model towards computing minimum size test patterns

The paper is organized as follows. We start in Section 2 with several definitions regarding combinational circuits,
Conjunctive Normal Form (CNF) representations of circuits and CNF representations of fault detection problems,
which are used throughout the paper. Afterwards, in Section 3, the CNF models described in Section 2 are general-
ized for correctly handling unspecified variable assignments. The next step is to introduce the ILP optimization model
for minimizing test patterns and prove its correctness. Section 5 includes preliminary experimental results on several
practical applications of the model. We conclude in Section 6 with a brief overview of future research work in the
area of test pattern minimization.

2 Definitions

2.1 Combinational Circuits

We start by introducing unified representations for circuits and fault detection problems. These representations are

1. This problem was addressed before by S. Hellebrand et al. in [9], but using a completely heuristic approach, hence not
based on a formal model.

X — X10 Nodex X11
b— : X;
X5 22
|: O(x (X1 X0t
X11
—) X
X6 Xo — 16 0ox) { X1 X190 X0 Xp3}
>D_X23 1(x) {Xg Xg}
X7 7 X19
Xa X
(a) Circuit 7 X X}
Ko() (X X7 X1 X160 X190 X X3
Number of stuck-at faults 34
Collapsed fault set size [2] 22 K {X10 % X7, X X Xg}
(b) Stuck-at faults (c) Topological data fox;1

Figure 1: Example circuit — C17 [2]

used throughout the paper. A combinational cir€lis represented as a directed acyclic grépk (V. Er) ,
where the elements MC , 1.e. the circuit nodes, are either primary inputs or gate outquzécr/vithN . The set of
edgesEC OVex Ve identifies gate input-output connections. We shall assume gates with bounded fanin, and so
|EC| = O(/N) . For every circuit node in V. the following definitions apply:

* O(X denotes théanout nodes of nodg, i.e. nodey in V.~ such that(x,y) DE- .

« OLx) denotes thransitive fanoutof node, i.e. the set of all nodgssuch that there is a path connectingy.
e I(x) denotes théanin nodes of nodg, i.e. nodey in VC such that(y, x) O EC .

+ Ix) denotes th&ransitive faninof nodex, i.e. the set of all nodgssuch that there is a path connecijrig x.

* Kg(x) denotesmmediate fanout cone of influencef x, being defined as follows:

Ko® = {ylyD O{x) Oy O I(w) Ow O OHx)} . 1)
. Kl(x) denotesmmediate fanin cone of influencef x, being defined as follows:

K.(x)z[] IEty)]—(OE(x)D{x}>. @)
y 0 OHx)

The set of primary inputs can also be referred tBlagnd the set of primary outputs R®. Simple gates are
assumed: AND, NAND, OR, NOR, NOT and BUFF. Finally, the number of stuck-at faults in the cifdyitvish

M = O(N), since|EC| = O(IN)) , and are numberéd...,M . The example in Figure 1 illustrates the previous def-
initions.

2.2 Conjunctive Normal Form Formulas

A conjunctive normal form (CNF) formulé ambinary variables<1, e X is the conjunction (AND) wof

e O each of which is the disjunction (OR) of one or miegals, where a literal is the occurrence of

a variablex, orits complementx, . Aformua denotes a unmueriable Boolean functiof(x,, ..., x) and
each of its clauses corresponds to an implicateaf assignmenfor a formulag is a set of variables and their cor-
responding Boolean values, represented as variable/value pairs; for ex@ampl@(xl, 0), (x7, 1), (X13’ 0)}
Alternatively, assignments can be denoted\as { X, = 0} X, =1, X13= 0} . In general we will consider complete
assignments, which invohal variables. In this situation, the value assumed by a forgnula given an assignment
is denoted by1>|A 0 {0, 1} . (Note that if we allow partial assignments, which might not involve all variables, the
value assumed by a formuta could alsobe

clausesw

The CNF formula of a circuit is the conjunction of the CNF formulas for each gate output, where the CNF formula
of each gate denotes the valid input-output assignments to the gate. For an ANDga@D(w,, ..., wj) , the
resulting CNF formula is [12, 22, 23],

D

] 0
by = !n(th)]:Ez w+xD ®)

i=1

A complete list of the CNF formulas for simple gates with an arbitrary number of inputs can be found in [22]. If we
view a CNF formula as a set of clauses, the CNF forgndida the circuit is defined by the set union of the CNF for-
mulas for each gate with outpyto, :

= 4
o xDVC¢X @)

Given the CNF formula for a circuit and an assignrmfetd the primary inputs, then the assignmAet denotes
the values on the circuit nodes obtained fidimy implying the assignments on all gate outputs [1].

2.3 Test Pattern Generation

For Automatic Test Pattern Generation (ATPG), the single stuck-at line (SSF) fault model is asstimed [1]

Definition 1. We say that a stuck-at faultdetectablaf and only if there exists an assignment of logic values to the
circuit primary inputs such that the effect of the discrepancy caused by the fault (i.e. the error signal) can be observed
on at least one of the circuit primary outputs (i.e. the value in the good and faulty circuit differ).

When referring to primary input assignments, or test patterns, we may in general assume that some primary inputs
may be unspecified.

