In Proceedings of Design of Integrated Circuits and Systems Conference (DCIS), November 1996

Register Transfer Level VHDL Block

Generation

Paulo Flores

Hordcio Neto

INESC/IST

Instituto de Engenharia de Sistemas e Computadores

Rua Alves Redol, 9 - 1100 Lisboa - Portugal

Tel: +351.1.3100000

Fax: +351.1.525843

E-mail: pff@inesc.pt

Abstract

System-level design usually begins with a
high level description that is refined to get
a register transfer (RT) level netlist of the
circuit. An important task of this process
is the component selection, that can be ex-
ecuted automatically by high level synthesis
tools or manually by the designer. Typically
this selection is based on a limited set of com-
ponents available on the selected technology.

In this paper, we present a set of RT-level
VHDL generators that can be used as stan-
dard component library. Each block gener-
ator is a technology independent VHDL de-
scription that can be customized, at instan-
tiation time, to fit a particular application.

For some real circuits descriptions we com-
pare, in terms of area of the synthesized cir-
cuit, the use of VHDL block generators ver-
sus dedicated RT-level descriptions. We con-
clude that the area penalty which can occur
in some cases is well compensated by the ad-
vantages of having a more compact descrip-
tion using a set of well defined and previously
tested component generators.

1 Introduction

The continuous development of VLSI technol-
ogy has made available increasing gate count
and performance. To deal with the increasing
amount of information needed to manage the
complexity of actual integrated circuits designs,
new design methodologies have been developed
over the last few years. Basically, the designer
can start the circuit specification at an higher

level of abstraction, without the need to spend
critical design time with the low level details of
implementation.

Standard hardware description languages, such
as the VHDL language, offer a machine, vendor
and technology independent method of describ-
ing, documenting and simulating complex digi-
tal integrated circuits and systems. VHDL can
be used to describe circuits at different levels of
abstraction: logic, RT-level and behavioral.

Today’s commercial synthesis tools can pro-
duce a gate level net-list, mapped to a specific
technology library, from the VHDL specifica-
tion. However, some restrictions are imposed
in the description with respect to the language
sub-set supported and to the accepted style of
description. Currently most of the synthesis
tools require a description style that only sup-
ports logic and RT-level descriptions.

However, the flexibility of VHDL enables the
description of generic RT-level block generators
that can be parameterized and programmed ac-
cording to the needs of a specific application.
These generators can be simulated and synthe-
sized with different customizations, therefore
providing an efficient mechanism to high-level
specification.

In the following section the advantages of using
efficient RT-level block generators, in the ex-
isting synthesis design methodologies, are pre-
sented. In section 3 the complete library of
developed generators is described. Application
examples of the use of VHDL block generators
and results obtained with real circuits are pre-
sented in section 4. Finally, in the last section

some conclusions are presented.

2 Using RTL Generators with
Synthesis Methodologies

The system level design process typically starts
with an high level design specification. This
specification is then refined down to the level
where each hardware system component is de-
scribed as a block diagram or abstract netlist
of RT-level components [1].

The refinement process can be done “automat-
ically”, using an high level synthesis tool, or
manually by the designer. Both methodologies
can profit by the use of RT-level block genera-
tors.

Using a high level synthesis tool, the RT-level
netlist is obtained from the behavioral descrip-
tion of the circuit, through a set of tasks that
deal with:

e selection of the components from a library

e scheduling all the operations in the de-
scription into control steps

e binding the operations in the description
to the selected components

e design optimization

The library from which the components are se-
lected plays an important role in the context
of synthesis. Typically, RT-level libraries of-
fer a limited set of common components (such
as adders, registers, multiplexers, etc) and/or
specific components from a given technology.
These libraries may be very well characterized
in terms of area and delay, but they miss the
flexibility of being tailored individually to each
instantiation of a component.

The use of generic RT-level block generators
practically defines an “unlimited” set of compo-
nents due to the considerable amount of param-
eterizations and programming options allowed.
Each component results from the customization
of a block generator to the specific requirements
of each applications. This customization can
involve the parameterization and programming
of the blocks generators and /or the attachment
of some attributes that will be used during logic
optimization.

The use of standard VHDL to specify generic
RT-level block generators preserves technology,
EDA vendor and platform independence, and
reduces the cost of developing and maintaining
such libraries of components. Technology inde-
pendence also allows the use of block generators
as a “standard” library, which facilitates un-
ambiguous documentation, communication and
design re-use.

