TEST PATTERN GENERATION FOR WIDTH COMPRESSION IN BIST

Paulo Flores, Hordcio Neto

Technical University of Lisbon

Krishnendu Chakrabarty

Duke University

Jodo Marques-Silva

Cadence European Laboratories

IST/INESC Electrical and Computer Eng. IST/INESC
{pff,hcn} @inesc.pt krish@ee.duke.edu jpms@inesc.pt
ABSTRACT
The main objectives of Built-In Self Test (BIST) are the design of Test Senerator > ’é?f;ﬁ? - Combinatonal

test pattern generator circuits which achieve the highest fault cov-
erage, require the shortest sequence of test vectors and utilize the
minimum circuit area. This paper targets the problem of generat-
ing test patterns for stuck-at faults that induce compatibility rela-
tions between the primary inputs of the circuit under test. These
compatibility relations can be used for designing counter-based
test generator circuits with a reduced number of bits, thus requir-
ing smaller testing time and smaller area. The proposed solution
is based on an integer linear programming (ILP) formulation that
builds on existing Propositional Satisfiability (SAT) models for test
pattern generation. An ATPG tool for minimum test pattern gen-
eration for width compression (MTP-C) is described, which illus-
trates the practical applicability of our approach for a wide range
of benchmark circuits.

1. INTRODUCTION

Built-In Self-Test (BIST) denotes the ability of a circuit (or sys-
tem) to test itself. This paradigm for testing ICs is gaining ac-
ceptance in the VLSI industry because it can potentially eliminate
the need for external test equipment and introduces the capability
for testing devices after the circuit is integrated in a system, in the
field (on-line testing) [1]. Test vectors are generated on the chip
by a test pattern generator circuit (TPG) and the circuit responses
are examined by an output response analyzer (ORA) that deter-
mines about the correct operation of the IC [1, 2]. The increase of
electronics in safety critical applications also demands the use of
on-line testing. Such systems in general require testing to have a
high fault coverage and be as fast as possible.

One of the key challenges in BIST is the design of the TPG.
An optimal TPG will generate the minimum number of vectors (to
reduce testing time) that guarantee the highest fault coverage while
introducing the minimum area overhead and performance penalty
in the circuit. All these design goals are difficult to meet simulta-
neously, and several architectures for TPG have been proposed [1].
Two opposite architectures with respect to area overhead and test-
ing time are the ROM based architectures and the counter-based
architectures. The former architectures use a ROM to store the
vectors generated by an Automatic Test Pattern Generator (ATPG).
Thus, high fault coverages and short testing times can be achieved.
Conversely, the area overhead introduced by this method (ROM,
counter, address decoder, etc.) is in general prohibitive for prac-
tical applications. In counter-based architectures the test patterns

*This work was partial supported by following PRAXIS XXI projects:
Euro-Lasic (2/2.1/TIT/1643/95) and GRASP (2/2.1/TIT/1597/95).

0-7803-5471-0/99/$10.000©1999 IEEE

Figure 1: Generic test pattern generator model [4, 2]

are generated by a counter, which introduces a small area penalty.
The main disadvantage of this method is that long test sequences
may be required to achieve an acceptable fault coverage, which re-
sult in longer testing time. The most used BIST architectures are
based on Linear Feed Back Registers (LFSR), that are used to gen-
erate pseudo-random test sequences. For these architectures, good
fault coverages can be achieved in most cases, and the testing time
can become sufficiently reduced [3]. Several techniques have been
proposed to reduce even more the test time and/or increase the fault
coverage based on LFSR architectures {2, 4, 5, 6, 7, 8, 9, 10].

