
In Proceedings of Design of Integrated Circuits and Systems Conference (DCIS), November 1996Register Transfer Level VHDL BlockGenerationPaulo Flores Hor�acio NetoINESC/ISTInstituto de Engenharia de Sistemas e ComputadoresRua Alves Redol, 9 - 1100 Lisboa - PortugalTel: +351.1.3100000 Fax: +351.1.525843E-mail: p�@inesc.ptAbstractSystem-level design usually begins with ahigh level description that is re�ned to geta register transfer (RT) level netlist of thecircuit. An important task of this processis the component selection, that can be ex-ecuted automatically by high level synthesistools or manually by the designer. Typicallythis selection is based on a limited set of com-ponents available on the selected technology.In this paper, we present a set of RT-levelVHDL generators that can be used as stan-dard component library. Each block gener-ator is a technology independent VHDL de-scription that can be customized, at instan-tiation time, to �t a particular application.For some real circuits descriptions we com-pare, in terms of area of the synthesized cir-cuit, the use of VHDL block generators ver-sus dedicated RT-level descriptions. We con-clude that the area penalty which can occurin some cases is well compensated by the ad-vantages of having a more compact descrip-tion using a set of well de�ned and previouslytested component generators.1 IntroductionThe continuous development of VLSI technol-ogy has made available increasing gate countand performance. To deal with the increasingamount of information needed to manage thecomplexity of actual integrated circuits designs,new design methodologies have been developedover the last few years. Basically, the designercan start the circuit speci�cation at an higher

level of abstraction, without the need to spendcritical design time with the low level details ofimplementation.Standard hardware description languages, suchas the VHDL language, o�er a machine, vendorand technology independent method of describ-ing, documenting and simulating complex digi-tal integrated circuits and systems. VHDL canbe used to describe circuits at di�erent levels ofabstraction: logic, RT-level and behavioral.Today's commercial synthesis tools can pro-duce a gate level net-list, mapped to a speci�ctechnology library, from the VHDL speci�ca-tion. However, some restrictions are imposedin the description with respect to the languagesub-set supported and to the accepted style ofdescription. Currently most of the synthesistools require a description style that only sup-ports logic and RT-level descriptions.However, the exibility of VHDL enables thedescription of generic RT-level block generatorsthat can be parameterized and programmed ac-cording to the needs of a speci�c application.These generators can be simulated and synthe-sized with di�erent customizations, thereforeproviding an e�cient mechanism to high-levelspeci�cation.In the following section the advantages of usinge�cient RT-level block generators, in the ex-isting synthesis design methodologies, are pre-sented. In section 3 the complete library ofdeveloped generators is described. Applicationexamples of the use of VHDL block generatorsand results obtained with real circuits are pre-sented in section 4. Finally, in the last section

some conclusions are presented.2 Using RTL Generators withSynthesis MethodologiesThe system level design process typically startswith an high level design speci�cation. Thisspeci�cation is then re�ned down to the levelwhere each hardware system component is de-scribed as a block diagram or abstract netlistof RT-level components [1].The re�nement process can be done \automat-ically", using an high level synthesis tool, ormanually by the designer. Both methodologiescan pro�t by the use of RT-level block genera-tors.Using a high level synthesis tool, the RT-levelnetlist is obtained from the behavioral descrip-tion of the circuit, through a set of tasks thatdeal with:� selection of the components from a library� scheduling all the operations in the de-scription into control steps� binding the operations in the descriptionto the selected components� design optimizationThe library from which the components are se-lected plays an important role in the contextof synthesis. Typically, RT-level libraries of-fer a limited set of common components (suchas adders, registers, multiplexers, etc) and/orspeci�c components from a given technology.These libraries may be very well characterizedin terms of area and delay, but they miss theexibility of being tailored individually to eachinstantiation of a component.The use of generic RT-level block generatorspractically de�nes an \unlimited" set of compo-nents due to the considerable amount of param-eterizations and programming options allowed.Each component results from the customizationof a block generator to the speci�c requirementsof each applications. This customization caninvolve the parameterization and programmingof the blocks generators and/or the attachmentof some attributes that will be used during logicoptimization.

