
Hardware Accelerator for Biological Sequence Alignment using

Coreworks
®
 Processing Engine

José Cabrita, Gilberto Rodrigues, Paulo Flores

INESC-ID / IST, Technical University of Lisbon

jpmcabrita@gmail.com, gilberto.rodrigues@ist.utl.pt, paulo.flores@inesc-id.pt

Abstract

Several algorithms exist for biological

sequence alignment. The Smith-Waterman (S-W)

algorithm is an exact algorithm that uses dynamic

programming for local sequence alignment. Some

implementations in software for General Purpose

Processors (GPP) as well in hardware (using Field

Programmable Gate Array (FPGA)) exist. In this

paper it is proposed an implementation of the S-W

algorithm for DNA, RNA and amino acids sequence

alignment that uses the Coreworks
®

 processing

engine. The processor FireWorks
TM

 will be used to

control a hardware accelerator named SideWorks
TM

both developed by Coreworks
®

. In this paper is

proposed an architecture based on Process

Elements (PE) to be implemented in SideWorks
TM

accelerator template with the purpose of

accelerating the S-W algorithm.

The developed application is able to read sequences

from a file, align them with a library of sequences

and present the results for the best local alignments

using the Coreworks
®

 processing engine.

Keywords— DNA, Bioinformatics, Sequence

Alignment, Smith-Waterman algorithm, Field

Programmable Gate Array (FPGA), Cell Updates

Per Second (CUPS), Platform Design, SideWorks
TM

,

FireWorks
TM

1. Introduction

Sequence alignment is one of the most widely

used operations in computational biology. The need

for speeding up this operation comes from the

exponential growth of biological sequences

databases.

The sequence alignment operation consists of

finding similarities between a certain test sequence

and all the sequences of a database. This operation

allows biologists to point out sequences sharing

common subsequences. From a biological point of

view, this operation leads to identifying similar

functionality.

The S-W algorithm is a well-known dynamic

programming algorithm for performing local

sequence alignment to determine similar regions

between two DNA, RNA, proteins or amino acids

sequences.

There are two stages in the S-W algorithm.

These are the similarity matrix (H matrix) fill and

the trace back. In the first stage a matrix is filled

with a similarity score for each element of the

sequences. The second stage finds the maximum

score of the matrix and performs the trace back to

find the best local alignment. The first stage of the

algorithm will consume the largest part of the total

computation time.

One approach used to get high quality results

in a short processing time is to use parallel

processing on a reconfigurable system (FPGA) to

accelerate the H matrix fill stage of the S-W

algorithm. The maximum score of the matrix is then

transferred to a GPP and the trace back is performed

to get the optimal alignment.

2. Smith-Waterman algorithm

The Smith-Waterman algorithm is an optimal

local sequence alignment algorithm that uses

dynamic programming. Several alignment models

can be used by the S-W algorithm. A simple model

of the algorithm is the Linear Gap Penalty (LGP)

model. In this model there is a score penalty (α) for a

gap in the alignment of the sequences, the value of

the score penalty is linear and defined by the user of

the algorithm.

The algorithm uses a substitution matrix (Sbt

matrix) that represents the similarity between

elements. The matrix positions have a value of -1 if

the elements are different and 2 if the elements are

equal.

Using two sequences of size N and M the H

matrix can be computed using the following

expression:

 () {

 ()

 ()

 () ()

 , (1)

for 1 ≤ i ≤ N, 1 ≤ j ≤ M.

H(i,0) = H(0,,j) = 0 for 0 ≤ i ≤ N, 0 ≤ j ≤ M,

where i and j represent the element position of the

sequences under evaluation. More information on

S-W algorithm can be found in [1][2].

The regular computation requires an

initialization of the first column and the first line

filled with zero value, as presented in Fig. 1, where

each cell is computed with equation (1).

Sequence 1: ATGCTGAC

Sequence 2: CGATCGAT

 A T G C T G A C

 0 0 0 0 0 0 0 0 0

C 0 0 0 0 2 1 0 0 2

G 0 0 0 2 1 1 3 2 1

A 0 2 1 1 1 0 2 5 4

T 0 1 4 3 2 3 2 4 4

C 0 0 3 3 5 4 3 3 6

G 0 0 2 5 4 4 6 5 5

A 0 2 1 4 4 3 5 8 7

T 0 1 4 3 3 6 5 7 7

Fig. 1 – H matrix for sequence 1 and sequence 2.

