
An Exact Algorithm for the Maximal Sharing of Partial Terms in Multiple Constant Multiplications

Paulo Flores José Monteiro Eduardo Costa

IST/INESC-ID, Lisboa, Portugal IST/INESC-ID, Lisboa, Portugal UCPel, Pelotas, Brazil

pff@inesc-id.pt jcm@inesc-id.pt ecosta@ucpel.tche.br

Abstract— In this paper we propose an exact algorithm that maximizes
the sharing of partial terms in Multiple Constant Multiplication (MCM)

operations. We model this problem as a Boolean network that covers all
possible partial terms which may be used to generate the set of coefficients
in the MCM instance. The PIs to this network are shifted versions of the
MCM input. An AND gate represents an adder or a subtracter, i.e., an

AND gate generates a new partial term. All partial terms that have the
same numerical value are ORed together. There is a single output which
is an AND over all the coefficients in the MCM. We cast this problem into

a 0-1 Integer Linear Programming (ILP) problem by requiring that the
output is asserted while minimizing the total number of AND gates that
evaluate to one. A SAT-based solver is used to obtain the exact solution.
We argue that for many real problems the size of the problem is within

the capabilities of current SAT solvers. We present results using binary,
CSD and MSD representations. Two main conclusions can be drawn from
the results. One is that, in many cases, existing heuristics perform well,
computing the best solution, or one close to it. The other is that the

flexibility of the MSD representation does not have a significant impact
in the solution obtained.

I. INTRODUCTION

Several computationally intensive operations, such as, Finite Im-

pulse Response (FIR) filters and Fast Fourier Transforms (FFT),

involve a sequence of Multiply-Accumulate (MAC) operations with

constant coefficients. These operations are typical in Digital Signal

Processing (DSP) applications. Hardwired dedicated architectures are

the best option for maximum performance and minimum power

consumption.

Constant coefficients allow for a great simplification of the multi-

pliers, which can be reduced to shift-adders [1]. In these multipliers,

a bit set to 1 in position m of the coefficient implies that the input

shifted left by m positions is to be added to the partial sum. Shifts

are free in terms of hardware, hence the hardware required for a

multiplication with a constant with n bits set to 1 is simply n − 1
adders.

In many MAC operations, the same input is to be multiplied

by a set of coefficients, an operation known as Multiple Constant

Multiplications (MCM). An example of this is the transposed form

architecture of a FIR filter. In this situation, significant reductions in

hardware, and consequently power, can be obtained by sharing the

partial products of the input. We propose an algorithm that optimally

solves this maximal sharing problem. Although this problem has

been proven to be NP-complete [2], we show that for many practical

instances we can find an optimum solution.

This problem has been the subject of extensive research in recent

years. Two key strategies have had a large impact in the optimization

of MCMs. One is to consider not only adders, but also subtracters

to combine partial terms, thus increasing the opportunity for the

sharing of common subexpressions. The second is the usage of the

Canonical Sign Digit (CSD) representation for the coefficients. This

representation minimizes the number of non-zero digits, hence the

maximal subexpression sharing search starts from a minimal level of

complexity.

In a recent paper, Park et al. [3] propose the usage of a Minimal

Signed Digit (MSD) representation for the coefficients. The MSD

representation is obtained from the CSD representation by relaxing

the requirement that there cannot be two consecutive non-zero digits.

Under the MSD representation, a given numerical value can have

multiple representations. However, in all of them, the number of non-

zero digits is the same as the CSD representation. The algorithm

proposed in [3] exploits the redundancy of the MSD representation

by choosing the MSD instance that leads to a maximal sharing in the

implementation efficient FIR filters.

To the best of our knowledge, all previous solutions to this problem

have been heuristic, providing no indication as to how far from the

optimum their solution is. We propose an exact algorithm that is

feasible for many real situations. We model this problem as a Boolean

network that covers all possible partial terms which may be used to

generate the set of coefficients in the MCM instance. The inputs to

this network are shifted versions of the value that serves as input to

the MCM operation. Each adder and subtracter used to generate a

given partial term is represented as an AND gate. All partial terms

that represent the same numerical value are ORed together. There

is a single output which is an AND over all the coefficients in the

MCM. We cast this problem into a 0-1 Integer Linear Programming

(ILP) problem by requiring: that the output is asserted, meaning

that all coefficients are covered by the set of partial terms found;

while minimizing the total number of AND gates that evaluate to

one, i.e., the number of adders/subtracters. A SAT-based solver is

used to obtain the exact solution.