The use of standard VHDL to specify genericRT-level block generators preserves technology,EDA vendor and platform independence, andreduces the cost of developing and maintainingsuch libraries of components. Technology inde-pendence also allows the use of block generatorsas a \standard" library, which facilitates un-ambiguous documentation, communication anddesign re-use.An important requirement for system-level de-sign is the capability to predict technology-speci�c design characteristics. Using existingVHDL simulators, RT-level block generatorscan be used to rapidly explore architecturalalternatives in terms of overall system func-tional performance. Combined with existinglogic synthesis tools, an accurate explorationof architectural alternatives, in terms of area,speed and power, can be rapidly performed bysynthesizing to a selected technology.If the design methodology is not based on high-level synthesis tools then the designer has tomanually obtain a RT-level speci�cation for thesystem. In this case the RT-level block genera-tors acts as a very e�cient generic library whosecomponents can be instantiated by the designerand adjusted to �t the speci�c application.The use of this library increases the designerproductivity by reducing the amount of work toget a speci�cation and time dedicated to verifythe design, given that each component has beenpreviously well veri�ed and documented.3 IC-Blocks LibraryThe parameterized/programmed generic RTblock generators set presented has been namedIC-Blocks Library .This library was developed considering its usein an HDL-based synthesis methodology as de-scribed in the previous section. A technologyindependent description of each generator wasobtained using a synthesized VHDL subset andan appropriate description style.The ports of all generators are declared asstd logic or std logic vector types, as de-�ned by the IEEE package std logic 1164.In some cases, the VHDL description of thegenerators takes advantage of the packages2

std logic arith and std logic unsigned.These packages were developed by Synopsys,Inc. and can be freely used and distributed.The declaration and body of these packages areavailable, so they can be exported to any VHDLsystem.Tailoring a block generator so that the synthe-sis output is adjusted to a particular problemis achieved by two methods:Parameterization - Most of the generatorscan be parameterized through the use ofthe generic VHDL construct. For exam-ple, in most of the generators, the in-put/output buses width can be parame-terized through the value of the WIDTHgeneric.Programming - Several generators have in-put ports that can be used to control theexecution of some operations. These portscan be used as normal control ports or asprogramming ports. In the latter case,they are connected explicitly to a �xedlogic value, enabling or disabling de�nitelysome operations.Note that, while the parameterization de�nesthe number of resources to allocate for the spe-ci�c component, programming \will force" anoptimization of the generated component dur-ing the logic synthesis step (see examples in sec-tion 4)The generators developed, so far, for the IC-Blocks Library are listed in table 1. The 29generators presented can be divided in threeclasses:� Combinational generators - This class ofgenerators will only yield combinationalcircuits and can be sub-divided in:{ arithmetic generators - ADD, ADSB,ALU, EQ, GLE, SUB{ code converts generators - BCD BIN,BIN BCD, BIN SEGD, BIN SEGH,COD, DECOD, ENC{ multiplexers/demultiplexers genera-tors - DEMUX, DEMUXW, MUX,MUXW� Sequential generators - This class yieldscircuits with memory elements (latches orip-ops) and can be sub-divided in:

IC BLOCK FUNCTIONALITYADD Binary adder with carryADSB Adder-subtractorALU Arithmetic and Logic UnitBCD BIN BCD to binary converterBIN BCD Binary to BCD converterBIN SEGD Binary to decimal segment converter.BIN SEGH Binary to hexadecimal segmentconverter.COD Coder to binary.COUNTER Generic counter.DATA BUS Bus interface.DECOD DecoderDEMUX Demultiplexer for single lines.DEMUXW Demultiplexer for bus lines.ENC Priority encoderEQ Equality comparatorFIFO Dual port, single clocked FIFOFIFOD Dual port, dual clocked FIFOFIFO S Synchronous FIFO for asynchronousbus.GLE Comparator with greater than, lessthan and equal to output conditionsHDB3 NRZ High density bipolar 3 (HDB3) to non-return to zero (NRZ) encoderMEM Dual-port static RAM memory withsingle output data busMEMD Dual-port static RAM memory withdouble output data busMUX Multiplexer for single lines.MUXW Multiplexer for bus lines.NRZ HDB3 Non-return to zero (NRZ) to high den-sity bipolar 3 (HDB3) encoderREGFF Register using D-type Flip-Flopselements.REGL Register using Latch elements.SR Shift Register.SUB SubtractorTable 1: Generators in the IC-Blocks Library{ data storage generators - FIFO,FIFOD, FIFO S, MEM, MEMD,REGFF, REGL{ application generators - COUNTER,SR� Special purpose generators - This class in-cludes generators developed to �t moreparticular solutions which usually havelow parameterization and programmingcapabilities - DATA BUS, HDB3 NRZ,NRZ HDB3.All blocks generators are documented in the IC-Blocks Reference Manual [2], which includes,for each generator a data-sheet containing the3