Definition 2. We define a test pattefinas an assignment to the primary inputs, such that some assignments may be

2. See [1] for ATPG definitions used throughout the paper.

unspecified, i.eT = { (x, V), xOPIOvO {0, 1, X} }.

Definition 3. A test patterT is completely specifiedtheneverT = { (x, V), xOPIOvO {0, 1} } . Otherwise, we
say thafT is said to béncompletely specified

In the remainder of this section we shall assume that test patterns are completely specified. The generation of
incompletely specified test patterns is addressed in Section 3.

CNF representations of circuits and fault detection problems have been extensively used and studied in ATPG [4,
12, 22, 23]. In this section we describe a simple CNF representation of combinational circuits and fault detection
problems, which will be used throughout the remainder of the paper.

In the context of test pattern generation, and for capturing the fault detection problem, eacis nhdeacterized
by three propositional variables:

. xG denotes the logic value assumed by the node igdbdcircuit.
F . . oo
» X denotes the logic value assumed by the node ifathty circuit.

S G
e X denotes whethex anxiF assume different logic value [12]. We shall refer to this variable as the
sensitization statusf nodex.

Given the definition of variablgS , the following relationship must hold:

[2x e 5% = B¢+ e ol TS C xS+ G+ 0)
. . . G F . . rxis . .
which basically states that the logic valuexof and differ if and oy if ~ assumes logic value 1.

Let ¢X denote the CNFéormuIa associated wli__th gate oxtpLhe notatior’qJ)((3 denotes the CNF formulaxan
thFe good circuit, i.e. using variables, wherégs denotes the CNF formulénftre faulty circuit, i.e. using
X variables. For atemfault z s-av, the CNF representation of the associated fault detection problem contains the
following components:

e CNF formula for the circuit, denoting the good circuit.

* CNF formula for the circuit, denoting the faulty circuit. This formula only needs to contain the CNF formulas
for the nodes that are relevant for detecting the given fault, i.e. nodes in the transitive fanoutzof node

« CNF formulas for defining the sensitization status of every node in the transitive fanout of the fault site, i.e. node
z Hence, for each of these nod¢§s, is given by (5), which requsl'resl if and mﬁlyt iiF

» Clauses that prevent each nodeom being sensitized, by havingS = 0 , whenexés not in the transitive
fanout ofz but at least one fanout nodexas in the transitive fanout af i.e. x O Ko(z) —Ol32) . (Observe that
this condition on a nodealso impliesxG = xF . Moreover, this condition permits reducing the number of
and xS variables that must be considered.)

Sub-formula/Condition Clause Set

G G
Good Circuit ¢ = by
x0O Ve
F F
Faulty Circuit o = [o
x0 042
s s
Node Sensitization o°= [¢,
x0 02
. . o B _ U sl
Propagation Blocking Conditions o = X[x 0 Ky -0

o= BEEHE wve
- BAREAT o

D><III POOx 00Xz

Fault Activation Conditions

=
1]

Fault Detection Requirement

Detection of Fault s-av ¢D q)G O ¢F 0 q)SD q)B O ¢A 0 q)R

Table 1: Definition of the fault detection problem for the stem fault z s-a-v

. G F . . .
» Clauses capturing conditions factivating the fault, i.e. by requiring” #z and by forcing a suitable logic
value onz

» Finally, we guarantee that the fault effect is observed at a primary output by requiring that for at least one primary
outputx, x = 1.

The formula for detecting a fautts-av is summarized in Table 1 and will henceforth be referred to asuite
detection formula ¢D .

The CNF formula for fanout-branch faults can be similarly defined [22]. In addition, the model described above
can be improved with additional clauses which further constrain the problem definition [4, 12, 22, 23].

3 Test Generation With Unspecified Variable Assignments

The SAT-based test generation model described in the previous section requires all clauses to be satisfied, hence
most if not all variables must be assigned a logic value. However, we want to develop a test generation model that
properly handles unspecified variable assignments, since our goal is to compute minimum size test patterns. As a
result, in this section we develop models for circuit satisfiability and test generation using CNF formulas that can be
satisfied in the presence of unspecified variable assignments.

x; = (1,0)=0
X 7, X' x3 = (0,0) EX[0
0 (1,0
= (0,0 =X —
1 0,1
(0, 1) =X
X (0, 0)
X7
(a) Interpretation of the new variables (b) Example of unspecified assignments for C17

Figure 2: Modeling unspecified assignments

3.1 Modeling Unspecified Variable Assignments

Given a circuit and its associated CNF formula or a faatd its associated fault detection formula, the existence
of unspecified assignments implies that each of the original circuit variables can now be assigned a value in the set
{0, 1, X} . In this situation an assignmexit= X indicates ihatunspecified or that the value assumedbis an
unspecified assignment. In contrasil {0, 1} indicatesxtiwspecified or that the value assumed>bis a spec-
ified assignment. In this situation, an assignnfeist allowed to leave variables unspecified. Furthermore, the value
of a CNF formulap for an assignmehtan also b, <|>|A 0{0,1X}.

