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ABSTRACT

We propose a new algorithm that maximizes the sharing of
partial terms in Multiple Constant Multiplication (MCM)
operations under a general number representation for the
coefficients. MCM operations are required by many algo-
rithms in digital signal processing and have been the sub-
ject of extensive research. By making no assumptions as to
the number representation, the algorithm described in this
paper is able to perform a better search for the optimal shar-
ing of partial terms than previous methods based on MSD
or CSD representations. We have applied our algorithm for
the hardware minimization of FIR filters. The results show
that we can obtain solutions that require between 20% to
50% less hardware when compared against the solutions us-
ing the MSD representation.

Categories and Subject Descriptors

B.2.2 [Hardware]: Arithmetic and Logic Structures—Per-
formance Analysis and Design Aids; C.3 [Computer Sys-

tems Organization]: Special-Purpose and Application-
Based Systems—Signal processing systems

General Terms

Algorithms, Design, Performance.

Keywords

Multiple Constant Multiplication (MCM), Minimal Signed
Digit (MSD), Common Subexpression Elimination (CSE),
Digital Filter Design.

1. INTRODUCTION
Several computationally intensive operations, such as, Fi-

nite Impulse Response (FIR) filters and Fast Fourier Trans-
forms (FFT), involve a sequence of Multiply-Accumulate
(MAC) operations with constant coefficients. These oper-
ations are typical in Digital Signal Processing (DSP) ap-
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Figure 1: Transposed form of a hardwired FIR filter

implementation.

plications. Hardwired dedicated architectures are the best
option for maximum performance and minimum power con-
sumption.

Constant coefficients allow for a great simplification of
the multipliers, which can be reduced to shift-adders [1]. In
these multipliers, a bit set to 1 in position m of the coefficient
implies the sum of the input shifted left by m positions.
Shifts are free in terms of hardware, hence the hardware
required for a multiplication with a constant with n bits set
to 1 is simply n − 1 adders.

In many MAC operations, the same input is to be mul-
tiplied by a set of constant coefficients, a problem known
as Multiple Constant Multiplications (MCM). An example
of this is the transposed form architecture of a FIR filter,
exemplified in Figure 1. In this situation, significant reduc-
tions in hardware, and consequently power, can be obtained
by sharing the partial products of the input. In this paper,
we address the problem of maximizing the amount of shar-
ing of the partial products in a MCM operation over the
same input. This problem has been the subject of extensive
research in the last years, with different strategies for find-
ing the partial products that lead to a minimal hardware
implementation [2, 3, 4, 5, 6, 7, 8, 9].

In many of these works, the Canonical Sign Digit (CSD)
representation is used for the coefficients. The reason for
this is that the CSD representation minimizes the number
of non-zero digits, hence it allows the maximal subexpres-
sion sharing search to start from a minimal level of com-
plexity. Recently, Park et al. [10] proposed the usage of a
Minimal Signed Digit (MSD) representation for the coeffi-
cients. Under the MSD representation, a given numerical
value can have multiple representations. However, in all of
them, the number of non-zero digits is the same as the CSD
representation. The algorithm proposed in [10] exploits the
redundancy of the MSD representation by choosing the MSD
instance that leads to a maximal sharing in the implemen-
tation efficient FIR filters.



In this paper, we make the observation that the minimum
area solution, in general, is not obtained using all coefficient
representations with minimum number of non-zero digits.
In fact, we claim that the representation used for the coeffi-
cients is irrelevant and that during the optimization process
numerical values of the coefficients should be used! While it
is true that there is a higher probability of a representation
with a minimal number of non-zero digits being selected for
the optimized solution, it is also true that there are situ-
ations where a non-minimal representation may fit better
with existing partial terms and lead to a better solution.

By using numerical values for the coefficients and partial
terms we increase significantly the search space, allowing
our algorithm to be significantly more effective in area opti-
mization. We present results that demonstrate that we can
achieve large gains over previously proposed methods, in
some cases a reduction of up to 50% of adders/subtracters.
We should emphasize that this comparison is made against
highly optimized solutions.