An important requirement for system-level de-
sign is the capability to predict technology-
specific design characteristics. Using existing
VHDL simulators, RT-level block generators
can be used to rapidly explore architectural
alternatives in terms of overall system func-
tional performance. Combined with existing
logic synthesis tools, an accurate exploration
of architectural alternatives, in terms of area,
speed and power, can be rapidly performed by
synthesizing to a selected technology.

If the design methodology is not based on high-
level synthesis tools then the designer has to
manually obtain a RT-level specification for the
system. In this case the RT-level block genera-
tors acts as a very efficient generic library whose
components can be instantiated by the designer
and adjusted to fit the specific application.

The use of this library increases the designer
productivity by reducing the amount of work to
get a specification and time dedicated to verify
the design, given that each component has been
previously well verified and documented.

3 IC-Blocks Library

The parameterized/programmed generic RT

block generators set presented has been named
1C-Blocks Library .

This library was developed considering its use
in an HDL-based synthesis methodology as de-
scribed in the previous section. A technology
independent description of each generator was
obtained using a synthesized VHDL subset and
an appropriate description style.

The ports of all generators are declared as
std_logic or std_logic_vector types, as de-
fined by the IEEE package std logic_1164.
In some cases, the VHDIL description of the
generators takes advantage of the packages

std_logic_arith and std_logic_unsigned.
These packages were developed by SYNOPSYS,
Inc. and can be freely used and distributed.
The declaration and body of these packages are
available, so they can be exported to any VHDL
system.

Tailoring a block generator so that the synthe-
sis output is adjusted to a particular problem
is achieved by two methods:

Parameterization - Most of the generators
can be parameterized through the use of
the generic VHDL construct. For exam-
ple, in most of the generators, the in-
put/output buses width can be parame-
terized through the value of the WIDTH
generic.

Programming - Several generators have in-
put ports that can be used to control the
execution of some operations. These ports
can be used as normal control ports or as
programming ports. In the latter case,
they are connected explicitly to a fixed
logic value, enabling or disabling definitely
some operations.

Note that, while the parameterization defines
the number of resources to allocate for the spe-
cific component, programming “will force” an
optimization of the generated component dur-
ing the logic synthesis step (see examples in sec-
tion 4)

The generators developed, so far, for the IC-
Blocks Library are listed in table 1. The 29
generators presented can be divided in three
classes:

e Combinational generators - This class of
generators will only yield combinational
circuits and can be sub-divided in:

— arithmetic generators - ADD, ADSB,
ALU, EQ, GLE, SUB

— code converts generators - BCD_BIN,
BIN_BCD, BIN_SEGD, BIN_SEGH,
COD, DECOD, ENC

— multiplexers/demultiplexers genera-
tors - DEMUX, DEMUXW, MUX,
MUXW

e Sequential generators - This class yields
circuits with memory elements (latches or
flip-flops) and can be sub-divided in:

IC BLOCK | FUNCTIONALITY

ADD Binary adder with carry

ADSB Adder-subtractor

ALU Arithmetic and Logic Unit

BCD_BIN BCD to binary converter

BIN_BCD Binary to BCD converter

BIN_SEGD | Binary to decimal segment converter.

BIN.SEGH | Binary to hexadecimal segment
converter.

COD Coder to binary.

COUNTER. | Generic counter.

DATA_BUS | Bus interface.

DECOD Decoder

DEMUX Demultiplexer for single lines.

DEMUXW | Demultiplexer for bus lines.

ENC Priority encoder

EQ Equality comparator

FIFO Dual port, single clocked FIFO

FIFOD Dual port, dual clocked FIFO

FIFO_S Synchronous FIFO for asynchronous
bus.

GLE Comparator with greater than, less
than and equal to output conditions

HDB3_NRZ | High density bipolar 3 (HDB3) to non-
return to zero (NRZ) encoder

MEM Dual-port static RAM memory with
single output data bus

MEMD Dual-port static RAM memory with
double output data bus

MUX Multiplexer for single lines.

MUXW Multiplexer for bus lines.

NRZ_HDB3 | Non-return to zero (NRZ) to high den-
sity bipolar 3 (HDB3) encoder

REGFF Register using D-type Flip-Flops
elements.

REGL Register using Latch elements.

SR Shift Register.

SUB Subtractor

Table 1: Generators in the IC-Blocks Library

— data

storage generators - FIFO,

FIFOD, FIFO.S, MEM, MEMD,
REGFF, REGL

— application generators - COUNTER,

SR

e Special purpose generators - This class in-

cludes generators developed to fit more
particular solutions which usually have
low parameterization and programming
capabilities - DATA _BUS, HDB3_NRZ,
NRZ_HDB3.