following information:� Name of the generator.� Features enumerating the main functionalityof the generator.� Detailed description of the functionality and ofthe con�guration possibilities of the generator.Two tables are included, one for the ports de-scription, and other for the description of thegenerics and their default values.� VHDL description of the generator.� Default synthesis results for a general technol-ogy library.� Application examples with synthesis results toquickly help the designer understand the gen-erator usage and potentials.4 Application ExamplesTo exemplify the use of RT-level block genera-tors the REGFF block is described below. Thisgenerator is a \simple" register whose memoryelements are D type ip-ops. Figure 1 presentsthe symbol of the REGFF block.Figure 1: REGFF symbolThe ports of this generator are described intable 2. As expected, there is a clock line(CLK) and buses to write data and read itfrom the register (DATA IN and DATA OUT,respectively). The LOAD and READ sig-nals control the capability to execute a syn-chronous parallel load and activation of the out-put bus (DATA OUT) with the register value,respectively. The initialization of the regis-ter can be implemented asynchronously, syn-chronously, both or none, using the right com-bination of AINIT and SINIT signals.The generics of REGFF are described in ta-ble 3. This generator can be parameterized re-garding to: the width of the register and databuses (WIDTH); the asynchronous and syn-chronous initialization values (AINITIAL andSINITIAL, respectively); and the values of theregister output data bus, when the READ sig-nal is not active (NO READ).

Figures 2, 3 and 4 present synthesized circuits1,originated by the REGFF block generator us-ing di�erent parameterization and program-ming values.Figure 2 represents a simple 4-bits register withasynchronous initialization to \0000". Thiscircuit results from parameterizing the gen-erator REGFF to a width of 4-bits (genericWIDTH=4) and connecting the \programmingports" LOAD and READ to logic '1', andSINIT to logic '0'. The VHDL code to gen-erate this register is a simple instantiation ofthe library component REGFF customized asdescribed above.
library IEEE;
library ICBLOCKS;

use IEEE.std_logic_1164.all;
use ICBLOCKS.GENERIC_COMPONENTS.all;

entity ex1_regff is
 port(CLK, AINIT: in std_logic;
 DATA_IN : in std_logic_vector(3 downto 0);
 DATA_OUT: out std_logic_vector(3 downto 0));
end ex1_regff;

architecture example of ex1_regff is
 signal ZERO, ONE: std_logic;
begin
 ZERO <= ’0’;
 ONE <= ’1’;

 U1: REGFF
 generic map(WIDTH => 4)
 port map(AINIT => AINIT, CLK => CLK,
 DATA_IN => DATA_IN,
 LOAD => ONE, READ => ONE,
 SINIT => ZERO,
 DATA_OUT => DATA_OUT);
end example;Figure 2: A 4-bits register.In �gure 3 the REGFF generator was con�g-1Synthesized circuits for a general technology library.4

Port Name Type DescriptionCLK Input Positive edge trigger clock.LOAD Input Parallel load of the register with DATA IN value.READ Input DATA OUT takes the value of the registers when READ = 1.AINIT Input Asynchronously register initialization with AINITIAL generic value.SINIT Input Synchronously register initialization with SINITIAL generic value.DATA IN Input Register input data bus.DATA OUT Output Register output data bus.Table 2: REGFF portsGeneric Default DescriptionWIDTH 8 Register and buses dimension.AINITIAL 0 Asynchronous initialization value.SINITIAL 0 Asynchronous initialization value.NO READ 2 When READ = 0, DATA OUT assumes a value according to thefollowing values of NO READ:0 { DATA OUT is �lled with zeros;1 { DATA OUT is �lled with ones;2 { DATA OUT goes to high impedance;3 { don't cares.Table 3: REGFF Genericsured as in the previous example, except thatthe width was parameterized for 2-bits and theLOAD programming port was left as a inputsignal. Note that leaving the LOAD port asa signal implies extra logic (a multiplexer) be-fore each ip-op. In the previous example thislogic was removed (optimized) by the synthesistools, because the LOAD control signal had aconstant value.
Figure 3: A 2-bit register with parallel load.The register of �gure 4 was synthesized usingthe same generator, REGFF. The READ portwas left as a control signal which combined withthe default value of the NO READ generic, willresult in a register with three-state outputs.The generic AINITIAL was parameterized with

