
In Proceedings of the IEEE International Conference on Computer Design (ICCD), pages 510-515, October 1998

Abstract
This paper addresses the problem of test pattern gener-

ation for single stuck-at faults in combinational circuits,
under the additional constraint that the number of speci-
fied primary input assignments is minimized. This problem
has different applications in testing, including the identifi-
cation of don’t care conditions to be used in the synthesis
of Built-In Self-Test (BIST) logic. The proposed solution is
based on an integer linear programming (ILP) formula-
tion which builds on an existing Propositional Satisfiabil-
ity (SAT) model for test pattern generation. The resulting
ILP formulation is linear on the size of the original SAT
model for test generation, which is linear on the size of the
circuit. Nevertheless, the resulting ILP instances represent
complex optimization problems, that require dedicated
ILP algorithms. Preliminary results on benchmark circuits
validate the practical applicability of the test pattern mini-
mization model and associated ILP algorithm.

1. Intr oduction

Automatic test pattern generation (ATPG) for stuck-at
faults in combinational circuits is now a mature field, with
an impressive number of highly effective models and algo-
rithms [5-7, 12-14]. (A comprehensive list of references
can be found in [4].) Furthermore, besides being effective
at detecting the target faults, recent ATPG tools have
aimed the heuristic minimization (i.e. compaction) of the
total number of test patterns required for detecting all
faults in a circuit [3, 11, 12]. In general, the degree of test
pattern compaction is expected to be related to the number
of unspecified input assignments in each test pattern. In
addition, for applications where testing time and fault cov-
erage requirements can only be obtained with dedicated
Finite-State Machine (FSM) controllers, the computation
of test patterns with a large number of unspecified input
assignments may allow for significantly smaller synthe-
sized FSMs. Indeed, if the test set is used as input to a
logic synthesis tool with the purpose of synthesizing BIST
logic, then by maximizing the number of unspecified input
assignments, i.e. by maximizing the don’t care set of each
test pattern, the logic synthesis tool is in general able to
yield smaller synthesized logic. Thus the maximization of
the don’t care set of each test pattern, or conversely, the
computation of test patterns of minimum-size, can have
significant practical consequences.

Nevertheless, there exists no model or algorithm in the
literature for computing test patterns for which the number
of unspecified primary input assignments is maximized.
Accordingly, the main objective of this paper is to propose

a first attempt at solving this problem. We start by formal-
izing the notion of test pattern minimization. We then
develop a new model for test pattern generation, based on
propositional satisfiability (SAT), in the presence of
unspecified input assignments. Next, we derive an integer
linear programming (ILP) model for maximizing the num-
ber of unspecified primary input assignments. Afterwards,
we show that the model is indeed correct and analyze
some of its limitations. Finally, we provide preliminary
results that justify using the proposed model in medium-
size combinational circuits and describe an ATPG method-
ology, which can incorporate the proposed model and sup-
porting algorithm, and which can also be applied to large-
size combinational circuits. Besides its practical applica-
bility, to our best knowledge this is the first formal non-
heuristic model towards computing minimum size test pat-
terns.

The paper is organized as follows. We start in Section 2
with several definitions regarding combinational circuits,
Conjunctive Normal Form (CNF) representations of cir-
cuits and CNF representations of fault detection problems,
which are used throughout the paper. Afterwards, in Sec-
tion 3, the CNF models described in Section 2 are general-
ized for correctly handling unspecified variable
assignments. The next step is to introduce the ILP optimi-
zation model for minimizing test patterns and prove its
correctness. Section 5 includes preliminary experimental
results on several practical applications of the model. We
conclude in Section 6 with a brief overview of future
research work in the area of test pattern minimization.

2. Definitions

We start by introducing unified representations for cir-
cuits, fault detection problems, and associated optimiza-
tion problems. These representations are used throughout
the paper and are key for developing the proposed ILP for-
mulations. A combinational circuitC is represented as a
directed acyclic graph , where the elements
of , i.e. the circuit nodes, are either primary inputs or
gate outputs, with . The set of edges

 identifies gate input-output connections. We
shall assume gates with bounded fanin, and so

. For every circuit nodex in , the follow-
ing definitions apply (from [13]):
• denotes thefanin nodes of nodex, i.e. nodesy in

 such that .
• denotes thetransitive fanout of nodex, i.e. the set

of all nodesy such that there is a path connectingx to y.