With the purpose of deciding CNF formula satisfiability, in the presence of unspecified variables, a new set of vari-
ables is created. This basically consists of duplicating the number of Boolean variables, which is a common solution
for capturing unspecified assignments [17]. (Observe that since3?)/|nly assignments need to be condidered for
variables, the actually required number of Boolean variabl éoigsD3MD , since there are only three possible
assignments to each of the original variables. Nevertheless, considering Rigtead variables greatly simplifies the
proposed model.) As a result, we propose to represent each Boolean vawiéithléwo new variablex™ ansd
having the interpretation indicated in Figure 2-a. For this interpretatien,X indicatesishaispecified. The
simultaneous assignment of variabteos ax%d to 1 is not allowed, requiring the inclusion of the following con-
straints in the resulting CNF formula,

0.1 o0
Piny, x = 07X +-X0 (6)

for each nodex O Ve o WheﬂstfC represents the set of nodes in the circuit. In addition, for each basic gate type we
need to define the corresponding CNF formula. However, using the ideas above, each gate input and output must now

be replaced by two variables Let uls consider for example an AND gate, which will now be denoted by the general-

ized form [p(X] = UAND le, 1 WJO wlg, and which allows un3£e0|f|ed assignments on the gate inputs

and output. Since the S|multaneous aSS|gnment of any pair of var@bles 0 to 1 is prevented by (6), then we just
need to relate the remaining assignments. The output vaxable can only assume value 1 whenever all input vari-

1 1 1 o 0.
ableswj also assume value 1. Hence, we can say]thatAND E\Nl, e W B . In addition, the output xariable

assumes value 1 provided at least one input varia{b?e
O = ORBW(;, WJ.OE. As a result we obtain from [12, 22],

assumes value 1. Hence, we can say that

o 1 0 d
_ 0 0. 00 0 0
o o= H[pwi+xDEHZWi+—|xD
u, X A 0= 0
Li=1 i =1
o] .)
: ! 10 o 1 1 E
¢ 1 = DWi + X 0 [H —|Wi +X 0
WX = 1 G=1 0
Furthermore, the CNF formula for an AND gate with outpnbw becomes,
¢ux:¢ 1D¢ OD¢invx ®)
’ u, X u, X ’

which properly models unspecified assignments to the inputs and output of an AND gate. Similar relations can be
derived for the other simple gates. Consequently, the CNF formulas for simple gates given in [22] can be generalized
by following the same approach used for deriving (7). These generalized CNF formulas are given in Table 2. As a
result, and as was done in Section 2.2, we can now create the CNF formula for the circuit, one in which unspecified
variable assignments are allowed. In Figure 2-b, we illustrate the outcome of applying an incompletely specified

assignment to the primary inputs of C17. As can be seen, the assigmlnen& X, =atd represent a sufficient
condition for the assignmean2 = 0 to be observed.

2

3.2 Test Pattern Generation with Unspecified Input Assignments

We can now generalize the test pattern generation model of Section 2.3 so that unspecified variable assignments
are allowed. Each circuit nodas still characterized by three variables:

* X denoting the value in the good circuit. This variable can be unspecified, and so we use two new variables to
, with the semantic definition given earlier.

characterize its value a

x denoting the value in the fault%)/ circuit. This variable can also be unspecified, and so we use two new
. . F, F,1 . . o . .
variables to characterize its value, and , with the semantic definition given earlier.

X denoting the sensitization status of each node. As we will justify below, the sensitization status of each node
needs not be unspecified, and so its value is always either 0 or 1.

Modeling unspecified assignments in test generation requires a detailed characterization of the propagation of the
fault effect. Hence, the sensitization staxﬁs of a node can only assume value 1 when both the values of node in the
good and faulty circuits argpecifiedand assume different logic values. Moreover this requirement also causes the
value of a node in the faulty circuit to be specifietly when the value of that node in the good circuit is also speci-
fied. These constraints indicate that propagation of the fault effect to a node can only be guaranteed when the values
in the good and faulty circuit are specified for that node.

Consequently, the relationship between the vaIu>eSof and the possible vah?es of xF and is shown in Figure

Gate type Gate function ¢u ¥
ol 1 0! 0
0 0o o] 0O o, o 0 0
X" = OROwy, .. W, rl[pwi+xD DE{ZWﬁ—-x E
Li=1 J =1
AND ' :
[1 0! 0
1 1 1.1
X = ANDE’Wi, wjlg |_| Hwi +=X B I]Slz AW, + X E
Li=1 J =1
0 01 10 [l o1, o O
X" = ANDW], ..., W] |_|DW.+"XD DS[Z—'WI+X O
Li=1 J 1=1
NAND
M 1 o/ O
1 0o oQd 0O o, 10 0 1
X" = ORpWy, ... W, |_||:F'Wi+XD IIHZWi+—-x E
Li=1 . =1
ro 10 0
0 0 0
x* = ANDEWS, ..., w'] [5w + x5 My -w+x’ O
Li=1 . =1
OR .
[} | O/ O
1 01 10 0O 1, 10 1 1
X :ORD\N1,...,WJ-[| rl[pwi+xD DSLZwi+—|x E
Li=1 J =1
[! | o} O
0 01 10] 0O 1, o0 1 0
X* = OROWj, ..., Wi rl[pwi+xD DELZwi+—|x E
Li=1 i =1
NOR ' :
! 1 04 O
0 1 0 1
X' = ANDE’WS, WJOH |_| E|Wi +aX % Dﬂz W, + X E
Li=1 J =1
= BUFFHW.T it + ~x°BrHwi +X°H
NOT
x' = BUFFEW)] A2+ ~x"HrHwd + x5
= BUFFHT S+ ~x°FrHw) +X°H
BUFFER
x* = BUFFHW.D !+ ~xBrwl +x'H