Since the biological sequences to be aligned

may be too long to be processed in fully paralleled

hardware the proposed architecture will be adapted

to include the possibility to divide the computation

of the H matrix. This division uses the initialization

values of the matrix as is show on the following

example.

When splitting the computation of the matrix

using, for example 4 partitions, the regular

computation is repeated 4 times as presented in Fig.

2.

1 A T G C 3 T G A C

 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 2 C 2 1 0 0 2

G 0 0 0 2 1 G 1 1 3 2 1

A 0 2 1 1 1 A 1 0 2 5 4

T 0 1 4 3 2 T 2 3 2 4 4

2 A T G C 4 T G A C

 0 1 4 3 2 2 3 2 4 4

C 0 0 3 3 5 C 5 4 3 3 6

G 0 0 2 5 4 G 4 4 6 5 5

A 0 2 1 4 4 A 4 3 5 8 7

T 0 1 4 3 3 T 3 6 5 7 7

Fig. 2 – Divided computation of H matrix for

sequence 1 and sequence 2.

Each computation inherits the line and column

of previous computations as its own initialization

line and column. Using this implementation is

possible to obtain the exact same score result of H

matrix. More information on H matrix partition

computation can be found in [3].

For this application it will be used a simple

trace back function [4]. This function finds the

maximum score position in the H matrix and

recalculates expression (1) for that position, this

time evaluating from which cell the result derivate

from. As show in expression (1), each cell result can

only come from 3 cells, the up neighbor cell, the left

neighbor cell or the up-left neighbor cell. With this

information the traceback function will then move to

the cell that generated the result and perform again

the same operation. This will continue until the score

from the cell that generated the result is zero.

The example in Fig. 3 illustrates the trace back

function working for sequence 1 and sequence 2.

 A T G C T G A C

 0 0 0 0 0 0 0 0 0

C 0 0 0 0 2 1 0 0 2

G 0 0 0 2 1 1 3 2 1

A 0 2 1 1 1 0 2 5 4

T 0 1 4 3 2 3 2 4 4

C 0 0 3 3 5 4 3 3 6

G 0 0 2 5 4 4 6 5 5

A 0 2 1 4 4 3 5 8 7

T 0 1 4 3 3 6 5 7 7

Fig. 3 – Trace back for sequence 1 and sequence 2.

From the trace back in Fig. 3 results that the

best local alignment with a score of 8 is:

ATGCTGA

AT- C -GA

To parallelize the H matrix fill in the S-W

algorithm it is necessary to respect the data

dependency. Through expression (1) is possible to

realize that iteration (i,j) cannot be executed until

iterations (i-1,j), (i,j-1) and (i-1,j-1) are executed

first due to data dependencies. However if the

elements are calculated on different time cycles it is

possible to execute several calculus in the same time

cycle as show in Fig. 4.

 A T G C T G A C

 0 0 0 0 0 0 0 0 0

C 0 PE1,

C1

PE2,

C2

PE3,

C3

PE4,

C4

PE5,

C5

PE6,

C6

PE7,

C7

PE8,

C8

G 0 PE1,

C2

PE2,

C3

PE3,

C4

PE4,

C5

PE5,

C6

PE6,

C7

PE7,

C8

PE8,

C9

A 0 PE1,

C3

PE2,

C4

PE3,

C5

PE4,

C6

PE5,

C7

PE6,

C8

PE7,

C9

PE8,

C10

T 0 PE1,

C4

PE2,

C5

PE3,

C6

PE4,

C7

PE5,

C8

PE6,

C9

PE7,

C10

PE8,

C11

C 0 PE1,

C5

PE2,

C6

PE3,

C7

PE4,

C8

PE5,

C9

PE6,

C10

PE7,

C11

PE8,

C12

G 0 PE1,

C6

PE2,

C7

PE3,

C8

PE4,

C9

PE5,

C10

PE6,

C11

PE7,

C12

PE8,

C13

A 0 PE1,

C7

PE2,

C8

PE3,

C9

PE4,

C10

PE5,

C11

PE6,

C12

PE7,

C13

PE8,

C14

T 0 PE1,

C8

PE2,

C9

PE3,

C10

PE4,

C11

PE5,

C12

PE6,

C13

PE7,

C14

PE8,

C15

Fig. 4 – H matrix example with indication on which

PE and cycle the cell score is computed.

