
In IV Jornadas sobre Sistemas Reconfiguráveis (REC). Universidade do Minho, February 7-8, 2008

Programmable IP core for motion estimation: comparison of FPGA and ASIC
based implementations

Tiago Dias
INESC-ID / ISEL

Nuno Sebastião
INESC-ID

Nuno Roma
INESC-ID / IST

Paulo Flores
INESC-ID / IST

Leonel Sousa
INESC-ID / IST

Abstract

A performance analysis of two distinct implementations of
a recently proposed quite efficient motion estimation co-
processor is presented. This comparison considers two
distinct implementation technologies: a high performance
FPGA device, from Xilinx Virtex-II Pro family, and an ASIC
based implementation, using a0.18µm CMOS standard
cells library. Experimental results have shown that the two
considered implementations present quite similar perfor-
mance levels and allow the estimation of motion vectors
in real-time. Nevertheless, the reconfigurability properties
of the FPGA implementation allow the motion estimator
to dynamically adapt the video encoder to the characteris-
tics of the target application and/or of the communication
channel.

1. Introduction

In the last few years there has been a growing trend to
design highly complex and efficient processing systems by
integrating already developed and dedicated cores which
implement, in a particularly efficient way, certain specific
and critical parts of the main system. Such design approach
can either be conducted in order to obtain highly complex
and autonomous processing architectures, or to implement
specific and dedicated processing structures that will be in-
tegrated with other larger scale processing modules, in the
form of co-processors, to alleviate the computational bur-
den. As a consequence, a significant amount of quite dif-
ferent processing modules have been proposed and made
available, providing an easy integration with the target pro-
cessing systems and a substantial reduction of the design
effort. To attain such objective, these processing cores have
to follow strict design methodologies, in order to provide an
easy and efficient implementation in a broad range of target
implementation technologies (e.g.: FPGA, ASIC, etc.).

One of such modules that has deserved a particular at-
tention in the scope of digital video coding is the motion
estimator. In fact, although this block is often regarded as
one of the most important operations in video coding to
exploit temporal redundancies in sequences of images, it
often represents most of the computation cost of these sys-
tems [1]. As a consequence, real-time Motion Estimation
(ME) is usually only achievable by adopting specialized
VLSI structures to implement this processing task.

Most of the processing cores of hardware motion esti-

mators that have been proposed in the literature [2, 3] con-
sist of custom ASIC implementations of the Full-Search
Block-Matching (FSBM) algorithm, mostly due to its reg-
ularity and data independence. The need for faster search
algorithms to achieve real-time ME has also led to the pro-
posal of a few architectures that implement sub-optimal
search strategies, such as the Three-Step-Search (3SS), the
Four-Step-Search (4SS) and the Diamond Search (DS) [4,
5]. However, the highly irregular control-flow that charac-
terizes such algorithms tends to compromise the efficiency
of such architectures and therefore has limited their ap-
plication to general purpose programmable systems. Al-
though some individual hardware architectures were actu-
ally proposed [4, 5], they usually resulted in complex and
inefficient hardware designs, that do not offer any recon-
figuration capability. Meanwhile, data-adaptive ME algo-
rithms have been proposed, as a result of the recent ad-
vent of the H.264/AVC encoding standard [6]. Some ex-
amples of these algorithms are the Motion Vector Field
Adaptive Search Technique (MVFAST), the Enhanced Pre-
dictive Zonal Search (EPZS) and the Fast Adaptive Mo-
tion Estimation (FAME). These algorithms avoid unneces-
sary computations and memory accesses by taking advan-
tage of the temporal and spacial correlations of the Motion
Vectors (MVs), in order to adapt and optimize the search
patterns. However, few hardware implementations have
been presented for these new ME approaches, mainly be-
cause of the inherent computational complexity of their op-
eration to adjust, themselves, to the characteristics of both
the video input signal and the encoding system. Even so, a
highly efficient processing core of an Application Specific
Instruction Set Processor (ASIP) that is capable of imple-
menting any of these complex ME algorithms, was recently
proposed [7].

