
Abstract
Test set compaction is a fundamental problem in digi-

tal system testing. In recent years, many competitive solu-
tions have been proposed, most of which based on
heuristics approaches. This paper studies the application
of set covering models to the compaction of test sets,
which can be used with any heuristic test set compaction
procedure. For this purpose, recent and highly effective
set covering algorithms are used. Experimental evidence
suggests that the size of computed test sets can often be
reduced by using set covering models and algorithms.
Moreover, a noteworthy empirical conclusion is that it
may be preferable not to use fault simulation when the
final objective is test set compaction.

1. Introduction

Test set compaction is a fundamental problem in digital
system testing. In recent years, many competitive solu-
tions have been proposed, most of which based on heuris-
tic approaches [1, 5, 6, 8, 10, 11, 12, 13, 14, 15]. This
paper studies the application of set covering models to the
compaction of test sets, which can be used with any heu-
ristic test set compaction procedure. For this purpose,
recent and highly effective set covering algorithms are
used. Experimental evidence suggests that the size of com-
puted test sets can often be reduced by using set covering
models and algorithms. Moreover, a noteworthy empirical
conclusion is that it may be preferable not to use fault sim-
ulation when the final objective is test set compaction.

Let C be a combinational circuit and letT be a test set
that detects all the single stuck-at non-redundant faults in
C. After fabrication, the application ofT to C ensures that
the every single stuck-at non-redundant fault will be
detected. In general the minimization ofT is a key objec-
tive, since it reduces testing time and consequently overall
testing costs. Approaches for minimizingT can be charac-
terized by being based on exact models [5, 6, 10, 11, 12] or
on heuristic approaches [8, 13, 14, 15]. Most practical
solutions are based on heuristic approaches which are not
guaranteed to compute a test set of minimum size, but
which in practice perform extremely well [5, 13]. For heu-
ristic approaches, and given a pre-computed test setT
which is not known to be optimum, one can potentially

remove redundant test patterns fromT, thus obtaining a
reduced test setU. ClearlyU need not be the minimum-
size test set forC. The existence of redundant tests inT is
intrinsic to any fault simulation strategy used by the ATPG
tool, since in general any fault simulation strategy is
unable to guarantee the complete elimination of redundant
test patterns. One approach for minimizing a pre-com-
puted test setT has been proposed by D. Hochbaum in [6],
and consists of casting the problem of removing redundant
test patterns from a test setT as an instance of the set cov-
ering problem. Since the set covering problem can natu-
rally be formulated as a 0-1 integer linear program, an
integer programming approach based on linear program-
ming relaxations was proposed and evaluated in [6]. Nev-
ertheless, only very preliminary experiments were
conducted. In particular, the effect of fault simulation on
the ability of reducing the size of a test set was not evalu-
ated. In this paper we review the set covering model for
test set compaction. We then use a highly effective algo-
rithm for the unate covering problem [4] and evaluate the
application of the model in the simplification of test sets.
Moreover, we study the relationship between the applica-
tion of fault simulation and the ability of reducing the test
set size. Experimental evidence, obtained on a large num-
ber of benchmark circuits, clearly indicates that the utiliza-
tion of fault simulation in general reduces the ability for
computing smaller test sets. This empirical result raises
the question of which test-pattern generation strategy is
best suited for computing highly compacted test sets.

The paper starts in the next section be describing a set
covering model for test set compaction. Section 4 presents
and analyzes experimental results of using the proposed
set covering model. Section 5 concludes the paper.

2. Set Covering Model for Test Compaction

Let  be the set of stuck-at faults of a
combinational circuitC, and let  be a
pre-computed test set. Furthermore, let the faults detected
by test pattern  be . Consequently,
the objective of thetest set compaction problem is to find a
a set of test patterns , such that,

F f1 … fm, ,{ }=
T t1 … tn, ,{ }=

tj F tj( ) fj1
… fjk

, ,{ }=

U T⊆

On Applying Set Covering Models to Test Set Compaction

Paulo F. Flores, Horácio C. Neto and João P. Marques-Silva
Instituto Superior Técnico

Cadence European Labs/INESC
1000 Lisboa, Portugal

e-mail: {pff,hcn,jpms}@inesc.pt

In Proceedings of the IEEE Great Lakes Symposium on VLSI (GLS), pages 8-11, March 1999.



