
Maximal Sharing of Partial Terms in MCM under Minimal

Signed Digit Representation

Eduardo da Costa
∗

Paulo Flores
†

José Monteiro
†

Abstract — We propose a new algorithm that max-
imizes the sharing of partial terms in Multiple Con-
stant Multiplication (MCM) operations. MCM oper-
ations are required by many algorithms in digital sig-
nal processing and have been the subject of extensive
research. Recently, the Minimal Signed Digit (MSD)
number representation has been proposed as an ex-
tension to the Canonical Signed Digit (CSD) repre-
sentation. By properly exploiting the redundancy of
the MSD representation, the hardware implementa-
tion can be significantly optimized. The initial al-
gorithm described in this paper is able to perform
a better search for the optimal sharing of the re-
dundant coefficient representations under MSD than
previous methods. However, during its search the
depth of adder-steps is not considered. We present
a modified version of this algorithm that is able to
reduce the maximum depth of partial terms at the
expense of some extra hardware. The results show
that for more complex problems our algorithm per-
forms significantly better than previous approaches,
in some cases obtaining solutions that require 25%
less hardware.

1 INTRODUCTION

Several computationally intensive operations, such
as, Finite Impulse Response (FIR) filters and Fast
Fourier Transforms (FFT), involve a sequence of
Multiply-Accumulate (MAC) operations with con-
stant coefficients. These operations are typical in
Digital Signal Processing (DSP) applications. Hard-
wired dedicated architectures are the best option for
maximum performance and minimum power con-
sumption.

Constant coefficients allow for a great simplifi-
cation of the multipliers, which can be reduced to
shift-adders [1]. In these multipliers, a bit set to 1
in position m of the coefficient implies the sum of
the input shifted left by m positions. Shifts are free
in terms of hardware, hence the hardware required
for a multiplication with a constant with n bits set
to 1 is simply n − 1 adders.

In many MAC operations, the same input is to be
multiplied by a set of coefficients, a problem known
as Multiple Constant Multiplications (MCM). An
example of this is the transposed form architecture
of a FIR filter, exemplified in Figure 1. In this situ-
ation, significant reductions in hardware, and conse-
quently power, can be obtained by sharing the par-
tial products of the input. In this paper, we address

∗Universidade Católica de Pelotas, Pelotas, RS, Brazil,
ecosta@ucpel.tche.br

†INESC-ID / Technical University of Lisbon, Lisbon, Por-
tugal, pff@inesc-id.pt, jcm@inesc-id.pt

H7 H6 H5 H4 H3 H2

*

H0H1

+

X[n]

Y[n]+ + + + + +D D D D D D D

Figure 1: Transposed form of a hardwired FIR filter
implementation.

the problem of maximizing the amount of sharing of
the partial products in a MCM operation over the
same input.

This problem has been the subject of extensive
research in the last years. Two key strategies have
a large impact in the optimization of MCMs. One is
to consider of not only adders, but also subtracters
to combine partial terms, thus increasing the oppor-
tunity for the sharing of common subexpressions.
The second is the usage of the Canonical Sign Digit
(CSD) representation for the coefficients. This rep-
resentation minimizes the number of non-zero dig-
its, hence the maximal subexpression sharing search
starts from a minimal level of complexity.

In a recent paper, Park et al. [2] propose the us-
age of a Minimal Signed Digit (MSD) representation
for the coefficients. The MSD representation is ob-
tained from the CSD representation by relaxing the
requirement that there cannot be two consecutive
non-zero digits. Under the MSD representation, a
given numerical value can have multiple representa-
tions. However, in all of them, the number of non-
zero digits is the same as the CSD representation.
The algorithm proposed in [2] exploits the redun-
dancy of the MSD representation by choosing the
MSD instance that leads to a maximal sharing in
the implementation efficient FIR filters.

The algorithm we describe in this paper also ex-
plores the redundancy of the MSD representation.
By augmenting the search conditions, we have de-
veloped a significantly more effective area optimiza-
tion algorithm. The more complex the example,
the larger the gain we obtain, which can represent
a reduction of up to 25% less adders/subtracters.
We should emphasize that this comparison is made
against highly optimized solutions.

The downside of this algorithm is that it is not
able to take into account the depth of the subexpres-
sion sharing, meaning that the hardware reduction
is obtained at the cost of an increase in the num-
ber of adder-steps. In order to control this increase,

ECCTD 2005 - European Conference on Circuit Theory and Design, Cork Ireland, 29 August - 2 September 2005

0-7803-9066-0/05/$20.00 ©2005 IEEE

we have added information about the depth of each
subexpression to the initial algorithm. During the
search process, when there are several possible com-
binations of subexpressions, we choose the one that
increases the least the total number of adder-steps.