We have applied this algorithm to coefficients represented in binary,

CSD and MSD representations. Note that the redundancy of the MSD

representation can be readily incorporated in our model, where the

equivalent MSD representations are simply new inputs to the OR

gate that generates a given coefficient.

Two main conclusions can be drawn from the results. One is that,

in many cases, existing heuristics perform well, computing the best

solution, or one close to it. The other is that the flexibility of the

MSD representation does not have a significant impact in the solution

obtained.

II. RELATED WORK

A large amount of work has addressed the use of efficient im-

plementations of multiplier-less MCMs. The techniques include the

use of different number representation schemes, the use of different

architectures and implementation styles, and coefficient optimization

techniques, e.g., [4].

Synthesis algorithms have been proposed that are based on the

Canonical Signed Digit (CSD) representation [5]. CSD is a signed

digit system with the digit set {1, 0, 1}, where 1 denotes −1. The

CSD representation is unique and uses two main properties: (1) the

number of non-zero digits is minimal, (2) two non-zero digits are not

adjacent. Hardware requirements are reduced because the numerical

values are represented with a maximal number of zero digits.

In [3], the Minimum Signed Digit (MSD) representation is pro-

posed for the coefficients. The MSD representation is obtained by

removing the second property of the CSD representation. Thus, a con-

stant can have several MSD representations, but all with a maximum

number of zero bits. For example, the value 6 is represented using 4

bits in CSD as 1010, but both 1010 and 0110 are valid representations

in MSD. In the algorithm described in [3], Cset represents the

coefficient set to be synthesized and contains all MSD representations

for all coefficients. The first representation the matches a combination

of subexpressions is used.

All these methods use heuristic algorithms to minimize the total

number of adders/subtracters. In [6] an exact algorithm is presented

that finds the best representation, but for a single coefficient. The

ICCAD 2005 - International Conference on Computing Aided Design, San Jose, California, Nov. 6-10, 2005

solution we propose is based on solving a 0-1 Integer Linear

Programming (ILP) over a Boolean network, asserting the output

while minimizing the number of ones in a set of nodes. Generic

SAT-solvers [7] can be adapted to iteratively solve this optimization

problem. However, recent solvers, targeted specifically for Pseudo

Boolean Optimization (PBO) problems, have been proved to be

significantly more efficient. In this work, we are using an efficient

SAT-based solver which incorporates several advanced optimization

techniques and has been applied to several classes of problems [8].

III. PROPOSED ALGORITHM

In this section we describe the proposed algorithm for the maximal

sharing of partial terms. First, we present our optimization model

for the binary representation, and its generalization for CSD and

MSD representations. Then, we describe the algorithm implemented

to generate the set of constraints and optimization function to be

solved by a SAT-based 0-1 ILP solver.

A. Model

As mentioned before, we model the maximal sharing of partial

terms by a Boolean network with only AND and OR gates. Each AND

gate represents an adder or subtracter which produces some partial

term value. Each OR combines all partial terms that yield the same

value. Any signal in this network represents one value in a selected

representation: binary, CSD or MSD.

When considering only the binary representation of the coeffi-

cients, the Boolean network consists of all possible combinations of

partial terms (sums) that can be used to obtain the multiplication of a

value with a given set of constant coefficients. The Boolean network

that has all possible partial terms has the following characteristics:

• the primary inputs (PIs) of the network are the input value

(the value we are applying the MCM operation on) or shifted

versions of the input value.

• there is an AND gate to represent a simple adder for each partial

term that could be used to generate the coefficients. Hence, each

AND gate would have two inputs. However, we add a third input

that is left as a free variable. An AND gate evaluating to a

1 (meaning that the free variable is set to 1) indicates that a

particular partial term is present in the solution of the MCM

problem. Since shifts are free, equivalent classes can be created

from shifted versions of partial terms, thus reducing the total

number of AND gates.