In this paper we describe a model for ATPG targeting counter-
based TPG architectures. Constraints are imposed during test pat-
tern generation which target the reduction of width of the counter
used in the test generation circuit. Therefore a high fault coverage
is guaranteed (100% of non-redundant faults) in a shortt test time.
The proposed solution is based on an integer linear programming
(ILP) formulation which builds on an existing Propositional Sat-
isfiability (SAT) model for test pattern generation [11, 12]. The
paper is organized as follows. We start in section 2 by identifying
our target TPG model and the width compression technique that
our work is based upon. Afterwards, in section 3 we address the
problem of computing test patterns with unspecified input assign-
ments. Don’t cares are of key relevance for identifying compati-
bility relations between primary inputs of the circuit under test. In
section 4 we introduce the ILP test generation model that targets
width compression. Section 5 includes preliminary experimental
results on several practical applications of the model.

2. BIST CIRCUIT GENERATOR

A large number of techniques exist for designing test generator
circuits for BIST [1, 4, 13]. A general model for a BIST scheme
is shown in Figure 1. Common solutions for the generation of a
set of pre-computed test patterns use a finite state machine (FSM)
or a read only memory (ROM) associated with a counter. How-
ever, the area overhead introduced by these methods is in general
considered prohibitive for practical use.

The most hardware-efficient sequence generator is an LFSR or
other counter-like circuit. In these circuits, the number of flip-flops
is, in general, equal to the number of inputs of the circuit under test
(CUT), thus the decoder circuit is inexistent (w = n). These cir-
cuits are used in basic pseudo-random or pseudo-exhaustive test-
ing. The fault coverage is determined by fault simulation once the

I-114

In Proceedings of the | EEE International Symposium on Circuits and Systems (ISCAS), volume |, pages 114-118, May 1999

test generator circuit is defined. In general, long test sequences are
necessary to achieve high fault coverage, in particular for circuits
that contain random-pattern resistant faults (circuits with many
hard to detect faults). Several techniques have been proposed in
order to reduce the test length at the cost of increasing the com-
plexity of the test generator circuit and/or the decoder circuit. In
weighted random testing [6, 10] an extra circuit biases the pseudo-
random sequence using pre-computed weighted sets. Other tech-
niques try to encode a deterministic test set in the test generator
circuit either by searching the appropriate seeds and/or select the
LFSR that best covers the test set [5, 7, 9].

Recent work in BIST [4, 2] has led to a new procedure for the
generation of test generator circuits which target the minimization
of the number of required flip-flops. This procedure is based on
the compression of the width (i.e. the number of bits) of the origi-
nal test patterns. Therefore, a smaller counter-based FSM is used
to generate the compressed test patterns (with a width of w bits)
which are then fed to the decoding logic. The test pattern gen-
erated by the decoding logic is then applied to the circuit under
test. The main advantage of this technique is that at the same time
we are reducing the area of test generator circuit, we are also cut-
ting down the test time, without introducing additional logic in the
decoder circuit.

Width compression was proposed by Chen and Gupta [2] who
observed that in many cases, some inputs of the CUT can be con-
nected to the same output of the test generator circuit, without in-
troducing redundant faults, thus not reducing the fault coverage
of the circuit. This way, we can reduce the width w of the test
generator circuit without introducing, at the same time, extra logic
in the decoder circuit. Under these conditions the decoder circuit
consists only of interconnecting lines, without any area penalty.
Consider the C17 ISCAS’85 [14] benchmark circuit (see Figure 2-
a) which can be tested using the set of vectors shown on Figure 2-b.
Note that for each test vector, the inputs 2 and z¢ always assume
equal values, therefore they can be driven by the same output of
the test generator circuit, as shown in Figure 2-c. Inputs with this
characteristic are called directly compatible. Inputs z3 and - are
also directly compatible. Observe that input z; is always the com-
plement of input 2, thus they can be derived one from the other
using an inverter. This inverter does not increase the complexity
of test generator circuit if we consider that we are using flip-flops
with inverted and non-inverted outputs. Inputs exhibiting this re-
lationship are referred to as inversely compatible. As shown in
Figure 2-d this type of compatibility reduced one bit in the test
generator circuit width. Other types of compatibility are possible
between the inputs but in general they require some logic in the
decoder circuit which will introduce some area overhead [4, 13].