C VC EC,()=
VC

VC N=
EC VC VC×⊆

EC O N()= VC

I x()
VC y x,() EC∈
O∗ x()

An Exact Solution to the Minimum Size Test Pattern Problem

Paulo F. Flores, Horácio C. Neto and João P. Marques Silva
Cadence European Laboratories

IST/INESC
1000 Lisboa, Portugal

{pf f,hcn,jpms}@inesc.pt

• denotesimmediate fanout cone of influence of x,
being defined as follows:

. (1)

The set of primary inputs is referred to asPI, and the
set of primary outputs asPO. Simple gates are assumed:
AND, NAND, OR, NOR, NOT and BUFF.

For Automatic Test Pattern Generation (ATPG), the fol-
lowing definitions apply. The single stuck-at line (SSF)
fault model is assumed [1]. We say that a stuck-at fault is
detectable if and only if there exists an assignment of logic
values to the circuit primary inputs such that the effect of
the fault can be observed at one of the circuit primary out-
puts.

The application of Conjunctive Normal Form (CNF)
representations of circuits and fault detection problems in
ATPG has been extensively studied [6, 13, 14]. In this sec-
tion we provide very simple and non-optimized CNF rep-
resentations of circuits and fault detection problems,
which will be assumed in the remainder of the paper.
These representations form the basis for the ILP models
introduced in the remainder of the paper.

The CNF formula of a circuit is the conjunction of the
CNF formulas for each gate output, where the CNF for-
mula of each gate denotes the valid input-output assign-
ments to the gate. (Derivation of the CNF formulas for
simple gates can be found for example in [6, 13].) If we
view a CNF formula as a set of clauses, the CNF formula
ϕ for the circuit is defined by the set union1 of the CNF
formulas for each gate:

(2)

In the context of test pattern generation, and for captur-
ing the fault detection problem, each nodex is character-
ized by three propositional variables:
• denotes the logic value assumed by the node in the

good circuit.
• denotes the logic value assumed by the node in the

faulty circuit.
• denotes whether and assume different logic

value [6]. We shall refer to this variable as the
sensitization status of node x. (Other semantic
definitions of the sensitization status have been
proposed [14]. Nevertheless, the above definition is
used since it simplifies the ILP formulations derived in
subsequent sections. We should note, however, that the
other semantic definitions could also be used.)
Given the definition of variable , the condition

 must hold, which can be simplified to:

(3)

that basically states that the logic values of and dif-
fer if and only if assumes logic value 1.

1. Set union in this context is to be understood as a
product of clauses.

KO x()

KO x() y y O∗ x()∈ y I w()∈ w O∗ x()∈∧∨{ }=

ϕ ϕx
x VC∈
∪=

x
G

x
F

x
S

x
G

x
F

x
S

x
G

x
F≠ 

 
x

S↔

ϕx
S

x
G

x
F¬ x

S
+ + 

 
x

G¬ x
F

x
S

+ + 
 

⋅ ⋅=

x
S¬ x

G
x

F
+ + 

 
x

S¬ x
G¬ x

F¬+ + 
 

⋅

x
G

x
F

x
S

Let denote the CNF formula associated with gate
outputx. The notation denotes the CNF formula forx
in the good circuit, i.e. using variables, whereas
denotes the CNF formula forx in the faulty circuit, i.e.
using variables. For astem fault z-a-v [1], the CNF rep-
resentation of the associated fault detection problem con-
tains the following components:
• CNF formula denoting the good circuit.
• CNF formula denoting the faulty circuit. This

formula only needs to contain the CNF formulas for the
nodes that are relevant for detecting the given fault, i.e.
nodes in the transitive fanout of nodez.

• CNF formulas for defining the sensitization status of
every node in the transitive fanout of the fault site, i.e.
nodez. Hence, for each of these nodes add, which
states that if and only if .