• there is an OR gate to assemble all the different combinations

of partial terms that yield a given value.

• a single output is generated by an AND gate that combines all

the coefficients in the MCM problem (outputs of the associated

OR gates), hence the output of this AND gate will only evaluate

to 1 when all the coefficients are covered.

Given this model the optimization SAT-based solver has to search

for an input combination that sets the output to a 1 while minimizing

the cost function defined as the number of AND gates which evaluate

to a 1.

As an illustrative example, consider a single 4-bit coefficient, 15

(in binary, 1111). The value can be obtained as 8+7 (1 111), 11+4

(
̂

1 1 11), 13+2 (
̂

11 1 1) or 14+1 (111 1), by adding a single

bit to a partial sum, or as 9+6 (
̂

1 11 1), 12+3 (11 11) or 10+5

(
̂

1 1 1 1), by adding two partial sums. In turn, 7+8, for instance,

requires that 7 be obtained either as 6+1 (0 11 1), 5+2 (0 1̂ 1 1) or

4+3 (01 11). The same observation applies to all the other partial

sums. The complete Boolean network for this example is presented

in Figure 1.

In general, a coefficient with value v can be obtained from d v

2
e

partial sums. However, we can create equivalent classes from cases

AND3

AND5

AND9

7

11

13

1000

15

AND9

AND3

AND3

AND3

AND5

AND5

0001

0010

0100

0001

0100

0001

0001

0001

0010

0010

0010

1000

1000

1000

0100

0100

<<1

<<2

<<1

<<2

<<1

Fig. 1. Boolean network representing the coverage of coefficient 15.

that differ only on a shift, thus reducing significantly the total number

of cases. From the example above, 14+1 and 7+8 are equivalent

because 14 and 7 are partial sums that differ only on a shift and

the same for 1 and 8. Similarly for 6+1 and 3+4.

The model using CSD or MSD representations generates a similar

Boolean network. However, the values considered to generated partial

terms for a given value are only the correspondent CSD or MSD

representations. In these models an AND can represent either an adder

or a subtracter. This is a result of the signed digit system where some

partial terms (covers of a value) are implemented as subtractions.

Consider, for example, a single 3-bit wide coefficient with the value

3. The CSD representation of the coefficient is 101 (1 stands for -1).

Therefore this value can be obtained with single subtracter as 4-1

(101). For the MSD model, the value 3 can be represented both by

011 and 101, which can be obtained with an adder as 2+1 or with a

subtracter as 4-1.

B. Implementation

The implemented algorithm to generated the above optimization

model can be used for any type of coefficient representation: binary,

CSD or MSD. However, using the MSD representation results in a

more elaborated algorithm, because several representation may exist

for the same value. We will describe first the MSD implementation

of the algorithm and then we summarize the changes for binary or

CSD representations.

In a preprocessing phase, all coefficients are converted to positive

and then made odd by successive divisions by 2, i.e., we shift all

coefficients to the right so that zero bits on the right are eliminated.

Each new resulting coefficient is added to the set of coefficients

to synthesize, the Iset. This set represents the minimum number of

coefficients necessary to synthesize for the MCM implementation.

For each element i in the Iset all MSD representations are deter-

mined using dlog
2
(i)e + 1 bits and inserted in the Cset. Therefore,

Cset begins with all the MSD coefficients representations as in [3].

However, during our algorithm execution Cset will be augmented

with MSD representations of partial terms.

Then we enter in the main algorithm loop where an element c,

removed from Cset and representing a number i, is processed to

determine its covers: 1) compute all non-symmetric partial term pairs

that covers the element c; 2) converted to positive and made odd each

element of the cover pair; 3) add each cover pair to the corresponding

set of covers of the element being processed, Aseti; 4) add the MSD

representations of each cover to the Cset if the representation has

not been processed yet and it is not in the set. Covers with only one

non-zero digit are skipped.

This loop is repeat until there are no more elements in Cset. The

pair of elements in each Aseti represents all possible alternatives of

partial terms for a value i based on its MSD representations.