All blocks generators are documented in the /C-
Blocks Reference Manual [2], which includes,
for each generator a data-sheet containing the

following information:

e Name of the generator.

e Features enumerating the main functionality
of the generator.

e Detailed description of the functionality and of
the configuration possibilities of the generator.
Two tables are included, one for the ports de-
scription, and other for the description of the
generics and their default values.

e VHDL description of the generator.

e Default synthesis results for a general technol-
ogy library.

e Application examples with synthesis results to
quickly help the designer understand the gen-
erator usage and potentials.

4 Application Examples

To exemplify the use of RT-level block genera-
tors the REGFF block is described below. This
generator is a “simple” register whose memory
elements are D type flip-flops. Figure 1 presents
the symbol of the REGFF block.

AINIT [>—

CLK >
DATA_INL7: 81 >
LOAD >

READ >

SINIT [>—

REGFF > DATA_OUT[7:8]

Figure 1: REGFF symbol

The ports of this generator are described in
table 2. As expected, there is a clock line
(CLK) and buses to write data and read it
from the register (DATA_IN and DATA_OUT,
respectively). The LOAD and READ sig-
nals control the capability to execute a syn-
chronous parallel load and activation of the out-
put bus (DATA_OUT) with the register value,
respectively. The initialization of the regis-
ter can be implemented asynchronously, syn-

chronously, both or none, using the right com-
bination of AINIT and SINIT signals.

The generics of REGFF are described in ta-
ble 3. This generator can be parameterized re-
garding to: the width of the register and data
buses (WIDTH); the asynchronous and syn-
chronous initialization values (AINITIAL and
SINITIAL, respectively); and the values of the
register output data bus, when the READ sig-
nal is not active (NO_READ).

Figures 2, 3 and 4 present synthesized circuits®,
originated by the REGFF block generator us-
ing different parameterization and program-
ming values.

Figure 2 represents a simple 4-bits register with
asynchronous initialization to “0000”. This
circuit results from parameterizing the gen-
erator REGFF to a width of 4-bits (generic
WIDTH=4) and connecting the “programming
ports” LOAD and READ to logic ’1’, and
SINIT to logic ’0’. The VHDL code to gen-
erate this register is a simple instantiation of
the library component REGFF customized as
described above.

DATA_IN[3:81[> DATA_OUT[3:8]

L[> > o}

AINTT >—eu—l>0—’—Y

l'ibrary | EEE;
l'ibrary | CBLOCKS;

use | EEE. std_l ogi c_1164. al | ;
use | CBLOCKS. GENERI C_COVPONENTS. al | ;

entity exl_regff is
port (CLK, AINIT: in std_logic;
DATA_IN : in std_l ogi c_vector (3 downto 0);
DATA_QUT: out std_logi c_vector(3 downto 0));
end exl_regff;

architecture exanple of exl_regff is
signal ZERO, ONE: std_l ogic;
begi n
ZERO <= ' 0';
ONE <= '1";

Ul: REGFF

generic map(WDTH => 4)

port map(AINIT => AINIT, CLK => CLK,
DATA_I N => DATA_IN,
LOAD => ONE, READ => ONE,
SINIT => ZERO,
DATA_QUT => DATA_QUT);

end exanpl e;

Figure 2: A 4-bits register.

In figure 3 the REGFF generator was config-

1Synthesized circuits for a general technology library.

Port Name

Type

| Description

CLK Input Positive edge trigger clock.
LOAD Input Parallel load of the register with DATA_IN value.
READ Input DATA_OUT takes the value of the registers when READ = 1.
AINIT Input Asynchronously register initialization with AINITTIAL generic value.
SINIT Input Synchronously register initialization with SINITTAL generic value.
DATA_IN Input Register input data bus.
DATA_OUT | Output | Register output data bus.
Table 2: REGFF ports
‘ Generic ‘ Default ‘ Description
WIDTH 8 Register and buses dimension.
AINITIAL |0 Asynchronous initialization value.
SINITIAL |0 Asynchronous initialization value.
NO_READ | 2 When READ = 0, DATA_OUT assumes a value according to the

following values of NO_READ:
0 — DATA _OUT is filled with zeros;
1 - DATA_OUT is filled with ones;
2 — DATA_OUT goes to high impedance;
3 — don’t cares.

Table 3: REGFF Generics

ured as in the previous example, except that
the width was parameterized for 2-bits and the
LOAD programming port was left as a input
signal. Note that leaving the LOAD port as
a signal implies extra logic (a multiplexer) be-
fore each flip-flop. In the previous example this
logic was removed (optimized) by the synthesis
tools, because the LOAD control signal had a
constant value.