Using pre-computed test patterns with don’t cares, can signifi-
cantly simplify the test generator circuit. Test sets with don’t cares
are in general larger but the number of compatibility inputs may be
greater because don’t care bits can be chosen to force some type
of compatibility, reducing the test generator circuit width.

In this paper we only consider direct and inverse compatibil-
ities on the situations where test patterns exhibit don’t cares: the
objective will be to minimize the width w of the test generator
circuit such that, all non-redundant circuit faults are detected.

3. TEST GENERATION WITH UNSPECIFIED VARIABLE
ASSIGNMENTS

In the remainder of the paper, we use the definitions for Satisfia-

bility (SAT) and SAT-based Test Pattern Generation proposed in

Table 1: New variables for modeling unspecified assignments

[11, 15, 12, 16]. A formal model for test generation using SAT
models can be found in [12]. Moreover, we briefly review the gen-
eration of test patterns with don’t cares. In order to maximize com-
patibility classes, test patterns are required to exhibit don’t cares,
and thus we base our approach in the test generation model of [17].

Given a circuit and its associated CNF formula or a fault f and
its associated fault detection formula, the existence of unspecified
assignments implies that each of the original circuit variables can
now be assigned a value in the set {0, 1, X'}. In this situation an
assignment z = X indicates that z is unspecified, or that the value
assumed by x is an unspecified assignment. In contrast z € {0, 1}
indicates that z is specified, or that the value assumed by z is a
specified assignment. In this situation, an assignment A is allowed
to leave variables unspecified. Furthermore, the value of a CNF
formula ¢ for an assignment A can also be X, ¢4 € {0,1, X}.

With the purpose of deciding CNF formula satisfiability in the
presence of unspecified variables, a new set of variables is cre-
ated. This basically consists of duplicating the number of Boolean
variables, which is a common solution for capturing unspecified
assignments. (Observe that since only 3™ assignments need to
be considered for M variables, the actually required number of
Boolean variables is [log(3)], since there are only three pos-
sible assignments to each of the original variables. Nevertheless,
considering instead 2 - M variables greatly simplifies the proposed
model.) As a result, we propose to represent each Boolean vari-
able x with two new variables z° and x* having the interpretation
indicated in Table 1. For this interpretation, z = X indicates that
z is unspecified. The simultaneous assignment of variables ¢° and
2! to 1 is not allowed, requiring the inclusion of the following
constraints in the resulting CNF formula,

Piny,z = (—'zl + _‘ml)) M

for each node z € Vo, where V- represents the set of nodes in the
circuit. In addition, for each basic gate type we need to define the
corresponding CNF formula. However, each gate input and output
must now be replaced by two variables. Let us consider for exam-
ple an AND gate, which will now be denoted by the generalized
form (z°,z') = UANDw?,wi,... ,w}),w}), and which al-
lows unspecified assignments on the gate inputs and output. Since
the simultaneous assignment of any pair of variables (z°, z) to 1
is prevented by (1), then we just need to relate the remaining as-
signments. The output variable z' can only assume value 1 when-
ever all input variables w}- also assume value 1. Hence, we can say
thatz' = AND(wi, ..., w}). In addition, the output variable z°
assumes value 1 provided at least one input variable w;) assumes
value 1. Hence, we can say that ° = OR(w?{,... ,w?). As a
result we obtain from [11, 12],

j
§ (o} 0
w; +
=1
J
1 1
E wi; +x
=1

J

Puao = | [[(~w? +2°)
= @
J

Pu,xl = H(wtl + ﬁJ:l)

=1

I-115

it

3

(a) Circuit

(b) Test vectors

3-bit 2-bit

Test Generator Circuit
(LFSR/Counter)

Decoder

CUT

(d) Test generator circuit with

(c) Test generator circuit with 3 bits 2 bits and inverted outputs

Figure 2: Test set and two BIST generators for C17 circuit[4, 2]

Furthermore, the CNF formula for an AND gate with output z
now becomes,
<P“sT = Sou,zl) (pu,zo u lpinu,z (3)
which properly models unspecified assignments to the inputs and
output of an AND gate. Similar relations can be derived for the
other simple gates. Consequently, the CNF formulas for simple
gates given in [12] can be generalized by following the same ap-
proach used for deriving (2) [17]. As a result, we can now create
the CNF formula for the circuit, one in which unspecified variable
assignments are allowed.