• Clauses that prevent each nodex from being
sensitized, by having , wheneverx is not in the
transitive fanout ofz but at least one fanout node ofx is
in the transitive fanout ofz, i.e.x is in .

• Clauses requiring on each nodex such thatx is
not in the transitive fanout ofz but at least one fanout
node ofx is in the transitive fanout ofz, i.e. x is in

. (Observe that this condition and the
previous one permit restricting the number of and
variables that must actually be used.)

• Clauses capturing conditions foractivating the
fault, i.e. by requiring and by forcing a suitable
logic value on .

• Clause requiring that at least one sensitization
variable of a primary output in the transitive fanout of
the fault site assumes value 1.
(A more detailed derivation of the union of the previous

sets of clauses, , for detecting a faultz s-a-v can be
found in [13].) will henceforth be referred to as the
fault detection formula. Finally, we observe that a similar
model can be constructed forfanout-branch faults [6, 13].

The proposed CNF formulations can be simplified and
improved (see for example [6, 13, 14] for further details).
Nevertheless, for the purposes of this paper the proposed
formulation suffices and shall be assumed.

3. Test Generation With Don’t Car es

The SAT-based test generation model described in the
previous section requires all clauses to be satisfied, hence
most if not all variables must be assigned a logic value.
However, we want to develop a test generation model that
properly handles unspecified variable assignments, since
our goal is to compute minimum size test patterns. As a
result, in this section we develop models for circuit satisfi-
ability and test generation using CNF formulas that can be
satisfied in the presence of unspecified variable assign-
ments.

3.1. Modeling Unspecified Variable Assignments

Given a circuit and its associated CNF formula or a
fault f and its associated fault detection formula, the exist-

ϕx
ϕx

G

y
G ϕx

F

y
F

ϕG

ϕF

ϕS

ϕx
S

x
S

1= x
G

x
F≠

ϕB

x
S

0=

KO z() O∗ z()–
x

G
x

F
=

KO z() O∗ z()–
x

F
x

S

ϕA

z
G

z
F≠

z
G

ϕR

ϕD

ϕD

ence of unspecified assignments implies that each of the
original circuit variables can now be assigned a value in
the set . In this situation an assignment
indicates thatx is unspecified, or that the value assumed
by x is an unspecified assignment. In contrast
indicates thatx is specified, or that the value assumed byx
is a specified assignment. In this situation, an assignment
A is allowed to leave variables unspecified. Furthermore,
the value of a CNF formula for an assignmentA can
also beX, .

With the purpose of deciding CNF formula satisfiabil-
ity, in the presence of unspecified variables, a new set of
variables is created. This basically consists of duplicating
the number of Boolean variables, which is a common solu-
tion for capturing unspecified assignments [10]. (Observe
that since only assignments need to be considered for
M variables, the actually required number of Boolean vari-
ables is , since there are only three possible
assignments to each of the original variables. Neverthe-
less, considering instead variables greatly simplifies
the proposed model.) As a result, we propose to represent
each Boolean variablex with two new variables and
having the interpretation indicated in Figure 1. For this
interpretation, indicates thatx is unspecified. The
simultaneous assignment of variables and to 1 is not
allowed, requiring the inclusion of the following con-
straints in the resulting CNF formula,

(4)

for each node , where represents the set of
nodes in the circuit. In addition, for each basic gate type
we need to define the corresponding CNF formula. How-
ever, using the ideas above, each gate input and output
must now be replaced by two variables. Let us consider for
example an AND gate, which will now be denoted by the
generalized form ,
and which allows unspecified assignments to the gate
inputs and output. Since the simultaneous assignment of
any pair of variables to 1 is prevented by (4), then
we just need to relate the remaining assignments. The out-
put variable can only assume value 1 whenever all
input variables also assume value 1. Hence, we can say
that . In addition, the output vari-
able assumes value 1 provided at least one input vari-
able assumes value 1. Hence, we can say that

. As a result we obtain from [6, 13],

(5)