Table 2: Generalized CNF formulas for simple gates

3. Entries with a ‘—’ denote invalid value assignments, for which the CNF formulmsfor must assume value O.
Similarly to the model for completely specified assignmen?s, assumes value 1 if and>«()3nly if xF and assume
opposing logic values, provided that bot and are specified. The simplification of the truth table in Figure 3
yields the following CNF formula for the sensitization status of npade :

x
®

>
-

x
(0]

X X O + +r r O O X
P O X X pr O r O X

Figure 3: Truth table for the sensitization status

¢§ L= %XG' 1 + XG, 0 + "XSEEEPJ:’ 1 + XF, 0 + ﬁXSED
EP(F'1+XG'1+—|XS%EE-‘XG'1+—|XF’1+—|XSED (9)
0G,1 F,1 SDEEP(G, 0 F,0 sl
DX + X + X D + =X + X |:|
The next step is to describe the modifications to the CNF formula used for computing the faulty values, which for
completely specified assignments are equivalent to the CNF formula for the good value. For incompletely specified

assignments the same holds true but, as justified above, we introduce the additional constraint that an unspecified
good value implies and unspecified faulty value,

g _O_0OF_ O
X =XpU x =XOg (10)

Let us assume that the CNF formula for the faulty value of a xedéh completely specified assignments is given

by,

0y = K (12)

As a result of (10), the CNF formula for the faulty circuit, in the presence of incompletely specified assignments, is
defined by,

Sub-formula/Condition Clause Set

G G
Good Circuit o, = b«
xOVe
F F
Faulty Circuit o, = 0O o,
xO0odz
s s
Node Sensitization o,= [¢,
x0 02
Propagation Blocking Conditions <|>S = H—'XSH x 0 Ky(2) -0
I = BB BB BB BB v
ault Activation Conditions
A _ 0Os0 Mg 10 G, ol F,10 0 F,ol0 .
¢u:[ZDEHZ DEE"Z DEH"Z DEBZ O ifv=0
R S
Fault Detection Requirement o, = B xd
xOPOOx 00Xz
. D G ,F~,S-,B- AR
Detection of Faulg s-av 6, =¢,0¢,0¢,0¢,06¢,00,
Table 3: Definition of the fault detection problem for the stem fault z s-a-v
j
F d FO0 GO0 G, 11 F,1 GO0 G, 10 G,0 G 1
Oy = 07X +X T +X DEB-\X +X O +X DDI_l Epoi+—1x hx E
i T 1 (12)
0 FO0 GO0 G110 F,1 GO0 G 10 G1 G,0
= hX | +X O +X []EBﬂx +X | +X []DI_l [E@H’X %E%nﬁx EJ
i=1

Hence, the faulty value of a nodes computed by its original formula provided the good value is specified (i.e.
xG’0+xG’ 1. 1). In contrast, if the good value is unspecified (kgio+xG’ 1. 0), then the faulty value is

forcedto also be unspecified.

The formulas forq)f " and foq)E . are defined so that an unspecified good value immediately implies an
unspecified faulty value arnd™ = 0 . Thus propagation of the error signal is only permitted in the presence of prop-
erly specified values for the good circuit variables.

Furthermore, we note that the remaining CNF formulas of Table 1, i.e. propagation blocking c0¢dBitions and
fault detection requirementtsR , remain unchanged, whereas the fault activation corqﬂoi‘tions must be updated to
the new set of variables. As a result the complete CNF formula for a given stern daat is summarized in
Table 3. Similarly, we can derive the CNF formula for a fanout-branch fault. Furthermore, we r¢Ear to as the
fault-detection formula in the presence of unspecified variable assignments.

4 Computing Minimum Size Test Patterns

In this section we develop the optimization model for computing minimume-size test patterns. This optimization
model is based on test pattern generation in the presence of incompletely specified primary input assignments. More-
over, stem faults are assumed throughout, even though the same approach is readily applied to fanout-branch faults.

4.1 The Complete Optimization Model

The main objective of test pattern minimization is to identify the minimum number of primary input assignments
which detect the fault. Hence, our goal is to minimize the number of specified primary input assignments such that
the given fault is still detected. As a result we obtain the following optimization model,

L 0o 10
minimize ; X +X [
X | (13)
. D
subject to ¢u

which basically requires that the total number of assigned input variables be minimized under the constraint that the
fault be detected. (Observe that we ha\zexo + x1 <1 given (6), which implies an upper bound on the value of the
cost function of|PI| .) Given the mapping between CNF clauses and linear inequalities described in [15, 17] we
immediately conclude that (13) corresponds to an integer linear program, and so different integer linear optimization
packages can be used for solving the test pattern minimization problem. Nevertheless, the constraints of (13) are
tightly related with propositional satisfiability. Consequently, and as shown in [15], SAT-based ILP solvers are prefer-
able for solving ILPs for which the constraints correspond to CNF formulas. For the experimental results given in
Section 5, the SAT-based ILP solver of [15] was used.