The downside of this algorithm is that it is not able to take
into account the depth of the subexpression sharing, mean-
ing that the hardware reduction is obtained at the cost of
an increase in the number of adder-steps. In order to intro-
duce some control this increase, we have added information
about the depth of each subexpression to the initial algo-
rithm. During the search process, when there are several
possible combinations of subexpressions, we choose the one
that leads to a minimum increase of the total number of
adder-steps.

This paper is organized as follows. In Section 2 we give an
overview of relevant work related to our work and presents
the CSD and MSD representations. Section 3 describes the
algorithms we propose. We present results obtained for FIR
filters in Section 4. Finally, in Section 5 we conclude this
paper, discussing the main contributions and future work.

2. RELATED WORK
A large amount of work has addressed the use of efficient

implementations of multiplier-less MCMs. The techniques
include the use of different number representation schemes,
the use of different architectures and implementation styles
and the coefficient optimization techniques, e.g., [3, 4, 5].

In this work, we will concentrate on the coefficient op-
timization techniques applied to a fully-parallel transposed
form FIR filter architecture. This type of filter is used be-
cause it can accept the subexpression sharing which will be
explored in this work.

In FIR filter algorithms, 2’s complement is the most used
encoding for signed operands. However, since number sys-
tems have a great influence on the hardware complexity of
the filters, the use of signed digit representation has been
frequently more efficient [10].

Synthesis algorithms that have been proposed are based
on the Canonical Signed Digit (CSD) representation [6, 7, 8,
9]. CSD is a signed digit system with the digit set {1,0,2},
where 2 denotes -1. The CSD representation is unique and
presents two main properties: (1) the number of non-zero
digits is minimal, (2) two non-zero digits are not adjacent.
Hardware requirements are reduced because the numerical
values are represented with a maximal number of zero dig-
its. In these methods, a common subexpression is searched
among multiple constants and implemented into one hard-

ware block in order to share the result of the subexpressions
in evaluating all the constants.

In [10], the MSD representation is proposed for the co-
efficients. The MSD representation is obtained by remov-
ing the second property of the CSD representation. Thus,
a constant can have several MSD representations, but all
with a minimum number of non-zero bits. For example, the
value 6 is represented using 4 bits as 1020 in CSD, but both
1020 and 0110 are valid representations in MSD. In the al-
gorithm described in [10], Cset represents the coefficient set
to be synthesized and contains all MSD representations for
all coefficients. The first representation that matches a com-
bination of subexpressions is used. The results are shown to
be an improvement to [6] and [7]. On the other hand, the
major limitation of [9] is the usage of a lookup table with
size 4096, which in practice limits the coefficient bit-width
to 12.

The fundamental difference between our approach and
previously proposed methods is that we do not combine bit-
patterns and match them against coefficients in some given
representation, be it binary, CSD or MSD. Instead, we store
numerical values and combine a pair of these values, either
by addition or subtraction, using all possible different shift
amounts (multiplication by a power of 2) of one of them,
and compare the numerical result with the stored values. In
this search process, we use an algorithm similar to the one
described in [10].

3. PROPOSED METHOD
In this section, we describe the algorithm we propose for

the maximal sharing of subexpressions and its modification
to allow for the control of the number of adder-steps.

3.1 Number Representation
As referred, by considering both positive and negative dig-

its, the values in CSD are represented with a minimum num-
ber of non-zero digits. Hence, when multiplying against a
single constant coefficient, this is the representation that
leads to a minimum number of operators in the shift-add
implementation. For example, the value 29 is represented
as 011101 in binary, while it is represented as 100201 in
CSD (again, 2 stands for -1), thus one less operator would
be required.

When the sharing of partial terms is to be considered
among the multiplication of several constant coefficients, the
MSD representation has advantages over the CSD represen-
tation. Values using the MSD representation have the same
number of non-zero bits as their CSD representation, how-
ever because in MSD they are allowed to be consecutive,
several representations with a minimum number of non-zero
digits are valid (of which, the CSD representation is a par-
ticular case). Valid MSD representations for 29 are 100201

and 100022, and current methods can exploit this fact by
testing either match.