0 1 X, ,{ } x X=

x 0 1,{ }∈

ϕ
ϕ

A
0 1 X, ,{ }∈

3
M

3
M

 
 

log

2M

x
0

x
1

Figure 1: Modeling unspecified assignments

x 0 1 X

x
0

x
1, 

  1 0,() 0 1,() 0 0,()

x X=
x

0
x

1

ϕi nv x, x¬ 1
x¬ 0

+ 
 

=

x VC∈ VC

x
0

x
1, 

 
UAND w1

0
w1

1 … wj
0

wj
1, , , , 

 
=

x
0

x
1, 

 

x
1

wj
1

x
1

AND w1
1 … wj

1, , 
 

=
x

0

wj
0

x
0

OR w1
0 … wj

0, , 
 

=

ϕ
u x

0,
w¬ i

0
x

0
+ 

 

i 1=

j

∏ wi
0

x
0¬+

i 1=

j

∑







⋅=

ϕ
u x

1,
wi

1
x

1¬+ 
 

i 1=

j

∏ wi
1¬ x

1
+

i 1=

j

∑







⋅=

Furthermore, the CNF formula for an AND gate with out-
putx now becomes,

(6)

which properly models unspecified assignments to the
inputs and output of an AND gate. Similar relations can be
derived for the other simple gates. Consequently, the CNF
formulas for simple gates given in [13] can be generalized
by following the same approach used for deriving (5) as
shown in [4]. As a result, and as was done in Section 2, we
can now create the CNF formula for the circuit, one in
which unspecified variable assignments are allowed.

3.2. Test Generation with Don’t Cares

We can now generalize the test pattern generation
model of Section 3 so that unspecified variable assign-
ments are allowed. Each circuit nodex is still character-
ized by three variables:
• denoting the value in the good circuit. This variable

can be unspecified, and so we use two new variables to
characterize its value, and , with the semantic
definition given earlier.

• denoting the value in the faulty circuit. This variable
can also be unspecified, and so we use two new
variables to characterize its value, and , with
the semantic definition given earlier.

• denoting the sensitization status of each node. As we
will justify below, the sensitization status of each node
needs not be unspecified, and so its value is always
either 0 or 1.
Modeling unspecified assignments in test generation

requires a detailed characterization of the propagation of
the fault effect. Hence, the sensitization status of a
node can only assume value 1 when both the values of
node in the good and faulty circuits arespecified and
assume different logic values. Moreover this requirement
also causes the value of a node in the faulty circuit to be
specifiedonly when the value of that node in the good cir-
cuit is also specified. These constraints indicate that propa-
gation of the fault effect to a node can only be guaranteed
when the values in the good and faulty circuit are specified
for that node.

Consequently, the relationship between the value of
and the possible values of and is shown in Figure 2.
Entries with a ‘—’ denote invalid value assignments, for
which the CNF formula for must assume value 0. Sim-
ilarly to the model for completely specified assignments,

 assumes value 1 if and only if and assume
opposing logic values, provided that both and are

ϕu x, ϕ
u x

1,
ϕ

u x
0,

ϕi nv x,∪ ∪=

x
G

x
G 0,

x
G 1,

x
F

x
F 0,

x
F 1,

x
S

x
S

x
S

x
G

x
F

Figure 2: T ruth table for the sensitization status

X 0 0 1 1 1 0 X X

X 0 1 0 1 X X 0 1

0 0 1 1 0 0 0 — —

x
G

x
F

x
S

x
S

x
S

x
G

x
F

x
G

x
F

specified. The simplification of the truth table in Figure 2
yields the following CNF formula for the sensitization sta-
tus of nodex, :

(7)

The next step is to describe the modifications to the
CNF formula used for computing the faulty values, which
for completely specified assignments are equivalent to the
CNF formula for the good value. For incompletely speci-
fied assignments the same holds true but, as justified
above, we introduce the additional constraint that an
unspecified good value implies and unspecified faulty
value,

(8)

Let us assume that the CNF formula for the faulty value of
a nodex with completely specified assignments is given
by,

(9)

As a result of (8), the CNF formula for the faulty circuit, in
the presence of incompletely specified assignments, is
defined by,

(10)

Hence, the faulty value of a nodex is computed by its orig-
inal formula provided the good value is specified (i.e.

). In contrast, if the good value is unspeci-
fied (i.e.), then the faulty value isforced
to also be unspecified.