Furthermore, we note that the optimization model of (13) can be viewed as a formalization of guided pseudo-
exhaustive ternary simulation on the primary inputs of a combinational circuit, with the objective of minimizing the
number of specified primary inputs assignments, and given the constraint that the fault is detected. The proposed
model casts this basic idea into an ILP formulation, thus providing a formal framework for describing the problem
and allowing a significant number of algorithms and theoretical results from integer optimization to be used.

In Appendix 1 we formally establish the validity of the proposed optimization model.

4.2 Limitations of the Model

In general there may exist faults for which it is possible to identify test patterns with a smaller number of specified
assignments, but which do not uniquely identify a set of sensitizable paths [1]. Let us consider the example circuit in
Figure 4. Let the target fault lies-a-1. From the circuit it is clear that any assignment to the selection vasipbles
mits detecting the fault. Hence a valid test patterh is { (X, 0) } , Since any assignment to the remaining variable
permits detecting the fault. However, observe Thhay itself does not yield any sensitization path for the fault to be
detected. Only the additional assignment to the remaining primarysmghloivs the fault effect to propagate to the
primary outputs. Consequently, any test generation model based Drcteulus [1] or any of its derivations is by

Figure 4: Minimum-size test pattern for which no propagation path exists

itself unable to identifyall of these test patterns, since for some cases propagation does not actually take place and
only the propagation conditions are implicitly validated. As a result, our proposed model yields the minimum-size
test patterns which guarantee, given the specified assignments, propagation of the fault effect to a primary output by
defining one or more sensitizable paths.

5 Experimental Results

The model described in the previous section has been integrated in a test pattern generation framework for the
computation of minimum size test patterns referred tMiagmum Test Pattern generat@TP), which uses the
SAT-based ILP algorithm disolo[15] and the fault simulator provided with ATALANTA [13]. The results included
below were obtained with the IWLS'89 benchmark suite [14] and with the ISCAS’85 benchmark suite [2]. In all
cases MTP was run with a bound on the amount of allowed search (i.e. the total number of conflicts [15]). This per-
mits MTP to identify acceptable solutions, which in some cases may not be necessarily optimal. Moreover, in order to
speed up convergence to the optimal solutions, MTP uses the solution computed by ATALANTA (or by any other
ATPG tool) as the startup assignment. These assignments provide an initial upper bound on the value of the optimal
solution. If ATALANTA aborts the fault, then TG-GRASP [22] is used for computing a startup test pattern.

Table 4 contains the results for the IWLS’89 benchmarks for both ATALANTA [13] and MTP. ATALANTA is an
ATPG tool that can generate test patterns with don't cares. For each benelinfeuks were targeted in order to
allow for a a meaningful comparison between the two algorithms. Columns #PI, #G, #F, #R and #A denote, respec-
tively, the number of primary inputs, gates, faults, redundant faults and aborted faults. %X denotes the percentage of
don’t care bits in all test patternfsdenotes the variation in percentage from ATALANTA to MTP; %Opt denotes the
percentage of faults for which MTP was able to find the actual minimum-size test pattern. Finally, time/fault denotes
the average time in seconds spent solving the ILP for each fault.

From these results several conclusions can be drawn. First, MTP allows validating the heuristics used in ATAL-
ANTA for computing test patterns with don’t cares. Indeed for several benchmarks, ATALANTA already identifies
the minimume-size test patterns for all faults. Nevertheless, for other benchmarks, the test patterns computed by ATA-
LANTA can be far from the minimum-size test patterns. For these cases the percentage of don't cares computed with
MTP can be as much as 15% above the values computed by ATALANTA. Finally, we observe that for medium-size
circuits MTP is able to compute the actual minimum-size test patterns for all faults in the circuit in a reasonable
amount of time per fault. For larger circuits, MTP finds solutions that are better than those computed by ATALANTA,
but which are not guaranteed to be optimal.

ATALANTA [13] MTP
Benchmark #PI #G #F time/
#R #A %X #R #A %X A %O0pt fault

9symml 9 157 757 2 g 14 P 0 8.9 7|5 100 20
cht 47 209 82(Q 0 Q 93. 0] 0 944 018 100 0.c
cml138a 6 26 124 (0 0 16} 0 0 167 Q.0 100 Oy
cml150a 21 62 23] D 68p 0 0 710 2.6 oo 1!
cml63a 16 54 22¢ 0 0] 70) 0 0 728 2.1 100 0.
cmb 16 54 248 0 Q 29. 0] 0 3040 0i4 100 0.C
comp 32 105 48(1 [0 24p il 0 396 15.6 2 10i¢
compl6 35 221 96¢ D 30F 0 0 329 2.2 4 13y
cordic 23 74 342 (0 a 30. D 0D 402 95 B7 6.2
cu 14 51 262 7 0 53.¢ 7 0] 57.1 4/1 100 0.4
majority 5 12 54 0 0 8.9 @ (¢ 8.5 0.0 100 0.0
misex1 8 52 224 a d 49.8 0 0 5444 4.6 100 041
misex2 25 84 423 @ 0 73p 0 0 758 2.3 100 0}
misex3 14 533 259Q [0] 24K 7 0 37.7 13.3 76 25.
mux 21 47 202 0 a 67.) D 758 8/5 100 0.8
pcle 19 76 328§ (0 a 73. D D 749 16 99 04
pcler8 27 94 400 Q g 78.1 0 0 79|12 11 08 <
terml 34 155 704 6 0 72.p 6 0 7442 2.2 B6 41
too_large 38 234 113p 15 0 54]9 15 0 622 7.3 20 18.
unreg 36 103 44£| (D 90p 0 0 917 11 B6 0|