4. COMPUTING TEST PATTERNS FOR WIDTH
COMPRESSION

In this section we develop a greedy optimization model for com-
puting test patterns aiming at the reduction of the width of the test
set. This optimization model is based on test pattern generation in
the presence of incompletely specified primary input assignments.

4.1. Forcing Compatibility Classes

A compatibility class is defined as a set of inputs which can be con-
nected together, or through an inverter, such that each of which can
be driven by only one output of the test generator circuit through-
out the application of the test sequence. Formally we can define
directly and inversely compatibility classes as follows:

Definition 1 Consider a set of test vectors V. = {T1,Ts,...,Tn}
Jor a circuit. Two inputs z; and x; are directly compatible if

VTp €V Tpli] = Tplj] or Tpli] = X or Tplj]l =X

and are inversely compatible if

VT, €V Tpli] = Tplj] or Tplil = X or Tplj] = X

Two inputs are compatible if they are either directly or in-
versely compatible.

Definition 2 The compatibility class set, S, is the set of all pairs
of inputs that, for a given group of test vectors, are compatible
(directly or inversely).

Inputs Cij
z; x; || Direct]Inverse Uij || Si
X X 0 0 0 0
X 0 0 0 1 0
X 1 0 0 1 0
0 X 0 0 1 0
0 0 0 1 1 1
0 1 1 0 1 1
1 X 0 0 1 0
1 0 1 0 1 1
1 1 0 1 1 1

Table 2: Definition of variables C; ;, U; ; and Si,;

For a set of test vectors which have test patterns with unspeci-
fied inputs, finding the optimal set of compatibility classes is an
NP-hard problem [4]. So, we use an heuristic approach to ef-
ficiently generate good classes in practice. In [4] is presented
an heuristic algorithm that produces a good set of compatibility
classes. We will use this algorithm as our general procedure to
identify compatibility classes. Basically this algorithm identifies
directly and inversely compatible inputs, for a given test set, and
represents them on a graph whose vertices are the inputs and edges
correspond to those compatibility relations between the inputs.
Then, heuristically, the procedure identifies an initial set of cliques
with size 3, which can be identified in polynomial time [4]. Fi-
nally, vertices are added to the cliques if the compatibility is main-
tained between all the inputs in the clique.

When determining a test vector for a given target fault we
would like to keep the same cardinality on the set of compatibil-
ity classes already found from previous test vectors. Thus we will
associate a compatibility boolean variable, C; ;, with each pair of
inputs that are in a compatibility class. As shown in Table 2 this
variable assumes the value 1 when the compatibility between in-
puts z; and z; does not hold. Considering that each circuit node
is represented by two variables in the model, 2° and 2! according
to Table 1, the clauses <pc*'vf which define this variable for direct
and inverse compatibility are the following:

(-z} + -zF + Cij):
(-2 + —zj + Cif)

if z; and z; are

directly compatible

. . C)]
(ﬂ(v" + —z; + Ci,j)'
(ﬂ.’l;‘? + -~z + Ci,j)

if z; and x; are
inversely compatible

I-116

Moreover, in order to enhance future compatibility classes we
add to our model two more types of boolean variables. The unity
variables, U;,;, which allow us to identify when any of the inputs
in a compatibility class pair is specified, and the simultaneity vari-
ables, S;,;, that determine when both of the inputs are specified.
With this variables we are able to increase the number of unspeci-
fied inputs in each test pattern within a compatibility class. Table 2
describes the values assigned to these variables for any valid com-
bination of two input bits. The clauses that capture this behavior
are:

QUi = (=ad +Us;) - (mal +Uiy) - (=a§ +Usy) - (=25 + Usy)
&)