This paper is organized as follows. In Section 2
we give an overview of relevant work related to our
work and present the MSD representation. Section 3
describes the algorithms we propose. We present
results obtained for FIR filters in Section 4. Finally,
in Section 5 we conclude this paper, discussing the
main contributions and future work.

2 RELATED WORK

A large amount of work has addressed the use of
efficient implementations of multiplier-less MCMs.
The techniques include the use of different number
representation schemes, the use of different architec-
tures and implementation styles and the coefficient
optimization techniques, e.g., [3, 4, 5].

Synthesis algorithms have been proposed that are
based on the Canonical Signed Digit (CSD) repre-
sentation [6, 7, 8, 9]. CSD is a signed digit sys-
tem with the digit set 1,0,2, where 2 denotes -1.
The CSD representation is unique and presents two
main properties: (1) the number of non-zero digits
is minimal, (2) two non-zero digits are not adja-
cent. Hardware requirements are reduced because
the numerical values are represented with a maxi-
mal number of zero digits.

In [2], the MSD representation is proposed for the
coefficients. The MSD representation is obtained
by removing the second property of the CSD repre-
sentation. Thus, a constant can have several MSD
representations, but all with a maximum number of
zero bits. For example, the value 6 is represented us-
ing 4 bits as 1020 in CSD, but both 1020 and 0110

are valid representations in MSD. In the algorithm
described in [2], Cset represents the coefficient set
to be synthesized and contains all MSD representa-
tions for all coefficients. The first representation the
matches a combination of subexpressions is used.
The results are shown to be an improvement to [6]
and [7]. The major limitation of [9] is the usage of a
lookup table with size 4096, which in pratice limits
the coefficient bit-width to 12.

3 PROPOSED ALGORITHMS

We describe the algorithm we propose for the max-
imal sharing of subexpressions and its modification
to allow for the control of the number of adder-steps.

3.1 Algorithm for Maximal Sharing

Similarly to the algorithm of [2], we have two sets:
Cset maintains all MSD representations of all coef-

ficients not yet covered; Patset is the set with the
partial terms found so far. Before being inserted
into Cset, all MSD representations are shifted right
such that the least significant bit is 1, and any du-
plicates that may appear in this process are elim-
inated. Patset is initialized with a single element,
the value 1. We then enter a loop where all shifted
versions of elements in Patset are pair-wised added
and subtracted:

1. remove all coefficients in Cset that have the
same MSD representation as a shifted value of
an element in Patset.

2. remove all coefficients in Cset whose MSD rep-
resentation can be obtained by adding or sub-
tracting shifted versions of two elements in Pat-

set. Insert the elements removed into Patset.

3. remove all coefficients in Cset whose MSD rep-
resentation can be obtained by adding or sub-
tracting shifted versions of three elements in
Patset. Insert the elements removed into Pat-

set. If no element was removed from Cset in
the previous steps, go to Step 4. Otherwise, go
to Step 1.

4. check which of the partial terms obtained by
adding or subtracting shifted versions of two
elements in Patset maximally matches a subset
of bits of an MSD representation. Register the
combination as a new partial term in Patset and
insert into Cset a new element obtained by re-
moving the new partial term from the selected
MSD representation. Go to Step 1.

This loop is repeat until there are no more coeffi-
cients in Cset.

In this algorithm, all pairwise combinations are
valid. In the case of [2], the algorithm does not
consider a combination of shifted elements of Patset

with non-zero bits in the same position.

Figure 2 presents an example of shifting and com-
bination of two elements of the Patset. This com-
bination in particular is performed in step 2 of the
algorithm. Figure 2(a) shows the behavior of the
algorithm of [2]. When the first combination is per-
formed, there are no conflicts between the elements.
Thus, the addition and subtraction of the elements
are obtained. When the first element is shifted left,
there is a conflict between elements, where the sec-
ond least significant bits of each element are equal to
1 simultaneously. Thus, the results from the addi-
tion and subtraction are not considered. Figure 2(b)
shows the behavior under the algorithm proposed
above. The conflict between elements is not a deter-
rent and we are able to test two new subexpressions
with these combinations.

