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Abstract 
 

Several algorithms exist for biological 

sequence alignment. The Smith-Waterman (S-W) 

algorithm is an exact algorithm that uses dynamic 

programming for local sequence alignment. Some 

implementations in software for General Purpose 

Processors (GPP) as well in hardware (using Field 

Programmable Gate Array (FPGA)) exist. In this 

paper it is proposed an implementation of the S-W 

algorithm for DNA, RNA and amino acids sequence 

alignment that uses the Coreworks
®

 processing 

engine. The processor FireWorks
TM

 will be used to 

control a hardware accelerator named SideWorks
TM

 

both developed by Coreworks
®

. In this paper is 

proposed an architecture based on Process 

Elements (PE) to be implemented in SideWorks
TM

 

accelerator template with the purpose of 

accelerating the S-W algorithm. 

The developed application is able to read sequences 

from a file, align them with a library of sequences 

and present the results for the best local alignments 

using the Coreworks
®

 processing engine. 
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1. Introduction 
 

Sequence alignment is one of the most widely 

used operations in computational biology. The need 

for speeding up this operation comes from the 

exponential growth of biological sequences 

databases. 

The sequence alignment operation consists of 

finding similarities between a certain test sequence 

and all the sequences of a database. This operation 

allows biologists to point out sequences sharing 

common subsequences. From a biological point of 

view, this operation leads to identifying similar 

functionality. 

The S-W algorithm is a well-known dynamic 

programming algorithm for performing local 

sequence alignment to determine similar regions 

between two DNA, RNA, proteins or amino acids 

sequences. 

There are two stages in the S-W algorithm. 

These are the similarity matrix (H matrix) fill and 

the trace back. In the first stage a matrix is filled 

with a similarity score for each element of the 

sequences. The second stage finds the maximum 

score of the matrix and performs the trace back to 

find the best local alignment. The first stage of the 

algorithm will consume the largest part of the total 

computation time. 

One approach used to get high quality results 

in a short processing time is to use parallel 

processing on a reconfigurable system (FPGA) to 

accelerate the H matrix fill stage of the S-W 

algorithm. The maximum score of the matrix is then 

transferred to a GPP and the trace back is performed 

to get the optimal alignment. 

 

2. Smith-Waterman algorithm 
 

The Smith-Waterman algorithm is an optimal 

local sequence alignment algorithm that uses 

dynamic programming. Several alignment models 

can be used by the S-W algorithm. A simple model 

of the algorithm is the Linear Gap Penalty (LGP) 

model. In this model there is a score penalty (α) for a 

gap in the alignment of the sequences, the value of 

the score penalty is linear and defined by the user of 

the algorithm.  

The algorithm uses a substitution matrix (Sbt 

matrix) that represents the similarity between 

elements. The matrix positions have a value of -1 if 

the elements are different and 2 if the elements are 

equal. 

Using two sequences of size N and M the H 

matrix can be computed using the following 

expression: 
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for  1 ≤ i ≤ N,  1 ≤ j ≤ M. 

 
H(i,0) = H(0,,j) = 0     for  0 ≤ i ≤ N,  0 ≤ j ≤ M, 



where i and j represent the element position of the 

sequences under evaluation.  More information on 

S-W algorithm can be found in [1][2]. 

The regular computation requires an 

initialization of the first column and the first line 

filled with zero value, as presented in Fig. 1, where 

each cell is computed with equation (1). 

 
Sequence 1: ATGCTGAC 

Sequence 2: CGATCGAT 

 
  A T G C T G A C 

 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 2 1 0 0 2 

G 0 0 0 2 1 1 3 2 1 

A 0 2 1 1 1 0 2 5 4 

T 0 1 4 3 2 3 2 4 4 

C 0 0 3 3 5 4 3 3 6 

G 0 0 2 5 4 4 6 5 5 

A 0 2 1 4 4 3 5 8 7 

T 0 1 4 3 3 6 5 7 7 

 

Fig. 1 – H matrix for sequence 1 and sequence 2. 
 