Independently of the application scenario, the advent of
the most recent generations of FPGAs has proved that these
devices can be regarded as feasible alternatives to other
more costly implementation platforms, such as ASICs. In
fact, due to their highly reconfigurable nature and their ca-
pability to implement the highest demanding processing
applications, FPGAs not only offer significant advantages
in what concerns the design and implementation time, but
they also represent a cost effective means to implement a
given circuit. In fact, not only do they provide an easy in-
tegration with other larger scale processing structures, but
they also may be easily applied to implement external pro-
cessing structures (e.g.: within PCMCIA cards [8]) that
accelerate the execution of a given part of the processing

Table 1: Instruction-set architecture of the motion estimation co-processor.

Opcode Mnemonic Instruction Category 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

000 LD Memory data transfer opcode t -
001 J Control opcode cc Address
010 MOVR Register data transfer opcode Rd - Rs
011 MOVC Register data transfer opcode t Rd Constant
100 SAD16 Graphics opcode - Rd Rs1 Rs2
101 DIV2 Arithmetic opcode - Rd Rs1 -
110 ADD Arithmetic opcode - Rd Rs1 Rs2
111 SUB Arithmetic opcode - Rd Rs1 Rs2

algorithm. Nevertheless, the quite distinct implementation
technologies that are inherent to these two platforms often
demand an effective comparison in what concerns the per-
formances of the obtained circuit. In this paper, it is pre-
sented a performance analysis of two distinct implemen-
tations of the quite efficient circuit of a ME co-processor,
recently proposed in [7]. This comparison considers two
distinct implementation technologies: a high performance
FPGA device, from Xilinx Virtex-II Pro family, and an
ASIC based implementation, using a 0.18µmCMOS stan-
dard cells library.

2. Motion estimator architecture

The programmable and specialized architecture for ME
proposed in [7] was tailored to efficiently program and im-
plement a broad class of powerful, fast and/or adaptive
ME search algorithms. This architecture supports the most
used Macroblock (MB) structures, such as the traditional
fixed 16×16 pixels block size, adopted in the H.261/H.263
and the MPEG-1/MPEG-2 video coding standards, or even
any other variable block-size structures, adopted in the
H.264/AVC coding standard. This flexibility was attained
by developing a simple and efficient micro-architecture,
that supports a minimum and specialized instruction set.
The data-path was also designed around a specialized arith-
metic unit that efficiently computes the Sum of Absolute
Differences (SAD) similarity function. Furthermore, the
several control signals are generated by a quite simple and
hardwired control unit [7].

2.1. Instruction Set

The Instruction Set Architecture (ISA) of the proposed
ASIP was designed to meet the requirements of most ME
algorithms, including some recent approaches that adopt ir-
regular and unpredictable search patterns, such as the data-
adaptive ones. Such ISA is based on a register-register ar-
chitecture and provides a quite reduced number of different
instructions (eight), that focus on the set of operations that
are most widely used in ME algorithms.

It also offers an increased efficiency level, mainly due
to its large and configurable number of General Purpose
Registers (GPRs), which provides a reduction of the mem-
ory traffic and a subsequent decrease of the program exe-
cution time. The amount of registers that compose the reg-

ister file therefore results as a trade-off between the hard-
ware resources, the memory traffic and the size of the pro-
gram memory. For the proposed configuration, the register
file consists of 24 GPRs and 8 Special Purpose Registers
(SPRs), capable of storing one 16-bit word each.

The set of operations supported by the proposed ISA
is divided in five different categories of instructions, as it
can be seen in Table 1, and was obtained as the result of an
exhaustive analysis of the execution of several different ME
algorithms. The encoding of these instructions into binary
representation was performed using a fixed 16-bit format.

2.1.1. Control operation

The jump operation,J, introduces a change in the
control-flow of a program, by updating the program counter
with an immediate value that corresponds to an effective
address. This instruction has a 3-bit condition field (cc) that
specifies the condition that must be verified for the jump
to be taken: always; in case the outcome of the last exe-
cuted arithmetic or graphics operation (SAD16) is positive
or zero, or even negative for the case of arithmetic opera-
tions; or in case the Address Generation Unit (AGU) or the
SAD Unit (SADU) are operating.

2.1.2. Register data transfer operations

These operations allow the loading of data into a GPR
or SPR of the register file. Such data may be the content of
another register, in the case of a simple move instruction,
MOVR, or an immediate value for constant loading,MOVC.
Due to the adopted instruction coding format, the imme-
diate value is only 8-bit width. A control field (t) sets the
loading of the 8-bit literal into the destination register upper
or lower byte.