As is shown in Fig. 4 it is possible that all

elements in the anti-diagonal can be computed in the

same cycle (e.g. cycle 8). This parallel execution is

called dataflow implementation [2], as all the

computations are executed when their data

dependencies are available.

This dataflow allows that the computation of

the H matrix can be achieved using a chain of PEs.

In each PE it will be computed a column of the H

matrix and each cell computation will be streamed to

the next PE.

3. Coreworks
®
 Processing Engine

The objective of using Coreworks

®
 processing

engine is to accelerate, using hardware, the most

compute intensive parts of the algorithm. In this case

it will be the computation of the H matrix to

determine the maximum score value of the

alignment.

The Coreworks
®
 processing engine has two

major processing elements: the FireWorks
TM

, a

Harvard RISC (Reduced Instruction Set Computer)

architecture 32-bit processor, and the SideWorks
TM

,

a reconfigurable hardware accelerator architecture.

The FireWorks
TM

 is used to control the

accelerator configurations and data transfer

from/into the GPP and from/into the hardware

accelerator.

The SideWorks
TM

 is a reconfigurable

architecture for hardware acceleration, which will

also be implemented in the FPGA. This architecture

uses Functional Units (FUs) to build datapaths as

shown on the generic SideWorks
TM

 template

presented on Fig. 5. These FUs can be as simple as

adders or registers to some more complex FUs. In

this project one PE will be used as a FU. The

reconfigurable possibilities of this accelerator allow

more than one datapath to be defined in the FPGA.

Therefore the user can select which datapath to use

for each set of computations by control of

FireWorks
TM

. On this project only one datapath was

be developed for the sequence alignment purpose.

Fig. 5 – SideWorksTM architecture template.

4. Application Overview

Our main application will run mostly on the

GPP. The engine control and the hardware

acceleration initialization will run on FireWorks
TM

,

but the H matrix computation will run on

SideWorks
TM

 hardware accelerator. The application

runs according to the flowchart presented on Fig. 6.

Fig 6 - Application flow chart.

The application begins by reading one

sequence from the testing sequences file and one

from the library sequences file. These sequences are

then partitioned according to the limitations imposed

that will be described in section 7. Each partition of

the testing sequence will be compared to all the

partitions of the library sequence before going on the

next partition of the testing sequence. The

computation part will end when all the partitions

have ended. The result from the hardware

accelerator will be the maximum score of the H

matrix. As is show on Fig. 6, this value will be

compared to a user defined threshold, and the trace

back will only be executed if the score value is

higher than the given threshold. Note that this

threshold is defined in order to trace back only the

sequences with high similarity values, because this

increases the application efficiency.

Considering that the data transfer of the

complete H matrix would take too long versus the

processing time of the calculus, the traceback

function rebuilds the H matrix until the computed

score is equal to the score returned by the hardware

and then starts the trace back itself. This option

allows that, most of the times, the H matrix is not

completely recalculated in software. Once the

location of the maximum score is found a trace back

is performed and the sequences local alignment is

saved in a results file. Therefore the results file will

have, for each comparison, the sequences being

tested, the maximum score and the best local

alignment.

The application ends after each of the

sequences in the testing sequences file is compared

to all the sequences in the library file.

5. Datapath Implementation on the

SideWorks
TM

As mentioned before, the datapath for

SideWorks
TM

 is built using FUs. Two new FUs

where developed for this application, the PE FU and

the Trigger FU. All other FUs used were already

developed and available on the Coreworks
®

development platform.

The PE FU is based on existing Process

Elements [1][2][3], but modified to support partition

computation and to be implemented on the

SideWorks
TM

 hardware accelerator. The PE FU will

be described in more detail in section 6. The trigger

FU is used to generate specific control signals used

on the PEs. The Fig. 7 represents the datapath of our

application for the SideWorks
TM

.

Fig 7 - SideWorksTM datapath.

The datapath is composed by a set of FUs

being the most important the chain of PEs with the

required FUs for input and output data. There are 6

input memory blocks. Four memory blocks are

related to the data from the substitution matrix, this

data is already coded according to the element from

the testing sequence that is assigned to each PE.