Since the biological sequences to be aligned 

may be too long to be processed in fully paralleled 

hardware the proposed architecture will be adapted 

to include the possibility to divide the computation 

of the H matrix. This division uses the initialization 

values of the matrix as is show on the following 

example. 

When splitting the computation of the matrix 

using, for example 4 partitions, the regular 

computation is repeated 4 times as presented in Fig. 

2. 

 
1  A T G C  3  T G A C 

 0 0 0 0 0   0 0 0 0 0 

C 0 0 0 0 2  C 2 1 0 0 2 

G 0 0 0 2 1  G 1 1 3 2 1 

A 0 2 1 1 1  A 1 0 2 5 4 

T 0 1 4 3 2  T 2 3 2 4 4 

             

2  A T G C  4  T G A C 

 0 1 4 3 2   2 3 2 4 4 

C 0 0 3 3 5  C 5 4 3 3 6 

G 0 0 2 5 4  G 4 4 6 5 5 

A 0 2 1 4 4  A 4 3 5 8 7 

T 0 1 4 3 3  T 3 6 5 7 7 

 
Fig. 2 – Divided computation of H matrix for 

sequence 1 and sequence 2. 

 

Each computation inherits the line and column 

of previous computations as its own initialization 

line and column. Using this implementation is 

possible to obtain the exact same score result of H 

matrix. More information on H matrix partition 

computation can be found in [3]. 

For this application it will be used a simple 

trace back function [4]. This function finds the 

maximum score position in the H matrix and 

recalculates expression (1) for that position, this 

time evaluating from which cell the result derivate 

from. As show in expression (1), each cell result can 

only come from 3 cells, the up neighbor cell, the left 

neighbor cell or the up-left neighbor cell. With this 

information the traceback function will then move to 

the cell that generated the result and perform again 

the same operation. This will continue until the score 

from the cell that generated the result is zero. 

The example in Fig. 3 illustrates the trace back 

function working for sequence 1 and sequence 2. 

 
  A T G C T G A C 

 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 2 1 0 0 2 

G 0 0 0 2 1 1 3 2 1 

A 0 2 1 1 1 0 2 5 4 

T 0 1 4 3 2 3 2 4 4 

C 0 0 3 3 5 4 3 3 6 

G 0 0 2 5 4 4 6 5 5 

A 0 2 1 4 4 3 5 8 7 

T 0 1 4 3 3 6 5 7 7 

 

Fig. 3 – Trace back for sequence 1 and sequence 2. 

 

From the trace back in Fig. 3 results that the 

best local alignment with a score of 8 is: 

 
ATGCTGA 

AT- C -GA 

  

To parallelize the H matrix fill in the S-W 

algorithm it is necessary to respect the data 

dependency. Through expression (1) is possible to 

realize that iteration (i,j) cannot be executed until 

iterations (i-1,j), (i,j-1) and (i-1,j-1) are executed 

first due to data dependencies. However if the 

elements are calculated on different time cycles it is 

possible to execute several calculus in the same time 

cycle as show in Fig. 4. 

 
  A T G C T G A C 
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Fig. 4 – H matrix example with indication on which 

PE and cycle the cell score is computed. 

 

As is shown in Fig. 4 it is possible that all 

elements in the anti-diagonal can be computed in the 

same cycle (e.g. cycle 8). This parallel execution is 

called dataflow implementation [2], as all the 

computations are executed when their data 

dependencies are available. 

This dataflow allows that the computation of 

the H matrix can be achieved using a chain of PEs. 

In each PE it will be computed a column of the H 

matrix and each cell computation will be streamed to 

the next PE. 



3. Coreworks
®
 Processing Engine 

 
The objective of using Coreworks

®
 processing 

engine is to accelerate, using hardware, the most 

compute intensive parts of the algorithm. In this case 

it will be the computation of the H matrix to 

determine the maximum score value of the 

alignment. 

The Coreworks
®
 processing engine has two 

major processing elements: the FireWorks
TM

, a 

Harvard RISC (Reduced Instruction Set Computer) 

architecture 32-bit processor, and the SideWorks
TM

, 

a reconfigurable hardware accelerator architecture. 