2.1.3. Arithmetic operations

The ADD and SUB instructions support the computa-
tion of the coordinates of the MBs and of the candidate
blocks, as well as the updating of control variables used
in loops. On the other hand, theDIV2 instruction (inte-
ger division by two) allows, for example, to dynamically
adjust the search area size, which is most useful in adap-
tive ME algorithms. These three instructions also provide
some extra information about their outcome, which can be
used by the jump (J) instruction to conditionally change

R2 R3

R6 R7

R10 R11

R14 R15

R18 R19

R22 R23

Σ

...

...

ASR

Σ
‘0’

‘1’

SADU

AGU

ROM
(Firmware)

Instruction Decoding

R0 R1

R4 R5

R8 R9

R12 R13

R16 R17

R20 R21

PC

...

ALU

Negative

Zero

R26 R27

R30 R31

R24 R25

R28 R29

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

M
U
X

AGU
SADU

MB
MEM

SA
MEM

Figure 1: Architecture of the proposed ASIP (SPRs are shaded in the register file).

the control-flow of a program.

2.1.4. Graphics operation

TheSAD16 operation provides the computation of the
SAD similarity measure between a MB and a candidate
block. To do so, this operation computes the SAD value
considering two sets of 16 pixels (the minimum amount
of pixels for a MB in the MPEG-4 video coding standard)
and accumulates the result to the contents of a GPR. The
computation of the SAD value for a given (16×16) pixels
candidate MB therefore requires the execution of sixteen
consecutiveSAD16 operations. Likewise the previously
described arithmetic operations, the outcome of this opera-
tion also provides some extra information that may be used
by the jump (J) control instruction to conditionally change
the control-flow of a program.

2.1.5. Memory data transfer operation

The processor comprises two fast and small scratch-pad
local memories to store the pixels of the MB under pro-
cessing and its corresponding search area. To improve the
processor performance, a memory data transfer operation
(LD) was also included to load the pixels data into these
memories. Such operation is carried out by means of an
Address Generation Unit (AGU), which generates the set of
addresses of the corresponding internal memory, as well as
of the external frame memory, that are required to transfer
the pixels data. The selection of the target memory device
is carried out by means of an 1-bit control field (t), which
is used to specify the type of image data that is loaded into
the local memory: either corresponding to the current MB
or to the corresponding search area.

2.2. Micro-architecture

The proposed ISA is supported by a specially designed
micro-architecture. This micro-architecture presents a
modular structure and is composed by simple and efficient
units that optimize the data processing, as it can be seen in
Fig. 1.

2.2.1. Control unit

The control unit is characterized by its extremely low
complexity, due to the adopted fixed instruction encoding
format and a careful selection of the opcodes for each in-
struction. This design option provided the implementation
of a very simple and fast hardwired decoding unit, which
enables almost all instructions to complete in just one clock
cycle.

2.2.2. Datapath

The datapath includes specialized units to increase the
efficiency of the most complex and specific operations,
such as theLD and theSAD16 instructions: an AGU and a
SADU, respectively.

The LD operation is executed by a dedicated AGU,
which is capable of fetching all the pixels of both a MB
or an entire search area. To maximize the efficiency of
the data processing, this unit can work in parallel with
the remaining functional units of the micro-architecture.
By using such feature, programs can be highly optimized,
by rescheduling theLD instructions in order to allow data
fetching from the external memory to occur simultaneously
with the execution of other parts of the program that do not
depend on this data. Furthermore, to ease the programmer
task, the micro-architecture also makes available a specific
flag in its program status register that reflects the operation
state of this unit.

The SADU can execute theSAD16 operation in up to
sixteen clock cycles. It is also capable of operating the
Arithmetic and Logic Unit (ALU) in parallel with the exe-
cution of theSAD16 operation, to update the line coordi-
nates of the candidate block. The number of clock cycles
that is required for the computation of a SAD value is im-
posed by the specific type of architecture that is selected
in the configuration of this unit at design time, which de-
pends on the specified performance and hardware resources
constraints. Thus, applications imposing more severe con-
straints in the amount of used resources may adopt a con-
figuration based on a serial processing architecture, that
reuses hardware but takes more clock cycles to compute
theSAD16 operation; while others, without so strict req-
uisites, may adopt a configuration based on a parallel pro-
cessing architecture that is able to compute theSAD16 op-

Motion Estimator
Co-processor

data

addr

#oe_we

data

addr

reqgnt
gntreq

done

Memory
Controller

Video Encoder
Frame

Memory

enrst

8

20

Figure 2: Interface with the video encoding system.

eration in only one single clock cycle. Despite the type of
architecture adopted for the SADU, the proposed micro-
architecture makes always available a specific flag in its
program status register that indicates if the result of the last
computedSAD16 operation is a minimum SAD value.