The mapping of the Boolean network into a 0-1 ILP optimization

model is obtained by representing each gate in a Conjunctive Normal

Form (CNF clause) [7]. Each clause is then converted into a 0-1 ILP

constraint.

The final 0-1 ILP optimization model is generated in three steps: 1)

for each pair element in Aseti generate the corresponding AND gate.

Generate an OR gate for the value i with the outputs of all the ANDs

resulting from Aseti; 2) identify all the OR outputs that represent

a coefficient (values belonging to Iset) and force their outputs to

be 1. This is equivalent to have one AND gate that combines all

the coefficients, but reduces the size of the model; 3) generate the

function to be minimized. This function is a linear combination of

all the AND gates outputs. However, we note that minimizing the

number of AND gates set to 1 is equivalent to minimizing the number

of OR gates set to 1. In order to minimize the number of optimization

variables we add an extra 2-input AND gate at the output of each OR.

The other input of this gate has a free optimization variable that is

set to 1 by the solver if this partial term is needed to generate any

coefficient. Therefore, the final optimization function is a sum of the

outputs of these extra AND gates.

Note that this algorithm can be easily adapted to obtain the 0-1 ILP

optimization model using different coefficient representations. When

the MSD representation of a coefficient or partial term is determined,

one needs only to compute a binary or CSD representation instead.

Moreover, mixed representations (i.e., binary and CSD, or binary and

MSD) can also be computed and added to Cset.

C. Cost Analysis

Given a coefficient with n bits all set to 1, than the Boolean

network will generate all partial terms with ≤ n bits set to 1. Thus,

any other coefficient in the problem is simply obtained by adding its

value, already an output of some OR gate in the network, to the final

AND whose output we require to be one. Hence, for n-bit coefficients,

the complexity of the problem is bounded above by the case of a

single coefficient will all the n bits set to 1.

For a given value with n bits set to 1, the total number of gates

in the Boolean network is given by:

Gor(n) =

n∑

i=3

1

(i − 1)!

i−1∏

k=1

(n − k)

(1)

Gand(n) = n − 1 +

n∑

i=3

2i−1 − 1

(i − 1)!

i−1∏

k=1

(n − k)

As we cast this into 0-1 ILP problem to be handled by a SAT-solver,

the relevant complexity parameters are: number of variables, number

of clauses and number of optimization variables. As we discussed in

the previous section, the number of optimization variables is simply

the number of OR gates, #opt vars(n) = Gor(n). The total number

of variables is given by the total number of gates in the circuit, plus

the primary inputs, i.e., #vars(n) = n+Gor(n)+Gand(n). Finally,

the number of clauses can be computed by noting that, for each logic

gate, the number of clauses is given by the number of gate inputs

plus one. All AND gates in our network have two inputs, hence each

contributes with 3 clauses. Although the number of inputs to the OR

gates varies, we note that for a given level the total number of inputs

to all the OR gates at that level is the number of AND gates. The total

number of clauses is thus:

#clauses =

due to ANDs︷ ︸︸ ︷
3 Gand(n) +

due to ORs︷ ︸︸ ︷
(Gand(n) + Gor(n))

= 4 Gand(n) + Gor(n)

These values correspond to the original Boolean network. However,

due to the optimization made in the previous section that allows for

the minimization of OR gates evaluating to 1 instead of AND gates,

an extra 2-input AND gate is placed at the output of each OR gate.

This means that we have 3Gor(n) extra clauses and 2Gor(n) extra

variables.

Table I gives the size of the Boolean network in terms of the

number of AND and OR gates, and the size of the SAT problem in

terms of the number of clauses, number of variables and number of

optimization variables for a single coefficient with different values of

n bits, all set to 1. Although we can observe the exponential growth

in complexity, there are two points we should stress. One is that this

is for the case of a coefficient with all bits set to 1, which the worst

case in terms of the number of partial terms. In many cases, the all-

1s coefficient does not appear, as observed is Section IV. Second,

the size of the SAT problem for n = 12 is already within reach

of current SAT-solvers and, thus, can be solved exactly. In practice,

many problems do not require coefficients larger than 12 bits.