The FireWorks
TM

 is used to control the 

accelerator configurations and data transfer 

from/into the GPP and from/into the hardware 

accelerator. 

The SideWorks
TM

 is a reconfigurable 

architecture for hardware acceleration, which will 

also be implemented in the FPGA. This architecture 

uses Functional Units (FUs) to build datapaths as 

shown on the generic SideWorks
TM

 template 

presented on Fig. 5. These FUs can be as simple as 

adders or registers to some more complex FUs. In 

this project one PE will be used as a FU. The 

reconfigurable possibilities of this accelerator allow 

more than one datapath to be defined in the FPGA. 

Therefore the user can select which datapath to use 

for each set of computations by control of 

FireWorks
TM

. On this project only one datapath was 

be developed for the sequence alignment purpose. 

 

 

 
Fig. 5 – SideWorksTM architecture template. 

 

 

4. Application Overview 

 
Our main application will run mostly on the 

GPP. The engine control and the hardware 

acceleration initialization will run on FireWorks
TM

, 

but the H matrix computation will run on 

SideWorks
TM

 hardware accelerator. The application 

runs according to the flowchart presented on Fig. 6. 

 

 
Fig 6 - Application flow chart. 

 

The application begins by reading one 

sequence from the testing sequences file and one 

from the library sequences file. These sequences are 

then partitioned according to the limitations imposed 

that will be described in section 7. Each partition of 

the testing sequence will be compared to all the 

partitions of the library sequence before going on the 

next partition of the testing sequence. The 

computation part will end when all the partitions 

have ended. The result from the hardware 

accelerator will be the maximum score of the H 

matrix. As is show on Fig. 6, this value will be 

compared to a user defined threshold, and the trace 

back will only be executed if the score value is 

higher than the given threshold. Note that this 

threshold is defined in order to trace back only the 

sequences with high similarity values, because this 

increases the application efficiency. 

Considering that the data transfer of the 

complete H matrix would take too long versus the 

processing time of the calculus, the traceback 

function rebuilds the H matrix until the computed 

score is equal to the score returned by the hardware 

and then starts the trace back itself. This option 

allows that, most of the times, the H matrix is not 

completely recalculated in software. Once the 

location of the maximum score is found a trace back 

is performed and the sequences local alignment is 

saved in a results file. Therefore the results file will 

have, for each comparison, the sequences being 

tested, the maximum score and the best local 

alignment. 

The application ends after each of the 

sequences in the testing sequences file is compared 

to all the sequences in the library file. 



5. Datapath Implementation on the 

SideWorks
TM

 
 

As mentioned before, the datapath for 

SideWorks
TM

 is built using FUs. Two new FUs 

where developed for this application, the PE FU and 

the Trigger FU. All other FUs used were already 

developed and available on the Coreworks
®

 

development platform. 

The PE FU is based on existing Process 

Elements [1][2][3], but modified to support partition 

computation and to be implemented on the 

SideWorks
TM

 hardware accelerator. The PE FU will 

be described in more detail in section 6. The trigger 

FU is used to generate specific control signals used 

on the PEs. The Fig. 7 represents the datapath of our 

application for the SideWorks
TM

. 

 

 
Fig 7 - SideWorksTM datapath. 

 

The datapath is composed by a set of FUs 

being the most important the chain of PEs with the 

required FUs for input and output data. There are 6 

input memory blocks. Four memory blocks are 

related to the data from the substitution matrix, this 

data is already coded according to the element from 

the testing sequence that is assigned to each PE. 

Another memory block contains the initialization 

column to be used only by PE1. Finally the last 

memory block contains the sequence from the 

library which will be streamed through the PEs. For 

each PE there is a register that contains the element 

from the initialization line and another register with 

the value of α, which can be configured by the user. 