However, we note that 29 can be represented, using the
digit set {1,0,2}, as 011101, 011112, 100022, 100201, 100212,
102101, 102112, 121101, 121112. Suppose that at some
stage of the search process we have the partial terms 100011
and 102 (both valid MSD representations, for values 35 and
3, respectively). Existing methods will not be able to use
these terms as no combination of them yields a valid MSD
pattern for 29. Yet, we can use a subtracter to obtain
100011-1020=102101, which represents the value 29. Hence,



we can implement 29 with a single operator, whereas that
was not possible with just MSD.

We go one step further to note that we really don’t care
about the bit patterns, we are only concerned with the nu-
merical value. Hence, we don’t need to store all the repre-
sentations of a given value, only its numerical value! During
the search process, instead of combining and matching bit
patterns, what we do is to add or subtract shifted versions
of already found partial terms, and compare the numerical
value with the value of the coefficients we need to implement.

3.2 Algorithm for Maximal Sharing
Similarly to the algorithm of [10], we have two sets: Cset

maintains numerical values of all coefficients not yet covered;
Patset is the set with the partial terms found so far. Before
being inserted into Cset, all values are made odd by suc-
cessive shifted rights and any duplicates that may appear
in this process are eliminated. Patset is initialized with a
single element, the value 1. We then enter a loop where all
shifted versions of elements in Patset are pair-wised added
and subtracted:

1. remove all coefficients in Cset that have the same value
as any shifted value of an element in Patset.

2. remove all coefficients in Cset whose value can be ob-
tained by adding or subtracting shifted versions of two
elements in Patset. Insert the elements removed into
Patset.

3. remove all coefficients in Cset whose value can be ob-
tained by adding or subtracting shifted versions of
three elements in Patset. Insert the elements removed
into Patset. If no element was removed from Cset in
the previous steps, go to Step 4. Otherwise, go to Step
1.

4. check which of the partial terms obtained by adding or
subtracting shifted versions of two elements in Patset
maximally matches a subset of bits of a CSD represen-
tation. Register the combination as a new partial term
in Patset and insert into Cset a new element obtained
by removing the new partial term from the selected
decimal representation. Go to Step 1.

This loop is repeat until there are no more coefficients in
Cset.

In this algorithm, as in [2], all pairwise combinations are
valid. In the case of [10], the algorithm does not consider a
combination of shifted elements of Patset with non-zero bits
in the same position.

Figure 2 presents an example of shifting and combination
of two elements of the Patset. This combination in partic-
ular is performed in step 2 of the algorithm. We use the
example in the previous section where we have the values
100011 and 102 in Patset and 29 is the coefficient to im-
plement. Figure 2(a) shows the behavior of the algorithms
of [10] and [2]. Because there are non-zero digits in the same
position of both terms, the results from the addition and
subtraction for this shift amount are not considered in [10].
Algorithm [2] is not deterred by this conflict and computes
the addition and subtraction, but the result is not a valid
MSD representation of the value 29, hence no match will be
flagged.

The execution of algorithm we propose in this paper is
described in Figure 2(b). In Patset we simply have the nu-
merical values of the partial terms and their shifted versions
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Figure 2: Example of combination and shift of ele-

ments.

are added and subtracted. The numerical result of these op-
erations is compared against 29 and a match is immediately
found.

3.3 Accounting for the Adder-Step Depth
The algorithm described above does not have any mech-

anism to account for, and therefore minimize, the depth in
terms of adder-steps. In order to control the number of
adder-steps, we associate the depth of each partial term in
Patset. While we maintain the main goal of maximizing the
sharing of partial terms, when we have an option, we se-
lect the combination that minimizes the depth of the new
combination (minimum number of levels). This procedure
is illustrated in Figure 3.

Figure 3(a) shows how step 2 of the algorithm is modified
to track the level of each partial term in Patset. The level of
the new combination is one more than the maximum level
of the partial terms used. The other steps are modified in
the same manner.