The formulas for and for are defined so that
an unspecified good value immediately implies an unspec-
ified faulty value and . Thus propagation of the
error signal is only permitted in the presence of properly
specified values for the good circuit variables.

Furthermore, we note that the remaining CNF formu-
las, i.e. propagation blocking conditions and fault
detection requirements , remain unchanged, whereas
the fault activation conditions must be updated to the
new set of variables. As a result the complete CNF for-
mula for a given stem faultz s-a-v is summarized in
Table1. Similarly, we can derive the CNF formula for a
fanout-branch fault. Furthermore, we refer to as the
fault-detection formula in the presence of unspecified vari-
able assignments. Consequently, and when referring to pri-

x
S

ϕu x,
S

x
G 1,

x
G 0,

x
S¬+ + 

 
x

F 1,
x

F 0,
x

S¬+ + 
 

⋅ ⋅=

x
F 1,

x
G 1,

x
S¬+ + 

 
x

G 1,¬ x
F 1,¬ x

S¬+ + 
 

⋅ ⋅

x
G 1,

x
F 1,¬ x

S
+ + 

 
x

G 0,
x

F 0,¬ x
S

+ + 
 

⋅

x
G

X= 
 

x
F

X= 
 

⇒

ϕx
F ωi

i 1=

j

∏=

ϕu x,
F

x
F 0,¬ x

G 0,
x

G 1,
+ + 

 
x

F 1,¬ x
G 0,

x
G 1,

+ + 
 

⋅ ⋅=

ωi x
G 0,¬ x

G 1,¬⋅+ 
 

i 1=

j

∏⋅ ⋅

x
F 0,¬ x

G 0,
x

G 1,
+ + 

 
x

F 1,¬ x
G 0,

x
G 1,

+ + 
 

⋅ ⋅=

ωi x
G 1,

+ 
  ωi x

G 0,
+ 

 ⋅
i 1=

j

∏⋅ ⋅

x
G 0,

x
G 1,

+ 1=
x

G 0,
x

G 1,
+ 0=

ϕu x,
S ϕu x,

F

x
S

0=

ϕB

ϕR

ϕA

ϕu
D

mary input assignments, or test patterns, we must now
assume that some primary inputs may be unspecified.

4. Computing Minimum Size Test Patterns

In this section we develop the optimization model for
computing minimum-size test patterns. This optimization
model is based on test pattern generation in the presence
of incompletely specified primary input assignments.
Moreover, stem faults are assumed throughout, even
though the same approach is readily applied to fanout-
branch faults.

The main objective of test pattern minimization is to
identify the minimum number of primary input assign-
ments which detect the fault. Hence, our goal is to mini-
mize the number of specified primary input assignments
such that the given fault is still detected. As a result we
obtain the following optimization model,

(11)

which basically requires that the total number of assigned
input variables be minimized under the constraint that the
fault be detected. (Observe that we have
given (4), which implies an upper bound on the value of
the cost function of .) Given the mapping between
CNF clauses and linear inequalities [10] we immediately
conclude that (11) corresponds to an integer linear pro-
gram, and so different integer linear optimization pack-
ages can be used for solving the test pattern minimization
problem. Nevertheless, the constraints of (11) are tightly
related with propositional satisfiability. Consequently, and
as shown in [9], SAT-based ILP solvers are preferable for
solving ILPs for which the constraints correspond to CNF
formulas. For the experimental results given in Section 5,

Sub-formula/
Condition

Clause Set

Good Circuit

Faulty Circuit

Node Sensitization

Block Propagation

Fault Activation

Require Detection

Detection Formula

Table 1: Fault detection formula for fault z s-a-v ()

ϕu
G ϕu x,

G

x VC∈
∪=

ϕu
F ϕu x,

F

x O∗ z()∈
∪=

ϕu
S ϕu x,

S

x O∗ z()∈
∪=

ϕu
B

x
S¬ 

 
= x KO z() O∗ z()–∈

ϕu
A

z
S

 
 

z
G 1,¬ 

 
z
G 0,

 
 

z
F 1,

 
 

z¬ F 0,
 
 