For the first PE there are two additional input 

registers. One contains the initialization of the 

maximum value, in the first computation contains 

zero, on all other situations (e.g. computing a 

partition) contains the maximum score inherited by 

previous partitions. The other register contains the 

score of the top-left neighbour initialization value of 

a partition. 

On the outputs there are two registers per PE 

and a memory block for the last PE. The registers 

will store the values of maximum score for that PE 

and the values from the last line that will be 

inherited by the next computation. The memory 

block will store the information for the values on the 

last column that will be inherited by the next 

computation. 

The Trigger FUs are used to generate a trigger 

signal from an enable signal. The enable signal starts 

at zero and changes to one at a certain cycle, this 

signal is used to start the computation. At the clock 

cycle that enable changes to one, the trigger signal 

will also change to one and stays with this value 

only for one clock cycle. This signal is used to store 

some values internally in the PE. Both signals are 

propagated through the PEs chain. 

 

 

6. Process Element Functional Unit  

 
As previously mentioned, this FU is based on 

the PE described in [1], however some changes have 

been made to adapt the PE. Fig. 8 illustrates the 

resulting PE after the changes. 

The main changes are related with the 

substitution matrix storing method and additional 

components to accommodate the computation of the 

H matrix using partitions. 

There are five registers used to propagate 

signals to the next PE, of these, four are used for the 

enable and trigger signals and the remaining one is 

used to store and propagate the elements of the 

library sequence. As shown in Fig. 8 the output that 

results from the maximum computation and the 

output of H(i,j) will also be propagated to the next 

PE. 

Each PE stores only the column of the 

substitution matrix related to the element of the 

testing sequence that has been assigned to. 

Therefore, each PE only needs to store 4 elements of 

the substitution matrix (for DNA) instead of the 16 

elements that compose the full substitution matrix. 

The elements of the library sequence are coded 

using 2 bits (for DNA) and will be used to address 

the corresponding substitution value. 



 
Fig 8 - Process Element Functional Unit. 

 

The two multiplexers on the left of Fig. 8 are 

used for the partition of the computation of H 

matrix. The inputs for the multiplexer on the top left 

change according to the PE position on the PEs 

chain. In PE1 this multiplexer is used to select 

between the top-left neighbour initialization element 

and the input of the initialization column, for all 

other PEs this multiplexer selects between the 

initialization line input of a partition or the result 

from previous PE. The bottom left multiplexer 

introduces the initialization line top element. 

The last multiplexer on the right is used to deal 

with negative values on the outcome computation of 

H(i,j). In these cases the output of the PE needs to be 

zero as shown in equation (1). Finally one register 

has been added to store a configurable α value. 

  

7. Limitations 
 

During the test of the application some 

limitations have been detected. The most important 

limitation is related to the maximum number of FUs 

that we are able to use in the datapath. The 

maximum number of PEs that has been synthesized 

successfully was 30, even when there is space 

available on the target FPGA. This number limits the 

partition size for testing sequences to 30 elements 

per partition. Another limitation is related to the 

vector size that can be transferred to FireWorks
TM

 

and SideWorks
TM

. It is possible to transfer vectors up 

to 128 elements, which limits the partition for the 

library sequence. For testing purposes the size of the 

partition used was 30 for the testing sequence and 

120 for the library sequence. 

The size of the registers used introduces 

another limitation on the maximum computable 

score without having overflow. All registers in the 

datapath have 11 bits, since the datapath uses signed 

calculation this limits the maximum computed score 

to 1023. 

The results are presented with these limitations, 

although, there are solutions under study to improve 

the application. 

 

8. Area Results 
 

The project was implemented in a Spartan 3 

XC3S5000 FPGA. Table 1 presents area results of 

implementations with different numbers of PEs in 

the Coreworks
®
 processing engine platform. 

 

PEs 
Number of 

occupied slices 
Total Number of 4 

input LUTs 

1  10 788 17 193 

10  12 025 19 037 

20  13 546 21 198 

30  14 805 23 300 

Table 1 – Areas of different implementations. 

 

The SideWorks
TM

 and FireWorks
TM

 templates 

occupy a considerable amount of area (slices). 