(~af + —z] + Si3) - (~xl + —zf + Sig) -

(mzi + 2§ + 8i) - (~ei + -z + i)

p7 =
(6)

4.2. The Complete Optimization Model

The main objective in the computation of test patterns for width
compression is to identify a test pattern that detects a fault but, if
possible, does not increase the number of compatibility classes de-
fined by the test vectors previously found. Hence, our goal is to
minimize the number of extra compatibility classes such that the
given fault is still detected. Additionally, we also would like to
increase the number of unspecified inputs. This way, we increase
the probability that our class compatibility identification procedure
will find in the future other set of compatibility classes with the
same cardinality, even if this particular vector increases the num-
ber of compatibility classes. As a result we obtain the following
optimization model,

Z (Ci,j +Uij + Sij)

(,5)eq

minimize

)

subject to,
U (¢Cii - pUini . pSind)

(i,)eqQ
D
Pu

(where ¢ denotes the set of clauses for detecting a fault under
unspecified primary input assignments [17].) This formulation ba-
sically requires that the total number of compatibility classes and
assigned input variables be minimized under the constraint that the
fauit be detected. Note that according to Table 2, each item for a
pair of inputs in the cost function assumes only four discrete val-
ues: 0, if both inputs are unspecified; 1 if only one of the inputs
is specified; 2 if both inputs are specified but the compatibility is
maintained; 3 otherwise.

Given the mapping between CNF clauses and linear inequali-
ties described in [18], (7) can be viewed as an integer linear pro-
gram, and so different integer linear optimization packages can
potentially be applied. Nevertheless, the constraints of (7) are
tightly related with propositional satisfiability. Consequently, and
as shown in [18], SAT based ILP solvers are preferable for solving
ILPs for which the constraints correspond to CNF formulas.

Notice that, when there are no compatibility classes (2 = 0)
none of the variables for compatibility, unity and simultaneity are
defined. In that case, the cost function to minimize is redefined
to minimize the number of specified inputs in the test pattern, as
presented in [17]:

o ATALANTA MTP-C #bits [Sec/
Circuit #PL V] WIHT W red. | Vect.
9symml 9 94 9 84 9 0 1.5
alud 14 | 239 14 | 197 12 2 12.4
cht 47 | 194 51178 4 1 23
cml38a 6 13 6 12 6 0 0.1
cm150a 21 65 10 44 7 3 4.3
cml63a 16 44 8 35 8 0 0.2
cmb 16 39 12 30 12 0 0.1
comp 32 68 32 50 20 12 155
compl6 35 | 111 33 94 28 5 18.8
cordic 23 59 21 45 17 4 77
cu 14 49 13 36 10 3 0.1
dalu 75 | 740 26 | 601 25 1 333
majority 5 11 5 11 5 0 0.1
misex1 8 28 5 22 5 0 0.1
misex2 25 77 14 65 14 0 04
misex3 14 | 289 14 | 241 14 0 13.0
mux 21 64 10 43 7 3 2.0
pcle 19 75 11 53 11 0 0.2
pcler8 27 90 12 74 12 0 0.4
term] 34 | 135 17 | 102 16 1 4.4
too.large 38 | 226 31 162 31 0 12.1
unreg 36 | 133 5[122 5 0 3.2

Table 3: Experimental results for IWLS’89 benchmarks

Y (@ +a) ®

z;EPI

minimize

5. EXPERIMENTAL RESULTS

The model described in the previous section has been integrated
in a test pattern generation framework for the computation of test
patterns referred to as Minimum Test Pattern generator with Width
Compression (MTP-C), which uses the SAT-based ILP algorithm
of bsolo [18] and the fault simulator provided with ATALANTA
[19]. The results included below were obtained with the IWLS’89
benchmark suite {20] and with the ISCAS’85 benchmark suite
[14]. In all cases MTP-C was run with a bound on the amount
of allowed search (i.e. the total number of conflicts was limited
to 1000). This permits MTP-C to identify acceptable solutions,
which in some cases may not be necessarily optimal. Moreover,
in order to facilitate the optimization process, MTP-C uses the so-
lution computed by ATALANTA (or by any other ATPG tool) as
the startup assignment. These assignments provide an initial upper
bound on the value of the optimal solution. If ATALANTA aborts
the fault, then TG-GRASP [12] is used for computing a startup test
pattern.