3. Integration with the video encoding system

To embed the proposed ASIP core as a ME co-processor
in a video encoding system, a simple and efficient interface
for both the data and control signals must be made avail-
able. In addition, the co-processor must also use simple
and efficient protocols, to exchange the control commands
and data with the main processing unit of the video encod-
ing system.

3.1. Interface

The proposed programmable and configurable architec-
ture for ME presents a simple and reduced pin count inter-
face, as it can be seen in Fig. 2. Such interface was de-
signed to allow the fetching of the pixel data required for
the ME task from the main frame memory of the video en-
coding system, i.e., the pixels of the reference macroblock
and of its corresponding search area. In addition, the pro-
posed interface is also able to efficiently export the config-
uration parameters and the output results of the ME oper-
ation to the video encoding system main processing unit,
i.e., the coordinates and the SAD value for the computed
best matching MVs.

The data transfers with the video encoder frame mem-
ory are mostly supported through five I/O ports, as it can
be seen in Fig. 2. The 1-bit port,#oewe, is used to set the
type of external memory operation: a load or store. The
addr port is 20-bit width and is used to select the position
of the frame memory from which the pixels of a reference
macroblock, or those of a search area, are to be retrieved
by the load operation. Since pixel values for ME are usu-
ally represented using only 8-bits, an 8-bit width signal is
used to exchange data with the frame memory. Such sig-
nal is available at thedata port of the proposed structure.
Thus, the total memory address space provided by this pro-
grammable architecture is 1 MB. Considering that MVs are
estimated using pixels from two different frames, the refer-
ence and search frames, such address range therefore al-

Configuration
Parameters

0xFFFF0
0xFFFEF

0x80000

0x00000

0x7FFFF

0xFFFFF

Reference
Frame

Search
Frame

Figure 3: Memory map of the proposed ASIP.

lows the computation of MVs for the most used image for-
mats (e.g.: in the 4CIF image format each frame consists
of 704× 576 pixels). In what concerns the store opera-
tion, it also makes use of thedata port to transfer, to the
video encoder, the result of the ME operation, as well as
the configuration parameters of the ME co-processor used
in such computation. These parameters consist of the hori-
zontal and vertical coordinates of the computed best match-
ing MV, its corresponding SAD value, the MB size, the
search area size and the image width and height, which can
be dynamically adjusted by the ME algorithm implemented
in the ME co-processor. The video encoder accesses these
parameters by reading a reserved memory region of the
frame memory, beginning at memory address 0xFFFF0 and
encompassing 16 memory locations, as depicted in Fig. 3.
Consequently, the number of required I/O connections is
minimized.

The two remaining I/O ports provided by the proposed
architecture,req and gnt, are used to implement the re-
quired handshake protocol with the bus master of the video
encoding system. Such control task is required because
the frame memory bank is shared between the ME co-
processor and the main processing unit of the video en-
coder, and to optimize memory usage and minimize the
memory bandwidth requirements of the frame memory.

Theen input port of the proposed programmable archi-
tecture is used to control its operation, while therst input
port is used to set the processor into its startup state. The
doneoutput port is used to signal the video encoder that
the ME co-processor has completed the estimation of a new
MV.

3.2. Communication protocols

The communication between the proposed pro-
grammable architecture and the video encoder is achieved
through the interface signals described in section 3.1 by
using three distinct simple and efficient protocols. Such
protocols are aimed to support the operating principle

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

0x00000 0x00001 0xFFFFF

Instr0 LSB Instr1 MSB Instr1023 MSB

...

...

...

...

...

...

...

...

...

Figure 4: Temporal diagram concerning the loading of the firmware intothe proposed ASIP.

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

Address Pixel0 Address Pixel1 Address Pixeli

Pixel Value0 Pixel Value1 Pixel Valuei

...

...

...

...

...

...

...

...

...

Figure 5: Temporal diagram concerning the loading of MB/SA pixels into the proposed ASIP.