(1)

and such that the size of  is minimum. This problem can
naturally be mapped into an instance of the set covering
problem. Indeed, define a matrix  where  pro-
vided test pattern  detects fault . Further, define a vec-
tor  of Boolean variables, with size , such that

 provided test pattern  is selected for inclusion in
. Consequently, our goal is to solve the following inte-

ger optimization problem,

(2)

which can also be viewed as an instance of the set cover-
ing (or unate covering) problem. This model was first
described in [6] and some results were obtained with a set
covering algorithm based on linear programming relax-
ations. Nevertheless, other more efficient set covering
algorithms can be used [4], which allow for larger test sets
to be considered. This solution in turn enables considering
different test pattern generation strategies which, in a pre-
liminary phase, may generate a larger number of test pat-
ters that are later minimized with a set covering algorithm.

It should be noted that the solution of (2) does not nec-
essarily yield the minimum size test set for the circuit, and
in general it will not. In the case the test set containsall
possible input patterns, then the solution of (2) is indeed
the minimum size test set for the given circuit. Neverthe-
less, in practice the test set that is considered is provided
by an ATPG tool, and hence denotes a small subset of the
set of all the test patterns.

3. An Example

As an application example of the model proposed in the
previous section, let us consider a combinational circuit
with fault set  such that the set of test
patterns  detects all faults. Let us assume
further that the relation between test patterns and detected
faults is as shown in Figure 1, where an entry  with
value 1 indicates that test pattern  detects fault , and an
entry with value 0 indicates that the fault is not detected
with . Using this information, the resulting covering
problem can be formulated as follows:

(3)

subject to the constraints,

F F tj( )
tj U∈
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where each , , is a Boolean variable.
The minimum solution to this covering problem is

 and , which indicates that  and  can
be selected as a reduced set of test patterns for detecting
all faults in the circuit.

4. Experimental Results

The model described in the previous section has been
applied to test sets computed by Atalanta [9] under differ-
ent operating conditions. Afterwards, a unate covering
algorithm, Scherzo [4], has been applied to the different
test sets, with the objective of minimizing those test sets.
The experimental results of using Atalanta are shown in
Table 1, in Table 2, and in Table 3, respectively for the
ISCAS’85 [2], for the IWLS’89 [7] and for the
ISCAS’89 [3] benchmark circuits. In these tables, FS indi-
cates the utilization of fault simulation and COMP denotes
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Figure 1: Covering table for a set of faults
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Circuit

FS + No Comp No FS + No Comp No FS + Comp

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

C432 78 60 520 41 184 44

C499 93 58 750 52 276 57

C880 69 50 942 — 116 44

C1355 131 93 1566 84 523 87

C1908 179 128 1870 — 520 116

C2670 159 111 2621 — 300 106

C3540 211 145 3291 — 137 126

C5315 1781 109 — — 619 —

C6288 36 24 — — 714 —

C7552 288 215 — — 572 149

Table 1: Results for the ISCAS’85 circuits



the application of test compaction using simple dominance
relations. NO FS indicates that fault simulation is not
applied, and that all faults are targeted. (Note that
ATALANTA [9] computes test patterns with don’t cares,
which enhance dominance between test patterns. More-
over, dominance-based test compaction is useless when-
ever fault simulation is also applied.) For each experiment
the total number of test patterns (#T) is shown, either
obtained by the ATPG tool, or after applying the test set
compaction tool (MTSC) that runs Scherzo. The CPU time
allowed for Scherzo was 4,000 seconds on a SUN Ultra I/
170 workstation. Table entries with ‘—’ indicate that the
CPU time was exceeded.

As can be concluded from the tables of results, test set
compaction can in general yield significant savings in the
number of test patterns, even when fault simulation is