⋅ ⋅ ⋅ ⋅=

ϕu
R

x
S

x PO∈ x O∗ z()∈∧
∑ 

 =

ϕu
D ϕu

G ϕu
F ϕu

S ϕu
B ϕu

A ϕu
R∪ ∪ ∪ ∪ ∪=

v 1=

minimize x
0

x
1

+ 
 

x PI∈
∑

subject to ϕu
D

0 x
0

x
1

+ 1≤ ≤

PI

the SAT-based ILP solver of[9] was used.
The validity of the proposed optimization model is for-

mally established in [4]. We should note, however, that in
general there may exist faults for which it is possible to
identify test patterns with a smaller number of specified
assignments, but which do not uniquely identify a set of
sensitizable paths. A simple example is a multiplexer [4].
Consequently, a test generation model based on theD-cal-
culus [1] or any of its derivations is by itself unable to
identify all test patterns which do not uniquely identify a
set of sensitizable paths, since for some cases propagation
does not actually take place and only the propagation con-
ditions are implicitly validated. As a result, our proposed
model yields the minimum-size test patterns which guar-
antee, given the specified assignments, propagation of the
fault effect to a primary output by defining one or more
sensitizable paths.

5. Experimental Results

The model described in the previous section has been
integrated in a test pattern generation framework for the
computation of minimum size test patterns referred to as
Minimum Test Pattern generator(MTP), which uses the
SAT-based ILP algorithm ofbsolo[9] and the fault simula-
tor provided with ATALANTA [7]. The results included
below were obtained with the IWLS’89 benchmark suite
[8] and with the ISCAS’85 benchmark suite [2]. In all
cases MTP was run with a bound on the amount of
allowed search (i.e. the total number of conflicts[9]). This
permits MTP to identify acceptable solutions, which in
some cases may not be necessarily optimal. Moreover, in
order to speed up convergence to the optimal solutions,
MTP uses the solution computed by ATALANTA (or by
any other ATPG tool) as the startup assignment. These
assignments provide an initial upper bound on the value of
the optimal solution. If ATALANTA aborts the fault, then
TG-GRASP [13] is used for computing a startup test pat-
tern.

Table2 contains the results for the IWLS’89 bench-
marks for both ATALANTA [7] and MTP. ATALANTA is
an ATPG tool that can generate test patterns with don’t
cares. For each benchmarkall faults were targeted in order
to allow for a a meaningful comparison between the two
algorithms. Columns #PI, #G, #F, #R and #A denote,
respectively, the number of primary inputs, gates, faults,
redundant faults and aborted faults. %X denotes the per-
centage of don’t care bits in all test patterns;∆ denotes the
variation in percentage from ATALANTA to MTP; %Opt
denotes the percentage of faults for which MTP was able
to find the actual minimum-size test pattern. Finally, time/
fault denotes the average time spent solving the ILP for
each fault.

From these results several conclusions can be drawn.
First, MTP allows validating the heuristics used in ATAL-
ANTA for computing test patterns with don’t cares. Indeed
for several benchmarks, ATALANTA already identifies
the minimum-size test patterns for all faults. Nevertheless,

for other benchmarks, the test patterns computed by ATA-
LANTA can be far from the minimum-size test patterns.
For these cases the percentage of don’t cares computed
with MTP can be as much as 15% above the values com-
puted by ATALANTA. Finally, we observe that for
medium-size circuits MTP is able to compute the actual
minimum-size test patterns for all faults in the circuit in a
reasonable amount of time per fault. For larger circuits,
MTP finds solutions that are better than those computed
by ATALANTA, but which are not guaranteed to be opti-
mal.

Table3 contains the results for the ISCAS’85 circuits2.
For these benchmarks a smaller search effort (i.e. 100 con-
flicts) was allowed. This leads to smaller run times and,
consequently, less optimal results. Once more we can con-
clude that MTP is able to improve over the ATALANTA
results, but in this case the improvements are in general
smaller, since it becomes harder for the ILP solver [9] to
find optimal solutions. (As can be concluded the percent-
age of optimal solutions found ranges from 0 to 20 per-
cent.) For some of these circuits we run MTP with a larger
number of allowed conflicts (i.e. 1000 conflicts). The
obtained results are shown in Table4. As can be observed,
a larger percentage of unspecified input assignments is
obtained at the cost of a larger search effort per fault.
Accordingly, the time per fault also increases.