0 0 0 0 0 1
0 1 1 0 1 0

two elements
 from Patset

0 1 1 0 1 1
0 2 2 0 2 1

addition
subtraction

0 0 0 0 1 0
0 1 1 0 1 0

0 0 0 0 0 0
0 0 0 0 0 0

addition
subtraction

shifting the
first element

conflict between
 the elements

0 0 0 0 0 1
0 1 1 0 1 0

two elements
 from Patset

0 1 1 0 1 1
0 2 2 0 2 1

addition
subtraction

0 0 0 0 1 0
0 1 1 0 1 0

0 1 1 1 0 0
0 2 2 0 0 0

addition
subtraction

shifting the
first element

(a) (b)

Figure 2: Example of combination and shift of ele-
ments.

3.2 Accounting for the Adder-Step Depth

The algorithm described above does not have any
mechanism to account for, and therefore minimize,
the depth in terms of adder-steps. In order to con-
trol the number of adder-steps, we associate the
depth of each partial term in Patset. While we
maintain the main goal of maximizing the sharing
of partial terms, when we have an option, we se-
lect the combination that minimizes the depth of
the new combination (minimum number of levels).
This procedure is illustrated in Figure 3.

000001
000111
102001
001111

Cset

000001
000011

Patset

000111

result from the combination of
 the two elements in Patset

000001
000000
102001
001111

Cset

000001
000011
000111

Patset

Cset

000001
000011
000111

Patset

001111
001111

Cset

000001
000011
000111
001111

Patset

level=2
level=3

level=0
level=1
level=2

Levels
level=0
level=1
level=2
level=2

Levels

(a) (b)

level=0
level=1

Levels
level=0
level=1
level=2

Levels

000001
000000
102001
001111

000001
000000
102001
000000

Figure 3: Limiting the depth of adder-steps.

Figure 3(a) shows how step 2 of the algorithm
is modified to track the level of each partial term
in Patset. The level of the new combination is one
more than the maximum level of the partial terms
used. The other steps are modified in the same man-
ner.

Figure 3(b) presents the situation where the same
combination is obtained through different partial
terms in Patset. In this example, the element
001111 can be obtained from the combination of the
first and third elements of Patset, meaning that the
combination will be at level 3, or from the combi-
nation of two shifted versions of the second element
in Patset, which will be at level 2. Hence, we insert
into Patset this second combination with a lower
level. Note that this implies all combinations must
be generated before we match them with Cset.

4 RESULTS

In this section, we compare the results obtained with
the two algorithms described in the previous sec-
tion against the algorithm proposed in [2], which in
turn has been shown to be an improvement over [6]
and [7]. We have applied these algorithms to the
optimization of FIR filters. We used the same FIR
filters of [2] and added four new instances. The fil-
ters’ coefficients were computed with the matlab

using the Remez algorithm. The first five columns
of Table 1 present the filters’ specification: filter is
just an index for each example, passband and stop-

band are normalized frequencies, #tap is the number
of coefficients of the filters and width is the bit-width
of each coefficient.

The next three columns of Table 1 give the results
obtained by applying the algorithm of [2] to this set
of benchmarks: adders gives the minimum number
of adders found by this method required to imple-
ment the filter, steps gives the maximum depth in
terms of adder-steps for all coefficients and CPU is
the CPU time used to compute this solution. Note
that “adder” may refer to both an adder or a sub-
tracter.

The three columns under Maximal Sharing in Ta-
ble 1 present the results obtained with the first im-
plementation of our algorithm. In terms of total
amount of hardware, we can observe that we always
obtain a solution that is at least as good as [2]. For
the more complex examples, our more comprehen-
sive search is able to produce significantly better re-
sults. For the larger example, filter 12, we are able
to reach a solution with 25% less hardware. Note
that this comparison is made against a highly op-
timized result. This reduction is obtained at the
cost of a higher number of adder-steps (more signif-
icant in filters 7, 11 and 12). The fact that we allow
the combination of subexpressions that have non-
zero digits in the same place increases the depen-
dency between the partial terms generated, which
may cause the logic depth to increase. Since our
search reaches a solution more easily, our algorithm
is much more efficient also in run time.

We present the results obtained using the second
version of our algorithm in the last two columns of
Table 1, under Depth Control. The run times are
very similar to the first implementation, hence have
been omitted from the table. As can be observed,
the second approach does not present a significant
variation for the most of the filters. In fact, we ob-
serve that the greatest impact of this approach can
occur in the step 3 of the algorithm. In the first ver-
sion, when a coefficient is found in Cset in step 3, as
a result of a shifted combination of three elements
in Patset, the flow of the algorithm returns to the
step 1, thus before testing the remaining combina-

Table 1: Summary of the results obtained.