Table 4: Experimental results for the IWLS’89 benchmarks (allowing 1000 conflicts per fault)

Table 5 contains the results for the ISCAS'85 circui®r these benchmarks a smaller search effort (i.e. 100 con-
flicts) was allowed. This leads to smaller run times and, consequently, less optimal results. Once more we can con-
clude that MTP is able to improve over the ATALANTA results, but in this case the improvements are in general
smaller, since it becomes harder for the ILP solver [15] to find optimal solutions. (As can be concluded the percentage
of optimal solutions found ranges from 0 to 20 percent.) For some of these circuits we run MTP with a larger number
of allowed conflicts (i.e. 1000 conflicts). The obtained results are shown in Table 6. As can be observed, a larger per-
centage of unspecified input assignments is obtained at the cost of a larger search effort per fault. Accordingly, the
time per fault also increases.

From the previous experimental results for the IWLS'89 and ISCAS’85 benchmarks we can draw the following

3. Observe that ATALANTA aborts several faults for c432, c2670, c6288 and c7552. For those cases, MTP uses TG-
GRASP [22] as the startup ATPG tool, and consequently does not abort any fault.

ATALANTA [13] MTP

Benchmark #PI #G #F time/

#R #A %X #R #A %X A %O0pt fault
c432 36 160 524 3 1 56p a4 0 608 4.6 0 3
c499 41 202 758 8 0 170 B 0 18(7 1.6 0 43
c880 60 383 947 d (82.p 0 0 838 1.6 12 2
c1355 41 546 1574 8 D 13B 3 0 13.7 0.4 0 91
c1908 33 880 187 3 D 44F 8 0 484 3.7 0 9
c2670 233 1193 274 qr 20 9240 117 0 92.4 0.4 23 10
c3540 50 1669 342 134 0 74|6 134 0 77.3 .7 15 16
c5315 178 2307 535¢ 59 0o 926 59 0 929 0.3 14 9
6288 32 2416 774 34 387 222 B4 0 25.1 2.9 1 36
c7552 207 3512 755') v 181 849 181 0 86.9 0.0 4 17

Table 5: Experimental results for the ISCAS’85 benchmarks (allowing 100 conflicts per fault)

ATALANTA [13] MTP
Benchmark #PI #G #F time/

#R #A %X #R #A %X A %O0pt fault
c432 36 160 524 3 1 56p a 0 641 7.9 2 27(
c499 41 202 754 g (174 8 0 195 2.4 0 337
c880 60 383 943 d (82p 0 0 856 34 40 22[¢
c1355 41 546 1574 8 0] 13B 3 0 15.2 1.9 0 64
c1908 33 880 187§ 3 D 44F 3 0 600 153 1 73«
c2670 233 1193 274 a 20 920 117 0 930 1.0 25 83

Table 6: Experimental results for some of the ISCAS’85 benchmarks (allowing 1000 conflicts per fault)

conclusions:

» For some circuits the heuristics used by ATALANTA, as well as by other structural ATPG algorithms, are
extremely effective and MTP can be used to formally prove this result.

* Whenever the main goal is maximizing the number of don't care bits, then MTP can be run on top of
ATALANTA (or any other ATPG algorithm), thus in general allowing for an increased number of unspecified
bit assignments. The improvements obtained by MTP are related to the amount of allowed search effort, and

MTP is always guaranteed to produce results that are no worse than the startup tool (in our case ATALANTA or
TG-GRASP).

6 Conclusions

In this paper we introduce a SAT-based integer linear programming model for computing minimum-size test pat-
terns. The applicability of the model has been illustrated by computing minimum size test patterns for several bench-
mark circuits. The next step of this work is to study the application of minimum-size test patterns to the synthesis of
BIST logic, with the objective of evaluating the reduction in size of the synthesized logic obtained from using MTP.

Additional research work involves further constraining the ILP formulation so that larger problem instances can be
solved optimally. Furthermore, the tradeoffs between minimum-size test pattern computation, fault simulation and
fault compaction need to be studied. Finally, a long-term objective of this work is the integration of the proposed
model in a complete testing environment, thus enabling the use of minimum-size test patterns for different purposes,
such as the validation of test pattern minimization heuristics or the synthesis of reduced-size FSMs for BIST in spe-
cific target applications.

References

[1] M. Abramovici, M. A. Breuer and A. D. Friedmabijgital Systems Testing and Testable Des@mmputer Science Press,
1990.

[2] F. Brglez and H. Fujiwara, “A Neutral List of 10 Combinational Benchmark Circuits and a Target Translator in FORTRAN,”
in Proceedings of the International Symposium on Circuits and Systos&

[3] K. Chakrabarty, B. T. Murray, J. Liu and M. Zhu, “Test Width Reduction for Built-In Self Testing’raneedings of the
International Test ConferencBlovember 1997.

[4] S.T.Chakradhar, V. D. Agrawal and S. G. Rothweiler, “A Transitive Closure Algorithm for Test Genet&titih, Transac-
tions on Computer-Aided Desigvol. 12, no. 7, pp. 1015-1028, July 1993.