CLK

RST

EN

DONE

REQ

OE_nWE

ADDR

DATA

GNT

0xFFFF0 0xFFFF1 0xFFFFF

R28 MSB R28 LSB R27 LSB

...

...

...

...

...

...

...

...

...

Figure 6: Temporal diagram concerning the output of the result of a ME operation.

of the video encoding system, consisting of only three
different tasks.

The first task consists in the configuration of the ME
co-processor. Such operation includes the download of the
compiled assembly code of the considered ME algorithm to
the co-processor (i.e., the co-processor’s firmware) and the
definition of all the control parameters required to the ME
operation, namely, the MB size, the search area size, the
image width and the image height. Both the firmware and
the ME configuration parameters are uploaded into the co-
processor’s program RAM through thedataport. The con-
figuration of the co-processor is therefore achieved by first
storing the required data in the frame memory of the video

encoder system and by setting the co-processor into itspro-
gramming mode. The co-processor enters in this mode
when both signals,rst anden, are high, as it can be seen in
Fig. 4. In thisprogramming mode, the co-processor firstly
acquires the bus ownership. Then, it supplies memory ad-
dresses through theaddrport to the frame memory, in order
to download the corresponding instructions into its internal
program RAM, organized in the little-endian format. Since
each instruction is 16-bit width, two memory access cycles
are required to load an instruction into the program mem-
ory. The co-processor exits theprogramming modeas soon
as the last memory position of its 2 kB program memory
is filled in. Such approach allows to minimize the number

of required I/O connections of the ME co-processor with-
out degrading its efficiency, since the downloading of a ME
algorithm into the ME co-processor is not very often exe-
cuted.

The second task consists in all data transfers concern-
ing the pixels of a reference macroblock and of a search
area from the video encoder frame memory to the ME co-
processor. An entirely similar protocol is used to support
this task, as depicted in Fig. 5. This task occurs on the co-
processor’s demand and is controlled by the AGU of the
proposed programmable architecture. Consequently, the
AGU must firstly generate the required control signals for
the co-processor to acquire the bus ownership before initi-
ating the pixel data transfer. Then, the AGU supplies the
correct memory addresses to the frame memory through
theaddrport, so that all the pixels of a macroblock, or of a
search area, are retrieved from the external frame memory
and are loaded into the local scratch-pad memories of the
ME co-processor. Since a pixel value is represented using
8-bits, a single memory access cycle is required to transfer
a pixel value from the external frame memory into the local
memories of the ME co-processor.

The third task consists in transferring, to the video en-
coder, both the result of the ME operation, as well as the
ME configuration parameters updated by the co-processor
during the ME operation. A different protocol is used,
but again, such data transfer occurs on demand by the co-
processor. However, it is now controlled by the main con-
trol unit of the proposed programmable architecture. The
controller starts the output operation by requesting the bus
ownership, as it can be seen in Fig. 6. Then, it enters in
a loop that outputs the contents of all the co-processor’s
SPRs through thedata port. Two memory access cycles
are required for this operation, since SPRs are 16-bit width
and the outputdata port is only 8-bit width. The low or-
der 8-bits of each SPR are always outputted in the first ac-
cess cycle. In addition, every time a new value is outputted
through thedataport the status of thedoneoutput port is
toggled, in order to signal the video encoder that new data
was uploaded into the reserved memory region of the video
encoding system. The memory position used to store the
data is selected according to the value being outputted at
theaddr port.

4. Prototyping platform

To validate the functionality of the proposed pro-
grammable architecture for ME in a practical realization, a
complete video encoding system was developed and imple-
mented. Two different platforms were considered for the
prototyping of such video encoder, in order to evaluate the
performance of the proposed ME core when implemented
using both FPGA and ASIC target technologies. Never-
theless, the base configuration of such system is equal for
both cases. It consists of a general purpose processor that
executes all of the video encoder operations, except for the
ones concerning ME. The ME operations are executed by
the proposed programmable architecture, acting as a spe-
cialized co-processor of the main processing unit of the

video encoder, i.e., the general purpose processor. This co-
processor computes, in parallel, the several MVs that are
required by the encoder to compute the prediction error of
the video signal.