Adding FUs to the SideWorks
TM

 template does not 

increase the total number of occupied slices too 

much. One PE alone (without SideWorks
TM

 

overhead) occupies about 99 slices on this FPGA. 

However, from Table 1 is possible to average the 

number of occupied slices for each PE to be 134 

slices. These overhead results from the extra FUs 

required on the data path by the SideWorks
TM

 

platform. Therefore, for the referred FPGA, we 

should be able to accommodate 168 PEs on the 

SideWorks
TM

 hardware accelerator if no practical 

limitations exist.  

 

9. Analysis of Application Performance 
 

After the circuit has been synthesized and 

implemented using the proposed hardware on the 

FPGA, the minimum clock cycle attained was 

27.7ns, resulting in a maximum frequency of 

36MHz. Table 2 presents average load time of a 

configuration and different types of data transfers for 

128 element vectors. 

 



 Average (in cycles) 

Configuration loading time 172 

Loading a vector to memory bank in the 
FPGA(FireworksTM -> SideworksTM) 

367 

Loading a vector from memory banks in 
FPGA(SideworksTM -> FireworksTM) 

244 

Loading a register in the FPGA 
(FireworksTM -> SideworksTM) 

20,26 

Loading a register from FPGA 
(SideworksTM -> FireworksTM) 

26 

Loading a vector to the board memory 
banks (PC-> FireworksTM) 

13279 

Loading a vector from the board 
memory banks (FireworksTM ->PC) 

1004 

Table 2 – Configuration and data transfer times in clock 

cycles. 

 
From these results is possible to understand the 

impact of data transfer times on the application 

performance, especially with small partitions, 

because smaller partitions require more 

computations and more data transfers. 

 

In Table 3 is presented performance of the 

application for different partition sizes measured in 

Cell Updates Per Second (CUPS), the number of 

cells from the H matrix processed per second. 

 
Testing 

sequence 
X Library 
sequence 

N. of 
partit
ions 

Cycles 
per 

partiti
on 

Maximum 
computati
on (CUPS) 

Total 
alignment 
time (μs) 

Total 
alignment 
computati
on (CUPS) 

1X1 1 72 0,5 M 15 67 K 

30X30 1 104 320 M 15 60 M 

60X60 2 134 498 M 30 120 M 

60X120 4 192 347 M 38 189 M 

120X30 1 192 694 M 15 240 M 

360X120 12 196 680 M 93 464 M 

510X510 85 196 655 M 470 553 M 

Table 3 – Processing times in CUPS for different 

sequences. 

 
From Table 3 we can calculate that the 

application performance increases with the size of 

the sequences being processed. This occurs until the 

sequences being tested have to be partitioned and 

each partition is computed by the SideWorks
TM

 

accelerator separately. However, the performance of 

the total alignment computation increases with the 

sequences sizes. 

According to [5] an optimized application 

(software only) has typically around 52 MCUPS 

average performance. Comparing this result with our 

results presented in Table 3 is possible to verify 

acceleration up to 13 times. 

Other FPGA implementations of S-W 

algorithm achieve performances for LGP in the 

order of 9.2 GCUPS [1], but these results are 

achieved with a chain of 168 PEs and without 

partitions on the H matrix computation. If the 

limitations described for our application are solved, 

it is possible to achieve performances in the order of 

GCUPS as well. 

 

10. Conclusions 

 
In this work we have implemented the S-W 

sequence alignment algorithm using a hardware 

accelerator platform. The selected platform was the 

Coreworks processing engine, which has a RISC 

processor (FireWorks
TM

), and a specific hardware 

accelerator (SideWorks
TM

). 

Although some practical limitations were 

encountered on the selected platform, we were able 

to implement a complete alignment application 

using the S-W algorithm with partitions. 

The results showed that a considerable speed 

up was achieved even when partitions have to be 

used and some additional overhead is introduced by 

data transfer. 

As future work we plan to overcome the 

platform limitations and implement the trace back 

and other parts of the algorithms in the FireWorks
TM

 

processor. 
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