Table 3 contains the results for the IWLS’89 benchmarks for
both ATALANTA [19], and MTP-C. ATALANTA is an ATPG tool
that can generate test patterns with don’t cares. Columns #PI, #V
and W denote, respectively, the number of primary inputs, num-
ber of test vectors and with of test set after compression. Last two
columns represent the number of bits gained by our ATPG over
ATALANTA and the average time to solve the model for each vec-
tor (on a Sun Sparc-Ultra with 384 Meg. of memory).

From these results we verified that the model implement by
the MTP-C ATPG decreases the number of bits necessary to fully
test a circuit. This is achieved by computing fewer test vectors than
ATALANTA and, in some cases, reducing the width, in number of
bits, necessary to store the test patterns. We should notice that a

I-117

s ATALANTA MTP-C #bits Sec/
Circuit | #P1 T { V] WLI[red. TVecn
@ 36| B[10| 2% T 57
499 | 41l 13| 4l oes| 40| 1| 224
880 | 60| 393 | 30280 | 29 1| 282
ci3ss | a1 | s | 41| 96| 3| 3| 709
c1908 | 33| 201 | 31| 181] 20| 2| 463
2670 | 233 | 780 | 55|60 | 52| 3| 910
3540 | so| 7180 30|53 | 31| -1| 984
5315 | 178 | 1393 | 38 | 993 | 44| 6| 2247
6288 | 2| 248 | 2| s8] 32| o] 3263
c7552 207 919 101 706 93 8 166.8

Table 4: Experimental results for ISCAS’85 benchmarks

reduction by one bit in the width of the test patterns will reduce to
half the number of test patterns produced by the BIST generator,
thus will cut down to half the time required to fully test the circuit.

Table 4 contains the results for the ISCAS’85 circuits. Once
more we can conclude that MTP-C is able to improve over the
ATALANTA results, but in this case the improvements are in gen-
eral higher. This may happen because now we are dealing with
bigger circuits, so the number of distinct vectors that can detect a
given fault may be bigger, therefore it will be “easier” for the ILP
solver to find vectors that meet the compatibility classes restric-
tions.

The results obtained by circuits ¢3540 and ¢5315 shows that
our greedy approach may not produce good results for all circuits.
Selecting a good fault ordering and improving the compatibility
selection procedure between two faults are techniques that should
be considered to further improvement.

From the previous experimental results for the IWLS’89 and
ISCAS’85 benchmarks we can conclude that for some circuits our
approach can reduce the test patterns width, which has a signifi-
cant impact on the test time and area of test generator circuit. The
heuristics incorporated in the MTP-C ATPG tool need to be tuned
in order to achieve a better width compression in a wide range of
circuits. We should also note that counter-based test generation
circuits are only practical provided we are able to reduce the width
to no more than 25-30 bits. Hence, for several of the benchmarks,
additional width compression is required.

6. CONCLUSIONS

In this paper we introduce a SAT-based integer linear programming
model for computing test patterns for width compression. Based
on this model we describe an ATPG tool (MTP-C) which incor-
porates several heuristics. The applicability of the model is illus-
trated by computing test patterns for several benchmark circuits.
The next step of this work is to determine new types of compati-
bility (such as d-compatible [4] and others) to be incorporated in
the model with the objective of reducing the test patterns width
without a significantly increase in the area of the decoder.

Additional research work involves further constraining the ILP
formulation so that larger problem instances can be solved opti-
mally. Furthermore, a good set of heuristics to determine the com-
patibility sets and define the sequence of the sequence of the faults
has to be developed. Finally, a long-term objective of this work
is the integration of the proposed mode! in a complete testing en-
vironment, enabling the use of compressed test patterns for the
synthesis of reduced-size FSMs for BIST in specific target appli-
cations.