DATA_INI1: z]D—.—»EJ

cLK> > o]

AINIT > ¥

LOAD >
> o]

74>0H

Figure 3: A 2-bit register with parallel load.

DATA_OUT[1:8]

The register of figure 4 was synthesized using
the same generator, REGFF. The READ port
was left as a control signal which combined with
the default value of the NO_READ generic, will
result in a register with three-state outputs.
The generic AINITIAL was parameterized with

the value 1, so that an asynchronous initializa-
tion of the register will yield the value “01”.

AINIT >
ﬂi > DATA_OUT (1 8)
LoAD >
CLK[> > o]
READ>
DATA_IN[1:8] I

Do 7

Figure 4: A 2-bit register with three-state out-

put.

Note that the use of the VHDL block genera-
tors does not introduce any penalty, in terms of
area, speed or power. For the same functional-
ity, the synthesized circuits from the generators
blocks, have a gate count and structure equiv-
alent to the circuits synthesized from typical
dedicated VHDL code. Of course, the results
are highly dependent on the “quality” of the
logic synthesis tool used.

Results got from using the VHDL block gen-
erators at our CAD environment are presented

in table 4. This table compares the area of
three circuits, described in VHDL, at a RT-
level, with and without block generators.

Circuit With Gen. | Without Gen.
(Area) (Area)
Up-Counter 183 183
Register-Bank 1198 1046
USART 8575 8492

Table 4: Results from using generators

The first circuit (Up-Counter) is a simple 4-
bit up-counter with parallel load, which can
be implemented directly using the COUNTER
generator configured correctly. The second cir-
cuit (Register-Bank) is a set of four different
types registers with a common output data bus.
The third circuit (USART) is an Universal Syn-
chronous Asynchronous Receiver Transmitter
used in a Smart Card Interface developed in-
ternally.

These examples show that the area of the syn-
thesized circuit using VHDL block generators
can be slightly higher than the one synthesized
from a custom-made description. The small
area penalty results from the fact that the gen-
erator makes the optimization phase of the syn-
thesis tool harder, thus, resulting in a less op-
timized circuit.

The “quality” of the synthesis tool used may
influence these results, but with the current
development of synthesis technology, the area
differences will tend to disappear.

5 Conclusions

The fast development of VLSI technology has
lead to the evolution of the design methodolo-
gies, pushing the capture of design specifica-
tions to higher levels of abstraction.

In this paper we presented a library of RT-level
generators (/C-Blocks Library) suitable for use
in high level design methodologies. Fach li-
brary generator is a VHDL description that can
be instantiated automatically by a tool, dur-
ing the component selection phase of high level
synthesis, or manually by the designer. Due to
the capability to configure each instantiation of
a generator, by parameterizing generics and/or
programming port values, it is possible to tailor

it for a particular application. This kind of flex-
ibility can not be achieved by common RT-level
libraries in which the components are definitely
defined and bound to a particular technology.

The increasing of the designer productivity, by
significantly reducing the time to get a func-
tional correct RT-level description is a major
advantage of using block generators.

A small area penalty can be incurred by
using the block generators instead of using
customized code for the RT-level description.
However, this penalty is compensated by the
benefits of using well verified and tested com-
ponents, in terms of reduced design and debug
time of a circuit.

References

[1] Daniel Gajski, Loganath Ramachandrn, Pe-
ter Fung, Frank Vahid, and Sanjiv Narayan,
“Towards achiving an 100-hour design cyl-
cle: A test case”, Technical report #94-
08, Dept. of Information and Computer
Science, University of California, Irvine,
Februay 1994.

[2] Leonel Simées and Paulo Flores, IC-Blocks
Reference Manual, INESC, Version 2.0 -
April 1995.

[3] Scott Powell and Thomas Cesear, “Rapid
design and exploration of signal process-
ing systems using a VHDL generator based
paradigm”, VHDL Times, vol. 4, no. 3,
1995.

[4] M. Chiodo, P. Giusto, H. Hsieh, A. Ju-
recska, L. Lavagno, and A. Sangiovanni-
Vincentelli, “A formal specification model
for hardware/software codesign”, in Inter-

national Workshop on Hardware-Software
Codesign, October 1993.

[5] Pradip Jha, Nikil Dutt, and Daniel Gajski,
“An evaluative study of RT component li-
braries”, Technical report #93-11, Dept. of
Information and Computer Science, Univer-
sity of California, Irvine, March 1993.

[6] Synopsys, Inc., VHDL Compiler Reference
Manual, November 1992, Version 3.0.

[7] Institute of Electrical and Electronics En-
gineers, IKFE Standard VHDL Language
Reference Manual., March 1988, IEEE Std
1076-1987.