Circuit

FS + No Comp No FS + No Comp No FS + Comp

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

9symml 93 78 750 75 153 75

alu4 132 104 2696 73 415 83

apex2 121 87 945 66 216 74

cht 21 14 820 — 14 11

cm138a 13 12 124 11 15 12

cm150a 42 33 232 33 48 36

cm163a 16 15 220 12 13 12

cmb 37 30 248 28 33 26

comp 62 56 479 48 75 54

comp16 93 72 960 51 115 74

cordic 52 43 342 42 60 41

cps 173 145 4640 133 264 140

cu 34 27 255 24 31 25

dalu 123 96 3740 — 193 86

duke2 128 101 1708 89 157 94

e64 70 68 1142 68 69 68

i2 213 208 760 208 215 208

majority 11 11 54 11 11 11

misex1 21 16 224 16 21 16

misex2 55 51 422 45 40 38

misex3 203 152 2583 134 449 141

mux 40 35 202 34 49 36

pcle 19 17 328 16 20 18

pcler8 25 19 400 18 21 19

seq 369 280 5908 239 549 263

spla 209 161 2522 143 325 151

term1 77 54 702 33 71 43

too_large 145 103 1117 85 233 95

unreg 17 14 448 — 12 10

Table 2: Results for the IWLS’89 circuits

applied. Moreover, by not applying fault simulation, and
thus by having a significantly larger initial test set, the test
set compaction procedure is able, in the vast majority of
cases, to compute test sets smaller than those obtained
with fault simulation. Nevertheless, for the larger circuits,
the non-utilization of fault simulation yields a very large
number of test patterns, which the set covering algorithm
may then be unable to simplify. One solution to overcome
this problem is to compact test patterns by using domi-
nance relations (columns NO FS + COMP in the tables).
In this case, the set covering algorithm is able to optimally
solve a larger number of problem instances. Nevertheless,
the number of test patterns may still be too large for the set
covering algorithm to handle. One additional simplifica-
tion technique is to partition the test set intok subsets and
simplifying each subset separately. Afterwards, the pro-
cess is repeated for pairs of subsets. The process is
repeated until one reduced test set is obtained.

As one final remark, we should note that the improve-
ments obtained with the test set compaction procedure
also result from the ATPG tool computing test sets that are

Circuit

FS + No Comp No FS + No Comp No FS + Comp

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

#T w/
ATPG

#T w/
MTSC

S208 45 34 217 34 59 35

S298 33 28 308 25 38 29

S344 27 24 324 14 31 22

S349 26 23 330 15 31 21

S382 44 34 399 26 42 30

S386 82 68 384 65 92 68

S400 45 36 418 24 43 30

S420 92 73 455 70 125 72

S444 48 32 460 24 42 32

S510 69 61 564 56 84 58

S526 85 62 554 51 81 62

S526n 80 59 553 50 79 58

S641 76 58 465 43 53 43

S713 78 58 543 42 60 40

S820 177 111 850 96 143 105

S832 168 113 856 102 147 106

S838 168 153 931 148 252 145

S953 104 87 1079 76 166 82

S1196 189 150 1242 129 251 143

S1238 197 155 1286 136 255 149

S1423 88 66 1501 — 110 58

S1488 189 125 1486 105 162 112

S1494 172 120 1494 102 165 110

S5378 316 246 4563 — 287 178

S9234 497 374 6475 — 422 241

Table 3: Results for the ISCAS’89 circuits



significantly larger than the optimum. Nevertheless, the set
covering procedure of Section 2 can be applied to test sets
computed by any ATPG tool (e.g. COMPACTEST [13] or
MinTest [5]) whenever these test sets are known not to be
optimum or whenever fault simulation is not applied. We
note, however, that for any of these ATPG tools one
should have the ability to conditional apply fault simula-
tion.

5. Conclusions

This paper describes and evaluates a set covering
model for test set compaction. The model can be used by a
post-processing tool, for further compacting test sets
obtained with ATPG algorithms. Experimental evidence
indicates that in general additional test set compaction can
be achieved. Moreover, by augmenting the size of the ini-
tial test set, e.g. by not using fault simulation and targeting
all faults, we were able to compute test sets that are in gen-
eral smaller than those obtained when fault simulation is
used. Hence, whenever the main objective is test set com-
paction one may consider utilizing highly efficient ATPG
algorithms, targeting all faults (i.e. no fault simulation)
and applying a set covering algorithm for test set minimi-
zation. Despite this interesting result, set covering is an
NP-hard problem and consequently existing algorithms
may be unable to handle large test sets. For this problem
the paper describes different techniques, including pre-
compaction of test sets based on dominance relations and
test set partitioning. Future work will involve the evalua-
tion of other publicly available test pattern generators, that
specifically target test set compaction, with the goal of
studying the relationship between heuristic procedures and
formal models and algorithms for the test set compaction
problem.
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