The implemented video encoder consists of a software
implementation of the H.263 encoding standard, provided
by Telenor R&D (TMN5) [9]. Such implementation in-
cludes some optimizations of the original version, provided
by Telenor R&D, in order to make its use more efficient in
embedded systems. The modifications include the redesign
of all the functions used in ME and the declaration of all
variables in these functions using the prefixregister, so as
to optimize the program execution time. To maximize the
performance of the encoder, the linker script of the video
encoding system was also adapted to the target embedded
system. Such modifications aimed at optimizing the data
transfers from the video encoder main memory module to
the ME co-processor, concerning the pixels of the reference
blocks and of its corresponding search area.

4.1. FPGA based prototype

The implementation of the proposed video encoding
system using an FPGA device was realized using a Xil-
inx ML310 development platform [10], which includes a
100MHz 256MB DDR memory bank and a Virtex-II Pro
XC2VP30 FPGA device from Xilinx. Besides all the im-
plementation resources offered by this reconfigurable de-
vice, it also provides two Power-PC processors, several
Block RAM (BRAM) modules and high speed on-chip bus-
communication links. Such communication links enable
the interconnection of the Power-PC processors with the
user developed hardware circuits.

The implemented video encoding system makes use
of some of these resources. The programmable architec-
ture for ME is implemented using the configurable logic
blocks provided by the Virtex-II Pro XC2VP30 FPGA de-
vice, while the main processing unit of the video encoder
consists of a Power-PC 405 D5 processor, operating at
300MHz. Such processor runs the optimized software im-
plementation of the H.263 video encoder [9], which is built
into the FPGA BRAMs and the ML310 DDR memory
bank. The linker script used for this implementation max-
imizes the performance of the encoder by taking into ac-
count the significantly different access times provided by
these two memory banks. To do so, both the.text and
the.mesections of the application were located in two dis-
tinct 128kB FPGA BRAM modules, while the.data, stack
andheapsections were located in the DDR memory mod-
ule, due to its large size (more than 256kB). The inter-
connection between the Power-PC processor and the ME
co-processor is implemented by using both the high-speed
64-bit Processor Local Bus (PLB) and the general purpose
32-bit On-chip Peripheral Bus (OPB), where the Power-PC
is connected as the master device. Such interconnect buses
are used not only to exchange the control signals between
the Power-PC and the ME co-processor, but also to send all
the required data to the ME structure.

4.2. ASIC based prototype

The implementation of the proposed programmable ar-
chitecture for ME in an ASIC was carried out using an
AT91SAM9263-EK evaluation kit [11] from ATMEL. This
development board includes an AT91SAM9263 [12] pro-
cessor, which is based on the ARM926EJ-S core, widely
adopted by the latest generation of mobile phones and
PDAs, and an extensive set of peripherals for control, com-
munication and data storage purposes. This set of peripher-
als also includes all the components required to implement
a modern video encoding system, i.e., a graphical 1/4 VGA
TFT LCD module, an ISI connector that provides interface
to video cameras and a 100 MHz 64MB SRAM memory
bank. In addition, this development board also offers the
possibility to embed user-developed peripherals into the
prototyping platform, by making available some connec-
tors to the External Bus Interface (EBI) of the processor.

The main processing unit of the implemented video en-
coder consists of the AT91SAM9263 processor, operating
at 99.33MHz. Just as the FPGA prototyping system, such
processing unit runs the optimized software implementa-
tion of the H.263 video encoder [9]. In this prototyping
platform, all program code and data sections of the appli-
cation are located in the 64MB SRAM memory bank. An
expansion slot is used to connect the AT91SAM9263-EK
prototyping platform to a daughter board, with the ASIC
implementation of the proposed ME programmable archi-
tecture, by making use of the processor’s EBI. Similarly
to the FPGA prototyping platform, the EBI is used to ex-
change the control signals and all the required data between
the processor and ME coprocessor.

5. Implementation and experimental results

The performance analysis of the FPGA and the ASIC
implementations of the proposed programmable ME core
was realized for a specific configuration of this parameteri-
zable structure. The considered setup, which was described
using both behavioral and fully structural parameterizable
IEEE-VHDL, adopted a simplified AGU that does not al-
low data re-usage and a power efficient serial processing
structure for the SADU module [13]. Such architecture was
selected as the result of a compromise between the amount
of required hardware resources, the circuit power consump-
tion and its usability for real-time operation. Previous re-
search work [13] has shown that for single reference frame
ME and for image formats up to CIF (352× 288 pixels),
a serial structure for the SADU presents the best trade-off
between the parameters formerly described. However, de-
pending on the target application, the proposed architecture
can be reconfigured to use other AGU and SADU modules
that represent different trade-offs.