Filter
Filter Specification Park [2] Maximal Sharing Depth Control

pass stop #tap width adders steps CPU(s) adders steps CPU(s) adders steps

1 0.20 0.25 120 8 10 3 0.03 10 3 0.02 10 3
2 0.10 0.25 100 10 18 4 0.65 17 3 0.07 17 3
3 0.15 0.25 40 12 18 4 1.64 17 4 1.03 19 3
4 0.20 0.25 80 12 29 4 1.44 29 4 1.29 28 5
5 0.24 0.25 120 12 34 3 0.71 34 4 0.48 34 3
6 0.15 0.25 60 14 22 4 1.35 22 5 1.09 23 5
7 0.15 0.20 60 14 35 3 92.5 32 6 11.92 32 5
8 0.15 0.20 100 16 52 5 629.92 45 6 67.96 46 6
9 0.10 0.15 60 14 37 4 21.17 31 6 1.81 37 6
10 0.10 0.15 100 16 50 5 76.23 48 5 227.54 48 5
11 0.10 0.12 100 16 73 5 1891.36 58 14 473.54 65 13
12 0.10 0.12 120 18 107 6 20550.43 81 9 2999.24 88 7

tions. In our second approach, step 3 is only finished
after generating the combinations for all elements,
so that we can find different combinations for the
same element with a smaller number of adder-steps.
However, in our first approach most of the coeffi-
cients for the smaller examples are synthesized in
the step 2 of the algorithm. For this reason, the
second approach does not present a great impact on
the results. To substantiate this reasoning, we can
observe that there is a significant reduction in the
number of adder-steps for filter 12, where we have
a reduction from 9 to 7 adder-steps. For this filter,
the algorithm synthesizes 30 coefficients in step 3.
This means that for the total of 88 adders, 60 adders
were synthesized in step 3 of the algorithm, where
the potential for combinations with different levels
to choose from is higher.

An important point to be emphasized is that, al-
though filter 12 has an increased number of adders
when compared with the first version, this value is
still significantly less than that obtained with [2],
with about the same number of adder-steps.

5 CONCLUSIONS

We have described a new algorithm that computes
the minimum number of adder/subtracter modules
by maximizing the sharing of common subexpres-
sions in the implementation of MCM structures.
The MSD representation is used for the coefficients
and its redundancy is exploited by selecting the rep-
resentation that minimizes the total hardware. We
presented results for digital filter synthesis where
we demonstrate that our algorithm is able to per-
form significantly better that previously proposed
approaches. We have implemented a modified ver-
sion of our algorithm in order to allow for the re-
duction of the depth of adder-steps.

As future developments of this work, we are
currently working on two different avenues of re-

search. One is to explore more general represen-
tations for the coefficients. The other is to de-
velop non-heuristic algorithms/models for the op-
timal sharing of partial terms.

Acknowledgments

This research was supported in part by the por-
tuguese FCT under program POCTI.

References

[1] H. Nguyen and A. Chatterjee. Number-Splitting
with Shift-and-Add Decomposition for Power and
Hardware Optimization in Linear DSP Synthesis.
IEEE Trans. on VLSI, 8(4):419–424, August 2000.

[2] I-C. Park and H-J. Kang. Digital Filter Synthesis
Based on Minimal Signed Digit Representation. In
DAC, pages 468–473, 2001.

[3] M. Mehendale, S. Sherlekar, and G. Venkatesh.
Techniques for Low Power Realization of FIR Fil-
ters. In DAC, pages 404–416, 1995.

[4] H. Samueli. An Improved Search Algorithm for the
Design of Multiplierless FIR Filters with Power-of-
Two Coefficients. In IEEE Trans. on Circuits and

Systems, pages 1044–1047, 1989.

[5] A. Nannarelli, M. Re, and G. Cardarilli. Tradeoffs
between Residue Number System and Traditional
FIR Filters. In ISCAS, May 2001.

[6] M. Potkonjak, M. Srivastava, and A. Chandrakasan.
Efficient Substitution of Multiple Constant Multipli-
cation by Shifts and Additions using Iterative Pair-
wise Matching. In DAC, pages 189–194, 1994.

[7] R. Hartley. Subexpression Sharing in Filters using
Canonic Signed Digit Multipliers. IEEE Trans. on

Circuits and Systems II, 43(10):677–688, 1996.

[8] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde,
and D. Durackova. A New Algorithm for Elimina-
tion of Common Subexpressions. TCAD, 18:58–68,
January 1999.

[9] A. Dempster and M. Macleod. Use of Minimum-
Adder Multiplier Blocks in FIR Digital Filters. IEEE

Trans. on CAS-II, 42(9):596–577, September 1995.