A similar analysis can be made for the CSD and MSD representa-

tions. We note that, since the complexity is related to the total number

of bits set to one in any given coefficient and at least half of the bits

in both the CSD and MSD representations are zero, the complexity

of these representations is significantly lower than that of the binary.

IV. RESULTS

We present results obtained with the exact algorithm applied to

the optimization of FIR filters and compare them with the heuristic

approach of [3]. We first present results for some filter instances,

where the coefficients were computed with MATLAB using the

Remez algorithm. The filters’ specifications are presented in Table II,

together with the respective problem size: column filter is just an

index for each example; pass and stop are normalized frequencies that

define the passband and stopband, respectively; #tap is the number of

coefficients; width is the bit-width of the coefficients; #coef indicates

the total number of different coefficients; #nzbit gives the maximum

number of non-zero bits over all the coefficients. The next three sets

of three columns indicate the size of the 0-1 ILP problem for the

binary, CSD and MSD representations, in terms of the number of

variables, clauses and optimization variables. We can observe that the

problem size varies widely, even for filters of similar specifications.

Moreover, the correlation between the size of the problem and the

number of coefficients and maximum number of non-zero bits is not

so direct. The reason for this is that the way the Boolean network is

constructed depends heavily on the relation between the coefficients

in terms of the sub-expressions that they have in common. In any

case, we can observe that the binary representation is the most

complex because the coefficients have a larger number of non-zero

digits. Although the MSD representation requires the same number

of zero digits per coefficient as CSD, we need to represent a larger

number of coefficient patterns due to the redundancy in MSD. Note

that the complexity of the 0-1 ILP problem to be passed to the SAT

solver (we used [8]) is much lower than the worst-case scenario

derived in the previous section.

Table III presents the results obtained for the selected bench-

marks using the three representations under consideration: binary,

CSD and MSD. Column adders gives the minimum number of

adders/subtracters required to implement the filter, column steps gives

the maximum depth in terms of adder-steps for all coefficients and

CPU is the CPU time in seconds used to compute this exact solution

on a PC with dual Pentium Xeon at 2.4GHz, with 4GB of main

memory, running Linux. We note that most of the problem instances

TABLE I

SIZE OF THE BOOLEAN NETWORK AND SAT PROBLEM.

n OR AND #clauses #vars #opt vars

8 120 2,059 8,716 2,427 120
10 502 19,171 78,692 20,687 502
12 2,036 175,099 708,540 181,219 2,036
14 8,178 1,586,131 6,377,236 1,610,679 8,178
16 32,752 14,316,139 57,395,564 14,414,411 32,752

TABLE II

CHARACTERISTICS OF THE FIR FILTERS AND PROBLEM SIZE.

Filter
Filter Specification Filter Params Binary CSD MSD

pass stop #tap width #coef #nzbit vars clauses optv vars clauses optv vars clauses optv

1 0.20 0.25 120 8 10 5 284 576 28 195 352 23 474 924 36
2 0.10 0.25 100 10 10 5 1449 3470 100 513 982 54 976 2014 71
3 0.15 0.25 40 12 14 8 4955 14116 220 651 1288 66 1860 4112 112
4 0.20 0.25 80 12 28 10 1639 4008 109 1022 2088 97 2722 6220 143
5 0.24 0.25 120 12 34 8 4846 13540 228 866 1756 83 1729 3732 116
6 0.15 0.25 60 14 20 8 8017 23460 322 1351 2880 120 5488 13788 222
7 0.15 0.20 60 14 29 9 15039 46034 510 1460 3046 133 2733 6026 175
8 0.10 0.15 60 14 28 9 16851 51616 566 1796 3840 157 4595 10752 243

TABLE III

SUMMARY OF RESULTS FOR THE DIFFERENT COEFFICIENT REPRESENTATIONS.