5.1. FPGA implementation

The video encoding system described in section 4.1 was
implemented in the Xilinx ML310 development platform,
using the EDK 8.1i and ISE 8.1i tools from Xilinx. Table 2

Table 2: Implementation results of the motion estimator
using the Virtex-II Pro XC2VP30 FPGA device.

Occupied Slices 2046 (14%)
Occupied LUTs 1844 (6%)
Estimated Equivalent Logic Gates 6 kGates
Occupied BRAMs 2 (1.5%)
Maximum operating frequency 85.84 MHz

presents the obtained implementation results. These values
do not include the BRAM modules that are used to store the
compiled assembly code of the ME algorithm and the pixel
data for both the reference and search areas. Nevertheless,
these results evidence that the FPGA based implementa-
tions of the proposed ME architecture allow the estimation
of MVs in real-time for the QCIF and CIF image formats.
They also show that very few hardware resources (less than
6k equivalent logic gates) are required to implement the
proposed ME co-processor in an FPGA device.

The functionality of the implemented video coding sys-
tem was successfully verified by encoding a set of bench-
mark CIF video sequences, with quite different characteris-
tics, both in terms of movement and spacial detail, by using
several different ME algorithms and by adopting a typical
set of video coding parameters: 8-bits to represent the pixel
values, macroblocks with 16× 16 pixels and search areas
with 32×32 pixels. This performance assessment consid-
ered the FSBM, the 3SS, the DS and the adaptive MVFAST
ME algorithms, which were programmed using the instruc-
tion set presented in section 2.1.

5.2. ASIC implementation

The implementation of the video encoding system de-
scribed in section 4.2 in the AT91SAM9263-EK evaluation
kit from ATMEL was realized using the GNU toolchain
for the ARM architecture. The video encoding system in-
cludes the expansion board with the ASIC implementation
of the ME co-processor. This ASIC adopted exactly the
same configuration as the one used for the FPGA imple-
mentation of the ME core and also included a complete
set of testing structures that can be accessed by means of
an integrated JTAG controller. The circuit was manufac-
tured under themini@SIC program from EUROPRAC-
TICE, using a StdCell library [14] based on a 0.18µm
CMOS process with 1 poly and 6 metal layers from UMC
(UMC L180 1P6M MM/RFCMOS). Table 3 presents the
obtained implementation results, after placement and rout-
ing, by considering typical environmental operating con-
ditions: T = 25oC andVdd= 1.8V. These results show
that the ASIC implementation (excluding the program code

Table 3: Implementation results of the motion estimator
using the UMC 0.18µm CMOS ASIC.

Silicon Area / IP Core 0.25 mm2 / 25 kGates
Equivalent Test Struct. 0.15 mm2 / 16 kGates
Logic Gates Memories 0.68 mm2 / 70 kGates
Max. operating frequency 100 MHz
Power (Core @100MHz) 31 mW

and pixel data local memories) only requires 41k equiva-
lent logic gates (111k equivalent logic gates are required
to implement the whole processor). When compared with
the FPGA implementation, this difference arises from the
absence of optimized arithmetic cells, such as fast carry-
propagate-like adders and multipliers, that are usually
available in FPGAs. Consequently, in this implementation,
such arithmetic units had to be fully implemented.

The functionality of the implemented video coding sys-
tem was verified using the same methodology as the one
adopted for the FPGA implementation and proved to allow
the real-time computation of MVs for the QCIF and CIF
image formats.

5.3. Comparison analysis

The performance results presented in Table 3 for the ME
ASIC are quite similar to those obtained with the FPGA im-
plementation, presented in Table 2. They evidence that the
ASIC implementation only provides a slightly advantage in
terms of operating frequency over the FPGA implementa-
tion. In addition, the low power consumption of the imple-
mented ASIC circuit, when operated at 100MHz, proves
its suitability to efficiently implement ME algorithms in
battery-supplied devices. Nevertheless, it should be noted
that despite the slightly better performance levels provided
by the ASIC implementation, the FPGA implementation
of the ME co-processor also presents important advantages
for certain specific video encoding applications, due to its
reconfigurability properties. By using such capability to
reconfigure the ME co-processor and use different SADU
or AGU structures, it is possible to dynamically adapt the
video encoder to the characteristics of the target applica-
tion and/or of the communication channel. In such situa-
tions, the FPGA implementation can be regarded as a suit-
able alternative for video encoding applications running on
portable and mobile devices.