Figure 3(b) presents the situation where the same com-
bination is obtained through different partial terms in Pat-
set. In this example, the element 15 can be obtained from
the combination of the first and third elements of Patset,
meaning that the combination will be at level 3, or from the
combination of two shifted versions of the second element in
Patset, which will be at level 2. Hence, we insert into Patset
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Figure 3: Limiting the depth of adder-steps.

this second combination with a lower level. Note that we do
not need to repeatedly compute all possible combinations.
Instead, we keep an updated list of these combinations or-
dered by their level and select the first match in this list.

4. RESULTS
In this section, we compare the results obtained with the

two algorithms described in the previous section against the
algorithm proposed in [10] and [2], which in turn has been
shown to be an improvement over [6] and [7]. We have
applied these algorithms to the optimization of FIR filters.
We used the FIR filters from [2] which are the same as [10]
added with four new instances. The filters’ coefficients were
computed with the matlab using the Remez algorithm. The
columns of Table 1 present the filters’ specification: filter is
just an index for each example, passband and stopband are
normalized frequencies, #tap is the number of coefficients of
the filters and width is the bit-width of each coefficient.

Table 2 shows the results obtained by applying the al-
gorithms of [10], [2] and our proposed algorithms on this
set of benchmarks. For each algorithm the column adders
gives the minimum number of adders required to implement
the filter found by each method, the column steps gives the
maximum depth, in terms of adder-steps, for all coefficients
and the column CPU is the CPU time used to compute the

Table 1: Benchmark FIR filter specifications.

Filter passband stopband #tap width

1 0.20 0.25 120 8
2 0.10 0.25 100 10
3 0.15 0.25 40 12
4 0.20 0.25 80 12
5 0.24 0.25 120 12
6 0.15 0.25 60 14
7 0.15 0.20 60 14
8 0.15 0.20 100 16
9 0.10 0.15 60 14
10 0.10 0.15 100 16
11 0.10 0.12 100 16
12 0.10 0.12 120 18

solution. Note that “adder” may refer to both an adder or
a subtracter.

The results obtained by the proposed algorithms are pre-
sented by the name of Numeric Algorithms. The columns
under Maximal Sharing in Table 2 present the results ob-
tained by the different methods when maximizing the shar-
ing of partial terms, thus reducing the circuit area. In terms
of the hardware required to implement the MCM of the fil-
ter, we can observe that we always obtain a solution that
is at least as good as [10] and [2]. For the more complex
examples, our more comprehensive search is able to pro-
duce significantly better results. For the larger example,
filter 12, we are able to reach a solution with 40% or 27%
less hardware, when compared with [10] or [2]. Note that
this comparison is made against a highly optimized result.
This reduction is obtained at the cost of a higher number of
adder-steps (more significant in filters 7, 11 and 12).

The proposed algorithm is also much more efficient in run
time. The reduction in the computation time results from
three factors. First, our method reaches a solution more
easily, by considering partial terms that are discarded by
previous methods. Second, since our method does not have
to deal with different representations of the coefficients, we
can use the unique computer native integer representation
of the coefficients, thus increasing the efficiency of most op-
erations of the algorithm. Third, since each coefficient and
partial term is represented by a single numeric value we have
less combinations of partial terms and less elements when
looking for a match.

We present the results obtained using the second version
of our algorithm in the last two columns of Table 2. The
run times are very similar to the first implementation, hence
have been omitted from the table. As can be observed, the
second approach does not present a significant variation for
most of the filters. In fact, we observe that the greatest im-
pact of this approach can occur in step 3 of the algorithm.
In the first version, when a coefficient is found in Cset in
step 3, as a result of a shifted combination of three elements
in Patset, the flow of the algorithm returns to the step 1,
thus before testing the remaining combinations. In our sec-
ond approach, step 3 is only finished after generating the
combinations for all elements, so that we can find different



Table 2: Summary of the results obtained.