2. Observe that ATALANTA aborts several faults for c432, c2670,
c6288 and c7552. For those cases, MTP uses TG-GRASP[13] as
the startup ATPG tool, and consequently does not abort any fault.

Circuit #F

ATALANTA MTP

#R #A %X #R #A %X ∆ %opt
time/
fault

9symml 752 2 0 1.4 2 0 8.9 7.5 100 2.04

cht 820 0 0 93.6 0 0 94.4 0/8 100 0.64

cm138a 124 0 0 16.7 0 0 16.7 0.0 100 0.02

cm150a 232 0 0 68.4 0 0 71.0 2.6 100 1.55

cm163a 220 0 0 70.7 0 0 72.8 2.1 100 0.28

cmb 248 0 0 29.6 0 0 30.0 0.4 100 0.07

comp 480 1 0 24.0 1 0 39.6 15.6 2 10.64

comp16 960 0 0 30.7 0 0 32.9 2.2 4 13.66

cordic 342 0 0 30.7 0 0 40.2 9.5 37 6.28

cu 262 7 0 53.0 7 0 57.1 4.1 100 0.14

majority 54 0 0 8.5 0 0 8.5 0.0 100 0.01

misex1 224 0 0 49.8 0 0 54.4 4.6 100 0.17

misex2 422 0 0 73.5 0 0 75.8 2.3 100 0.20

misex3 2590 7 0 24.4 7 0 37.7 13.3 76 25.29

mux 202 0 0 67.3 0 0 75.8 8.5 100 0.94

pcle 328 0 0 73.3 0 0 74.9 1.6 99 0.45

pcler8 400 0 0 78.1 0 0 79.2 1.1 98 1.97

term1 708 6 0 72.2 6 0 74.4 2.2 86 4.35

too_large 1132 15 0 54.9 15 0 62.2 7.3 20 18.27

unreg 448 0 0 90.6 0 0 91.7 1.1 86 0.93

Table 2: Experimental results for the IWLS’89 circuits

From the previous experimental results for the
IWLS’89 and ISCAS’85 benchmarks we can draw the fol-
lowing conclusions:
• For some circuits the heuristics used by ATALANTA, as

well as by other structural ATPG algorithms, are
extremely effective and MTP can be used to formally
prove this result.

• Whenever the main goal is maximizing the number of
don’t care bits, then MTP can be run on top of
ATALANTA (or any other ATPG algorithm), thus in
general allowing for an increased number of unspecified
bit assignments. The improvements obtained by MTP
are related to the amount of allowed search effort, and
MTP is always guaranteed to produce results that are no
worse than the startup tool (in our case ATALANTA or
TG-GRASP).

6. Conclusions

In this paper we introduce a SAT-based integer linear
programming model for computing minimum-size test
patterns. The applicability of the model has been illus-
trated by computing minimum size test patterns for several
benchmark circuits. The next step of this work is to study
the application of minimum-size test patterns to the syn-
thesis of BIST logic, with the objective of evaluating the
reduction in size of the synthesized logic obtained from
using MTP.