the value 1, so that an asynchronous initializa-tion of the register will yield the value \01".
Figure 4: A 2-bit register with three-state out-put.Note that the use of the VHDL block genera-tors does not introduce any penalty, in terms ofarea, speed or power. For the same functional-ity, the synthesized circuits from the generatorsblocks, have a gate count and structure equiv-alent to the circuits synthesized from typicaldedicated VHDL code. Of course, the resultsare highly dependent on the \quality" of thelogic synthesis tool used.Results got from using the VHDL block gen-erators at our CAD environment are presented5

in table 4. This table compares the area ofthree circuits, described in VHDL, at a RT-level, with and without block generators.Circuit With Gen. Without Gen.(Area) (Area)Up-Counter 183 183Register-Bank 1198 1046USART 8575 8492Table 4: Results from using generatorsThe �rst circuit (Up-Counter) is a simple 4-bit up-counter with parallel load, which canbe implemented directly using the COUNTERgenerator con�gured correctly. The second cir-cuit (Register-Bank) is a set of four di�erenttypes registers with a common output data bus.The third circuit (USART) is an Universal Syn-chronous Asynchronous Receiver Transmitterused in a Smart Card Interface developed in-ternally.These examples show that the area of the syn-thesized circuit using VHDL block generatorscan be slightly higher than the one synthesizedfrom a custom-made description. The smallarea penalty results from the fact that the gen-erator makes the optimization phase of the syn-thesis tool harder, thus, resulting in a less op-timized circuit.The \quality" of the synthesis tool used mayinuence these results, but with the currentdevelopment of synthesis technology, the areadi�erences will tend to disappear.5 ConclusionsThe fast development of VLSI technology haslead to the evolution of the design methodolo-gies, pushing the capture of design speci�ca-tions to higher levels of abstraction.In this paper we presented a library of RT-levelgenerators (IC-Blocks Library) suitable for usein high level design methodologies. Each li-brary generator is a VHDL description that canbe instantiated automatically by a tool, dur-ing the component selection phase of high levelsynthesis, or manually by the designer. Due tothe capability to con�gure each instantiation ofa generator, by parameterizing generics and/orprogramming port values, it is possible to tailor

it for a particular application. This kind of ex-ibility can not be achieved by common RT-levellibraries in which the components are de�nitelyde�ned and bound to a particular technology.The increasing of the designer productivity, bysigni�cantly reducing the time to get a func-tional correct RT-level description is a majoradvantage of using block generators.A small area penalty can be incurred byusing the block generators instead of usingcustomized code for the RT-level description.However, this penalty is compensated by thebene�ts of using well veri�ed and tested com-ponents, in terms of reduced design and debugtime of a circuit.References[1] Daniel Gajski, Loganath Ramachandrn, Pe-ter Fung, Frank Vahid, and Sanjiv Narayan,\Towards achiving an 100-hour design cyl-cle: A test case", Technical report #94-08, Dept. of Information and ComputerScience, University of California, Irvine,Februay 1994.[2] Leonel Sim~oes and Paulo Flores, IC-BlocksReference Manual, INESC, Version 2.0 -April 1995.[3] Scott Powell and Thomas Cesear, \Rapiddesign and exploration of signal process-ing systems using a VHDL generator basedparadigm", VHDL Times, vol. 4, no. 3,1995.[4] M. Chiodo, P. Giusto, H. Hsieh, A. Ju-recska, L. Lavagno, and A. Sangiovanni-Vincentelli, \A formal speci�cation modelfor hardware/software codesign", in Inter-national Workshop on Hardware-SoftwareCodesign, October 1993.[5] Pradip Jha, Nikil Dutt, and Daniel Gajski,\An evaluative study of RT component li-braries", Technical report #93-11, Dept. ofInformation and Computer Science, Univer-sity of California, Irvine, March 1993.[6] Synopsys, Inc., VHDL Compiler ReferenceManual, November 1992, Version 3.0.6

[7] Institute of Electrical and Electronics En-gineers, IEEE Standard VHDL LanguageReference Manual., March 1988, IEEE Std1076-1987.

7