Filter
Exact Binary Exact CSD Exact MSD Heuristic MSD [3]

adders steps CPU adders steps CPU adders steps CPU adders steps

1 10 3 0.05 10 3 0.04 10 3 0.17 10 3
2 18 4 2.24 17 3 0.11 17 2 0.96 18 4
3 16 4 85.42 16 3 0.20 16 3 4.85 18 4
4 29 4 8.59 29 3 0.44 29 3 12.73 29 4
5 35 4 169.93 34 3 0.38 34 3 2.25 34 3
6 25 4 3607.80 23 3 0.95 22 3 191.52 22 4
7 – – – 35 3 19.32 34 3 22.00 35 3
8 36 4 3600.50 35 3 10.99 35 3 3602.00 37 4

are solved in a very small period of CPU time. There are four cases

for which our algorithm did not finish within an hour of CPU time.

For three of these, we obtained a non-optimal solution, represented

in italic in this table. Only for filter 7 under the binary representation

we were not able to obtain any solution.

We can observe that the solutions obtained with MSD do improve

on the results of CSD, but only in a few cases. Namely, for filters

6 and 7, the number of required adders or subtracters is reduced by

one, and for filter 2 the depth is reduced by one level. The other

observation is that the solution obtained for the binary representation

has similar number of adders/subtracters for small examples, although

the depth may increase. CSD and MSD perform slightly better for

larger examples.

The last two columns of Table III give the results obtained with

the heuristic algorithm of [3] that uses the MSD representation. We

can observe that in almost half of the filters the heuristic algorithm

obtains the optimum number of adder/subtracters. However, there

are cases where it is two units off, namely filters 3 and 8, and one

unit off for filters 2 and 7. The difference is more noticeable in

the number of adder-steps where our exact solution almost always

has less levels, with a difference of two, which may represent 50%

decrease in latency.

Figure 2 gives a plot of the average number of adders/subtracters

obtained with our exact method and the heuristic of [3] versus the

number of coefficients. We used coefficients with 10 bits and, for

each number of coefficients, we run 30 instances with randomly

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80

A
ve

ra
ge

 a
dd

er
 c

os
t

Number of Coefficients

10 bits coefficients

Exact MSD
Heuristic MSD

Fig. 2. Comparison of exact and heuristic results for random instances.

generated coefficients. We observe that the average solution obtained

with heuristic method only has at most 3 adders more than the

exact and this distance remains almost constant with the number

of coefficients. Hence, the relative quality of the heuristic solution

increases with the number of coefficients.

V. CONCLUSIONS

We have described a new algorithm that computes the exact

minimum number of adder/subtracter modules in the implementa-

tion of MCM structures by maximizing the sharing of common

subexpressions. The algorithm can handle binary, CSD and MSD

representations for the coefficients. We presented results for digital

filter synthesis where we demonstrate that the exact algorithm can be

applied to real size examples. We compare with previously proposed

heuristic algorithms and showed that, though these algorithms cannot

guarantee an optimum solution, they perform reasonably well.

As future developments of this work, we are currently working

on two different avenues of research. One is to find tecnhiques that

enable the simplification of the Boolean network that we feed to

the SAT-solver. The other is to develop and explore more general

representations for the coefficients.

ACKNOWLEDGMENTS

This research was supported in part by the portuguese FCT under

program POCTI.

REFERENCES

[1] H. Nguyen and A. Chatterjee. Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis. IEEE Trans. on VLSI, 8(4):419–424, August 2000.

[2] P. Cappello and K. Steiglitz. Some Complexity Issues in Digital Signal
Processing. IEEE Trans. on Acoustics, Speech, and Signal Processing,
32(5):1037–1041, October 1984.

[3] I-C. Park and H-J. Kang. Digital Filter Synthesis Based on Minimal
Signed Digit Representation. In DAC, pages 468–473, 2001.

[4] A. Nannarelli, M. Re, and G. Cardarilli. Tradeoffs between Residue
Number System and Traditional FIR Filters. In ISCAS, May 2001.

[5] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova.
A New Algorithm for Elimination of Common Subexpressions. TCAD,
18:58–68, January 1999.

[6] A. Dempster and M. Macleod. Using All Signed-Digit Representations
To Design Single Integer Multipliers Using Subexpression Elimination.
In ISCAS, pages 24–26, May 2004.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an Efficient SAT Solver. In DAC, 2001.

[8] V. Manquinho and J. Marques-Silva. Effective Lower Bounding Tech-
niques for Pseudo-Boolean Optimization. In DATE, March 2005.