Circuit #F

ATALANTA MTP

#R #A %X #R #A %X ∆ %opt
time/
fault

c432 524 3 1 56.2 4 0 60.8 4.6 0 3.21

c499 758 8 0 17.1 8 0 18.7 1.6 0 4.35

c880 942 0 0 82.2 0 0 83.8 1.6 12 2.54

c1355 1574 8 0 13.3 8 0 13.7 0.4 0 9.12

c1908 1878 8 0 44.7 8 0 48.4 3.7 0 9.61

c2670 2746 97 20 92.0 117 0 92.4 0.4 23 10.99

c3540 3425 134 0 74.6 134 0 77.3 2.7 15 16.81

c5315 5350 59 0 92.6 59 0 92.9 0.3 14 9.34

c6288 7744 34 387 22.2 34 0 25.1 2.9 1 36.65

c7552 7550 77 181 86.9 131 0 86.9 0/0 4 17.46

Table 3: Results for the ISCAS’85 benchmarks

Circuit #F

ATALANTA MTP

#R #A %X #R #A %X ∆ %opt
time/
fault

c432 524 3 1 56.2 4 0 64.1 7.9 2 27.04

c499 758 8 0 17.1 8 0 19.5 2.4 0 33.71

c880 942 0 0 82.2 0 0 85.6 3.4 40 22.34

c1355 1574 8 0 13.3 8 0 15.2 1.9 0 64.86

c1908 1878 8 0 44.7 8 0 60.0 15.3 1 73.44

c2670 2746 97 20 92.0 117 0 93.0 1.0 25 83.46

Table 4: Results for the ISCAS’85 circuits

Additional research work involves further constraining
the ILP formulation so that larger problem instances can
be solved optimally. Furthermore, the tradeoffs between
minimum-size test pattern computation, fault simulation
and fault compaction need to be studied. Finally, a long-
term objective of this work is the integration of the pro-
posed model in a complete testing environment, thus
enabling the use of minimum-size test patterns for differ-
ent purposes, such as the validation of test pattern minimi-
zation heuristics or the synthesis of reduced-size FSMs for
BIST in specific target applications.

References

[1] M. Abramovici, M. A. Breuer and A. D. Friedman,Digital
Systems Testing and Testable Design,Computer Science
Press, 1990.

[2] F. Brglez and H. Fujiwara, “A Neutral List of 10 Combina-
tional Benchmark Circuits and a Target Translator in FOR-
TRAN,” in Proc. of ISCAS, 1985.

[3] K. Chakrabarty, B. T. Murray, J. Liu and M. Zhu, “Test
Width Reduction for Built-In Self Testing”, inProc. of ITC,
November 1997.

[4] P. Flores, H. Neto and J. Marques Silva, “An Exact Solution
to the Minimum-Size Test Pattern Problem,” inIEEE/ACM
IWLS, June 1998.

[5] P. Goel, “An Implicit Enumeration Algorithm to Generate
Tests for Combinational Logic Circuits,”IEEE Transac-
tions on Computers, vol. 30, no. 3, pp. 215-222, March
1981.

[6] T. Larrabee, “Test Pattern Generation Using Boolean Satis-
fiability,” IEEE Transactions on Computer-Aided Design,
vol. 11, no. 1, pp. 4-15, January 1992.

[7] H. K. Lee and D. S. Ha, “On the Generation of Test Patterns
for Combinational Circuits,” Tech. Rep. No. 12_93, Dept.
of Electrical Engineering, Virginia Polytechnic Institute and
State University, 1993.

[8] IWLS’89 Benchmark Suite, available from http://
www.cbl.ncsu.edu/pub/Benchmark_dirs/LGSynth89/.

[9] V. Manquinho, P. Flores, J. P. M. Silva and A. Oliveira,
“Prime Implicant Computation Using Satisfiability Algo-
rithms,” inProc. of ICTAI, November 1997.

[10] C. Pizzuti, “Computing Prime Implicants by Integer Pro-
gramming,” inProc. of ICTAI, November 1996.

[11] I. Pomeranz, L.N. Reddy, S.M. Reddy, “COMPACTEST: A
Method to Generate Compact Test Sets for Combinational
Circuits,” in IEEE Transactions on Computer-Aided
Design, vol. 12, no. 7, pp. 1040-1049, July 1993.

[12] M. H. Schulz, E. Trischler and T. M. Sarfert, “SOCRATES:
A Highly Efficient Automatic Test Pattern Generation Sys-
tem,” IEEE Transactions on Computer-Aided Design, vol.
7, no. 1, pp. 126-137, January 1988.

[13] J. P. M. Silva and K. A. Sakallah, “Robust Search Algo-
rithms for Test Pattern Generation,” inProc. of FTC, June
1997.

[14] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincen-
telli, “Combinational Test Generation Using Satisfiability,”
IEEE Transactions on Computer-Aided Design, vol. 15, no.
9, pp. 1167-1176, September 1996.