[5] H. Cox and J. Rajski, “On Necessary and Nonconflicting Assignments in Algorithmic Test Pattern Gen#&e>oyans-
actions on Computer-Aided Desjgrol. 13, no. 4, pp. 515-530, April 1994.

[6] H. Fujiwara and T. Shimono, “On the Acceleration of Test Generation AlgorithEESE Transactions on Computersol.
32, no. 12, pp. 1137-1144, December 1983.

[7] J. Giraldi and M. L. Bushnell, “Search State Equivalence for Redundancy Identification and Test Gener&liocgkidings
of the International Test Confereng®p. 184-193, 1991.

[8] P. Goel, “An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circl#SE Transactions on
Computersvol. 30, no. 3, pp. 215-222, March 1981.

[9] S. Hellebrand, B. Reeb, S. Tarnick and H.-J. Wunderlich, “Pattern Generation for a Deterministic BIST Scheme,” in
ceedings of the International Conference on Computer-Aided Dek3§5.

[10] T. Kirkland and M. Ray Mercer, “A Topological Search Algorithm for ATPG,Pmceedings of the 24th Design Automation
Conferencepp. 502-508, 1987.

[11] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attractive Alternative to the Decision Tree for Test Generation in Dig-
ital Circuits,” inProceedings of the International Test Conferemge 816-825, 1992.

[12] T. Larrabee, “Test Pattern Generation Using Boolean Satisfiabii,E Transactions on Computer-Aided Desigol. 11,
no. 1, pp. 4-15, January 1992.

[13] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns for Combinational Circuits,” Technical Report No. 12_93,
Department t of Electrical Engineering, Virginia Polytechnic Institute and State University, 1993.

[14] IWLS’89 Benchmark Suite, available from http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth89/.

[15] V. Manquinho, P. Flores, J. P. M. Silva and A. Oliveira, “Prime Implicant Computation Using Satisfiability Algorithms,” in
Proceedings of the International Conference on Tools witiNavember 1997.

[16] T. M. Niermann and J. H. Patel, “HITEC: A test generation package for sequential circust@edings of the European
Conference on Design Automation (EDAEgbruary 1991.

[17] C. Pizzuti, “Computing Prime Implicants by Integer ProgrammingPlioceedings of International Conference on Tools
with Artificial Intelligence November 1996.

[18] I. Pomeranz, L.N. Reddy, S.M. Reddy, “COMPACTEST: A Method to Generate Compact Test Sets for Combinational Cir-

cuits,” in IEEE Transactions on Computer-Aided Desigal. 12, no. 7, pp. 1040-1049, July 1993.

[19] M. H. Schulz, E. Trischler and T. M. Sarfert, “SOCRATES: A Highly Efficient Automatic Test Pattern Generation System,”
IEEE Transactions on Computer-Aided Desigal. 7, no. 1, pp. 126-137, January 1988.

[20] M. H. Schulz and E. Auth, “Improved Deterministic Test Pattern Generation with Applications to Redundancy |dentifica-
tion,” IEEE Transactions on Computer-Aided Desigal. 8, no. 7, pp. 811-816, July 1989.

[21] J. P. M. Silva and K. A. Sakallah, “Dynamic Search-Space Pruning Techniques in Path Sensitiz&imegedings of the
31st Design Automation Conferenpe. 705-711, 1994.

[22] J. P. M. Silva and K. A. Sakallah, “Robust Search Algorithms for Test Pattern Generatimocaedings of the Fault-Toler-
ant Computing Symposiydune 1997.

[23] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli, “Combinational Test Generation Using Satisfl&ikiy,”
Transactions on Computer-Aided Desigol. 15, no. 9, pp. 1167-1176, September 1996.

[24] M. Teramoto, “A Method for Reducing the Search Space in Test Pattern Gengriati®moceedings of the International
Test Conferencepp. 429-435, 1993.

Appendix 1

In order to establish the validity of the proposed model we must first formally define the notion of test pattern min-
imization. This notion in tightly related with the way error signals propagate from the fault site to the primary out-
puts.

Definition 4. Given incompletely specified test pattefhs a’@d , we sayT@ai]oecializesTl provided there
exists at least one variabtesuch that(x, vl) oty and X, v2) oT, which is unspecifiedTlf and specified in
T, i.e. vy = X0v, 0 {0, 1} . Moreover, any specified assignmenT'in is also a specified assignriﬁgnt in ,ie.
(x,v) O T, 0vD {0, O (x,v) O T,. Conversely, we say thir1 coversT,.

Definition 5. For a faultf ans-path(i.e. sensitization path) denotes a sequence of nﬁqexz, X , connecting
the fault sitex; to a primary outpyf PO such tlx%t: ,i0{1 ..k . For a given faand a test pattern
T, the set o&-paths is denoted bQS(T, f)

Definition 6. We say that an assignme(®, v) sifrrelevant(i.e. sensitization irrelevant) with respect to a faiflt
and only if the fault is detectable given a test patﬂélrn ihx) O T1 , and for a new test p":ittern that spe-
cializesTl such thaT2 = Tl—{ X O0{(xv} ,we ha\FPS(Tl, O PS(TZ’ f)

Definition 7. For a given faulf we say that a test patteTrl imposdgelevancyif and only if any specialization
T, of T is such thaPS(Tl, O PS(TZ’ f)

For example for the C17 circuit in FigureT.,= { (xl, 1), (x2, X), (x3, 1), (x6, 1), (x7, X)} represents a test
pattern for faultx1 s-a-0, which in this case imposé@selevancy. Indeed any assignment to noxi;s X-or does
not change any of the fault effect propagation conditions defindd by

The above definitions basically allow us to introduce the following definition of minimum size test pattern.