6. Conclusions

This paper presents a performance analysis of two dis-
tinct implementations of a recently proposed high perfor-
mance programmable and specialized architecture for ME.
Such comparison is performed by considering the integra-
tion of such structure in a video encoding system as a mo-
tion estimation co-processor, using two quite different tech-
nologies: a high performance FPGA device, from the Xil-
inx Virtex-II Pro family, and an ASIC based implementa-
tion, using a 0.18µmCMOS standard cells library.

The experimental results obtained with the implementa-
tion of several different ME algorithms (FSBM, 3SS, DS
and MVFAST) in these co-processors have shown that the
two considered implementations present very similar per-
formance levels and allow the estimation of MVs in real-
time (above 25 fps) for both the QCIF and CIF image for-
mats. Such results also demonstrated that the power con-
sumption requirements of the ASIC implementation makes
it more suitable to efficiently implement ME algorithms in
battery-supplied devices. Nevertheless, the reconfigurabil-

ity properties of the FPGA implementation allow the mo-
tion estimator to dynamically adapt the video encoder to
the characteristics of the target application and/or of the
communication channel.

Acknowledgment

This work has been supported by the POSI program and
thePortuguese Foundation for Science and for Technology
(FCT) under the research projectAdaptive H.264/AVC Mo-
tion Estimation Processor for Mobile and Battery Supplied
Devices(AMEP) POSI/EEA-CPS/60765/2004.

References

[1] V. Bhaskaran and K. Konstantinides.Image and Video
Compression Standards: Algorithms and Architec-
tures. Kluwer Acad. Publish., 2nd edition, June 1997.

[2] N. Roma and L. Sousa. Efficient and configurable
full search block matching processors.IEEE Trans-
actions on Circuits and Systems for Video Technology,
12(12):1160–1167, December 2002.

[3] S. Ang, G. Constantinides, W. Luk, and P. Che-
ung. The cost of data dependence in motion vec-
tor estimation for reconfigurable platforms. InProc.
of Int. Conf. on Field Programmable Technology -
FPT’2006, pages 333–336. IEEE, December 2006.

[4] Y. Jehng, L. Chen, and T. Chiueh. An efficient and
simple VLSI tree architecture for motion estimation
algorithms.IEEE Transactions on Signal Processing,
41(2):889–900, February 1993.

[5] W. Chao, C. Hsu, Y. Chang, and L. Chen. A novel hy-
brid motion estimator supporting diamond search and
fast full search. InIEEE Int. Symp. on Circuits and
Systems - ISCAS’2002, pages 492–495, May 2002.

[6] Joint Video Team of ITU-T and ISO/IEC JTC1.ITU-
T Recommendation H.264, “Advanced Video Coding
for Generic Audiovisual Services”, May 2003.

[7] T. Dias, S. Momcilovic, N. Roma, and L. Sousa.
Adaptive motion estimator for autonomous video de-
vices.EURASIP J. on Embedded Systems, 2007.

[8] WILDCARDTM-II and WILDCARDTM-4 Ref. Man-
ual - Rev. 3.6. Annapolis Micro Systems, Inc., 2006.

[9] Telenor. TMN (Test Model Near Term) - (H.263) en-
coder/decoder - version 2.0 - source code. Telenor
Research and Development, Norway, June 1996.

[10] Xilinx. ML310 User Guide for Virtex-II Pro Embed-
ded Development Platform v1.1.1. Xilinx, Inc., 2004.

[11] AT91SAM9263-EK Evaluation Board - User Guide.
ATMEL Corporation, March 2007.

[12] AT91 ARM Thumb Microcontrollers - AT91SAM9263.
ATMEL Corporation, December 2006.

[13] T. Dias, N. Roma, and L. Sousa. Low power distance
measurement unit for real-time hardware motion es-
timators. In Int. Workshop on Power and Timing
Modeling, Optimiz. and Simulation - PATMOS’2006,
September 2006.

[14] Faraday ASIC Cell Library FSA0AC 0.18µm Stan-
dard Cell (v1.0). Faraday Techn. Corp., August 2004.