(1

[2]

3

—

[4

=

[5

[t

[6

[ind}

7

—

[8

—

[9

[

(10}

[11]

[12]

(13}

(141

[15]

{16}

{17]

{18]

{19]

[20

I-118

7. REFERENCES

M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems
Testing and Testable Design. 1EEE Press, 1990.

C.-A. Chen and S. K. Gupta, “A methodology to design efficient
BIST test pattern generators,” in Proceedings of International Test
Conference, pp. 814-823, 1995.

C. Dufaza and G. Canbom, “LFSR based deterministic and pseudo-
random test pattern generator structures,” in Proceeding of European
Test Conference, pp. 27-34, 1991.

K. Chakrabarty, B. T. Murray, J. Liu, and M. Zhu, “Test width com-
pression for built-in self testing,” in Proceedings of International Test
Conference, November 1997,

S. Hellebrand, B. Reeb, S. Tarnick, and H.-J. Wunderlich, “Pattern
generation for deterministic BIST scheme,” in Proceedings of Inter-
national Conference on Computer-Aided Design, 1995.

F. Muradali, V. Agarwal, and B. Nadeau-Dostie, “A new procedure
for weighted random built-in self-test,” in Proceedings of Interna-
tional Test Conference, pp. 660-669, 1990.

I. Pomeranz and S. M. Reddy, “A learning-based method to match a
test pattern generator,” in Proceedings of International Test Confer-
ence, pp. 998-1007, 1993.

N. A. Touba and E. J. McCluskey, “Synthesis of mapping logic for
generating transformed pseudo-random patterns for BIST,” in Pro-
ceedings of International Test Conference, pp. 674-682, 1995.

S. Venkataraman, J. Rajski, S. Hellebrand, and S. Tarnick, “An effi-
cient BIST scheme based on reseeding of multiple polynomial linear
feedback shift registers,” in Proceedings of International Conference
on Computer-Aided Design, pp. 572-577, 1993.

H. Wunderlich, “Multiple distribution for biased random test pat-
terns,” in Proceedings of International Test Conference, pp. 236-244,
1998.

T. Larrabee, “Test pattern generation using boolean satisfiability,”
IEEE Transactions on Computer-Aided Design, vol. 11, pp. 4-15,
January 1992.

J. P. Marques-Silva and K. A. Sakallah, “Robust search algorithms
for test pattern generation,,” in Proceedings of Fault-Tolerant Com-
puting Symposium, June 1997.

K. Chakrabarty and B. T. Murray, “Design of built-in test generator
circuits using width compression,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 17, pp. 1044
1051, October 1998.

F. Brglez and H. Fujiwara, “A neutral list of 10 combinational bench-
mark circuits and a target translator in FORTRAN,” in Proceedings
of International Symposium on Circuits and Systems, 1985.

S. T. Chakradhar, V. D. Agrawal, and S. G. Rothweiler, “A tran-
sitive closure algorithm for test generation,” IEEE Transactions on
Computer-Aided Design, vol. 12, pp. 1015-1028, July 1993,

P. R. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Combinational test generation using satisfiability,” IEEE Transac-
tions on Computer-Aided Design, vol. 15, pp. 1167-1176, September
1996.

P. F. Flores, H. C. Neto, and J. P. M. Silva, “An exact solution to the
minimum-size test pattern problem,” in Proceedings of International
Conference on Computer Design, October 1998.

V. Manquinho, P. Flores, J. Marques-Silva, and A. L. Oliveira,
“Prime implicant computation using satisfiability algorithms,” in
Proceedings of International Conference on Tools with Artificial In-
telligence, November 1997.

H. K. Lee and D. S. Ha, “On the generation of test patterns for com-
binational circuits,” Tech. Rep. 12.93, Department of Electrical En-
gineering, Virginia Polytechnic Institute and State University, 1993.

“Test benchmark suite.” International Workshop on Logic Synthe-
sis 1989, Available from
http://www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth89/, 1989.