Definition 8. Let T be a test pattern, we define the size dfTT, , as the number of specified assignments in T, i.e.
Tl = [{ (x) OT|vO{0, 1} }|.

Definition 9. Let T(f) be the set of all test patterns which detect a givenffdigt Trn be a test pattern such tﬁ'%
imposess-irrelevancy and any other test pattdin ~ which impeda®levancy is such thaﬂﬂ'm" < ||TJ|| . Insuch a
situation,Tm is said to berainimum-size test pattern (with respect to s-irrelevancy)

As the previous definition implies, in general there may be smaller test patterns which do nosimptEseancy.
These other test patterns are studied in the Section 4.2.

In the remainder of this appendix we show that the proposed optimization model can indeed be used for computing
minimume-size test patterns. The sequence of formal results basically shows that any implied good and faulty circuit
node assignments, due to a given test paftewill not be modified by any specialization Bf This is particularly
relevant for path sensitization, because it ensures that any computed tesfTpaitienmnspecified assignments, that
detects a given fauit still detects that same fault if some of the unspecified assignménkeobme specified. Thus
T is a test for the fault and implicitly represents a set of tests for the same fault (i.e. all of its specializations). We con-
clude by showing that any solution to (13) must be of minimum size.

Lemma 1. Let ¢u be a CNF formula for a circuit and [Etbe an assignment to the primary inputs such that
¢u =1.Letx=v,vO {0, 1} be a circuit node assignment impliedTbyn this situation and given any special-
ization of T, the assignment = v s also implied.

Proof: Given a gate connected solely to the primary inputs of the circuit, if its output is specified ggveither
because all inputs assume a non-controlling value or because at least one input assumes a controlling value.
(Observe that for NOT and BUFF gates the analysis is similar.) Clearly, the value of the output of this gate can-
not change by any specialization DfBy induction on the topological level of a circuit, the same reasoning
applies on all gates, and the results follows. []

Proposition 1.Given a faulff and a test patterhand a circuit nodg for which yS = 1, then for any specialization
of T, yS = 1 holds.

Proof: From Lemma 1 we know that any specified good value of any node in the circuit cannot change with any
specialization of. Furthermore, the faulty value of a node is only specified when the good value is also speci-
fied from (10). Again applying Lemma 1 to the faulty values, we can conclude that a specified faulty value can-
not change with any specialization BfFinally, since specified good and the faulty values cannot change for
any specialization of, then any assignmegt = 1 cannot change. [|

. D o . .
Corollary 1. Given a faulf and a test pattefisuch thath | = 1 , then any unspecified assignnenix) UT is
s-irrelevant with respect th Moreover, test patterh impose&irrelevancy.

Proof: The proof follows from Proposition 1. []

Proposition 2.A fault f is detectable if and only if the corresponding CNF formpﬁa is satisfiable.

Proof: Let us consider a detectable faiullt is known that for completely specified test patteans, is satisfied if
and only if faultf is detectable [22]. Sindds detectable we can always find a completely specified test pattern
T for which ¢ ~ is satisfied. Thus, we can identify at least one path connecting the fault site to a primary output
such that for any nodein the patth = 1 . Consequently, and by the definitionbgf T must also satisfy

0.]
Conversely, let us consider an assignment for wkbi&h is satisfiable. This necessarily implies the exist-
ence of at least one primary outputor which xS = 1. By construction, the value of the good variable for
every node in at least one path from the fault site to primary oxitpust be specified, and such that for each
such node the good value differs from the faulty value. GivenTtimposess-irrelevancy (from Corollary 1),

then any complete specializationDstill satisfiesd;LD . Using the reverse mapping to the original set of vari-

ables, therp = is also satisfied and from [22] the faisldetected. []

. D .
Corollary 2. Given a faultf and a test patterfi such thatd)u ‘ = 1 , then the fault effect is observable on at least
one primary output. T

Proof. Since ¢5‘ = 1 , then we must necessarily hdyR =1 . Thus we have a primary »gipcit that

S T G, F G T . .
x = 1.Consequentlyx #x Ox 0O {0,1} ,and so the fault effect is observable on primary autjilt

. D . .
Corollary 3. Given a faulf and a test patterisuch thatl)u ‘ = 1 , then there existsspath from the fault site to
at least one primary output. T

Proposition 3.Given a faulf, the solution of ILP (13) is a minimum-size test pattern with respesititelevancy.

Proof: From Proposition 2 we know th¢t5 =1 if and only if the fault is detectable. Hence the constraints of
the ILP (13) are only satisfied for test Batterns detecting the fault. Suppose ndy that is the computed solu-
tion of (13) and suppose further that there exisfs sucliithat also detects the fﬁﬂ]g"an"ﬂ]’lu . How-
ever, sinceT2 detects the fault, it also satisfies the constraints of (13), and so it would be a better solution than
the computed solution of the ILP; a contradiction. []