MSD [10] MSD [2] Numeric Algorithms
Filter Maximal Sharing Maximal Sharing Maximal Sharing Depth Control

adders steps CPU(s) adders steps CPU(s) adders steps CPU(s) adders steps

1 10 3 0.03 10 3 0.02 10 3 0.01 10 3
2 18 4 0.65 17 3 0.07 17 3 0.02 17 3
3 18 4 1.64 17 4 1.03 15 4 0.69 17 4
4 29 4 1.44 29 4 1.29 28 5 0.03 28 5
5 34 3 0.71 34 4 0.48 34 3 0.12 34 3
6 22 4 1.35 22 5 1.09 20 4 0.03 20 4
7 35 3 92.50 32 6 11.92 29 6 0.05 29 6
8 52 5 629.92 45 6 67.96 44 6 560.52 44 6
9 37 4 21.17 31 6 1.81 28 6 0.05 28 6
10 50 5 76.23 48 5 227.54 46 6 286.22 47 6
11 73 5 1891.36 58 14 473.54 51 13 684.16 51 13
12 107 6 20550.43 81 9 2999.24 64 12 517.86 67 9

 20

 40

 60

 80

 100

 10  20  30  40  50  60  70  80

A
ve

ra
ge

 a
dd

er
 c

os
t

Number of Coefficients

12 bits coefficients

MSD [10]
MSD [2]
Numeric

Figure 4: Comparison of heuristic algorithms for

random instances.

combinations for the same element with a smaller number
of adder-steps. However, in our first approach most of the
coefficients for the smaller examples are synthesized in the
step 2 of the algorithm. For this reason, the second ap-
proach does not present a great impact on the results. To
substantiate this reasoning, we can observe that there is a
significant reduction in the number of adder-steps for filter
12, where we have a reduction from 12 to 9 adder-steps for
the numeric algorithms. For this filter, the algorithm syn-
thesizes 5 coefficients in step 3. This means that for the
total of 64 adders, 10 adders were synthesized in step 3 of
the algorithm, where the potential for combinations with
different levels to choose from is higher. The other filters
are not practically synthesized in step 3 of the algorithm
and thus, there is no impact in reduction of the adder-steps.
An important point to be emphasized is that, although filter
12 has an increased number of adders when compared with
the first version, this value is still significantly less than that
obtained with [10] and [2], with about the same number of
adder-steps.

In order to further characterize the proposed algorithm we
compare its efficiency on random MCM instances. Figure 4
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Figure 5: Relative increase on adder cost with re-

spect to the numeric algorithm.

gives a plot of the average number of adders/subtracters ob-
tained with the maximal sharing heuristics of [10], [2] and
our numeric algorithm, versus the number of coefficients.
We used coefficients with 12 bits and, for each number of
coefficients, we run 45 instances with randomly generated
coefficients. We observe that the average solution obtained
with the numeric method requires always less hardware than
other heuristic solutions. On average we compute 17 adders
less than the solution of [10] and the difference between
solutions does not reduce with the number of coefficients.
However when comparing to the solutions of [2] we need 6
adders less, on average. Moreover, the solutions difference is
reduced when the number of coefficients increases, because
the probability of finding a generated partial term that cov-
ers a coefficient becomes higher.

Figure 5 shows the relative average adders increase of [10]
and [2] methods regarding to the proposed numeric method.
Those methods compute solutions with an hardware over-
head that can go up to 50% and 20%, respectively. However,
for instance with large number of coefficients the relative
hardware overhead is reduce due to the natural increase on
the average number of adders need to implement the MCM.



5. CONCLUSIONS

We have described a new algorithm that computes the
minimum number of adder/subtracter modules by maximiz-
ing the sharing of common subexpressions in the implemen-
tation of MCM structures. Numerical values are used for the
coefficients and their redundancy in terms of number repre-
sentation is exploited by selecting the instance that mini-
mizes the total hardware. We presented results for digital
filter synthesis where we demonstrate that our algorithm is
able to perform significantly better that previously proposed
approaches. We have implemented a modified version of our
algorithm in order to allow for the reduction of the depth of
adder-steps. As future developments of this work, we plan
to develop non-heuristic algorithms/models for the optimal
sharing of partial terms.
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