Another memory block contains the initialization

column to be used only by PE1. Finally the last

memory block contains the sequence from the

library which will be streamed through the PEs. For

each PE there is a register that contains the element

from the initialization line and another register with

the value of α, which can be configured by the user.

For the first PE there are two additional input

registers. One contains the initialization of the

maximum value, in the first computation contains

zero, on all other situations (e.g. computing a

partition) contains the maximum score inherited by

previous partitions. The other register contains the

score of the top-left neighbour initialization value of

a partition.

On the outputs there are two registers per PE

and a memory block for the last PE. The registers

will store the values of maximum score for that PE

and the values from the last line that will be

inherited by the next computation. The memory

block will store the information for the values on the

last column that will be inherited by the next

computation.

The Trigger FUs are used to generate a trigger

signal from an enable signal. The enable signal starts

at zero and changes to one at a certain cycle, this

signal is used to start the computation. At the clock

cycle that enable changes to one, the trigger signal

will also change to one and stays with this value

only for one clock cycle. This signal is used to store

some values internally in the PE. Both signals are

propagated through the PEs chain.

6. Process Element Functional Unit

As previously mentioned, this FU is based on

the PE described in [1], however some changes have

been made to adapt the PE. Fig. 8 illustrates the

resulting PE after the changes.

The main changes are related with the

substitution matrix storing method and additional

components to accommodate the computation of the

H matrix using partitions.

There are five registers used to propagate

signals to the next PE, of these, four are used for the

enable and trigger signals and the remaining one is

used to store and propagate the elements of the

library sequence. As shown in Fig. 8 the output that

results from the maximum computation and the

output of H(i,j) will also be propagated to the next

PE.

Each PE stores only the column of the

substitution matrix related to the element of the

testing sequence that has been assigned to.

Therefore, each PE only needs to store 4 elements of

the substitution matrix (for DNA) instead of the 16

elements that compose the full substitution matrix.

The elements of the library sequence are coded

using 2 bits (for DNA) and will be used to address

the corresponding substitution value.

Fig 8 - Process Element Functional Unit.

The two multiplexers on the left of Fig. 8 are

used for the partition of the computation of H

matrix. The inputs for the multiplexer on the top left

change according to the PE position on the PEs

chain. In PE1 this multiplexer is used to select

between the top-left neighbour initialization element

and the input of the initialization column, for all

other PEs this multiplexer selects between the

initialization line input of a partition or the result

from previous PE. The bottom left multiplexer

introduces the initialization line top element.

The last multiplexer on the right is used to deal

with negative values on the outcome computation of

H(i,j). In these cases the output of the PE needs to be

zero as shown in equation (1). Finally one register

has been added to store a configurable α value.

7. Limitations

During the test of the application some

limitations have been detected. The most important

limitation is related to the maximum number of FUs

that we are able to use in the datapath. The

maximum number of PEs that has been synthesized

successfully was 30, even when there is space

available on the target FPGA. This number limits the

partition size for testing sequences to 30 elements

per partition. Another limitation is related to the

vector size that can be transferred to FireWorks
TM

and SideWorks
TM

. It is possible to transfer vectors up

to 128 elements, which limits the partition for the

library sequence. For testing purposes the size of the

partition used was 30 for the testing sequence and

120 for the library sequence.

The size of the registers used introduces

another limitation on the maximum computable

score without having overflow. All registers in the

datapath have 11 bits, since the datapath uses signed

calculation this limits the maximum computed score

to 1023.

The results are presented with these limitations,

although, there are solutions under study to improve

the application.

8. Area Results

The project was implemented in a Spartan 3

XC3S5000 FPGA. Table 1 presents area results of

implementations with different numbers of PEs in

the Coreworks
®
 processing engine platform.

PEs
Number of

occupied slices
Total Number of 4

input LUTs

1 10 788 17 193

10 12 025 19 037

20 13 546 21 198

30 14 805 23 300

Table 1 – Areas of different implementations.

The SideWorks
TM

 and FireWorks
TM

 templates

occupy a considerable amount of area (slices).

Adding FUs to the SideWorks
TM

 template does not

increase the total number of occupied slices too

much. One PE alone (without SideWorks
TM

overhead) occupies about 99 slices on this FPGA.

However, from Table 1 is possible to average the

number of occupied slices for each PE to be 134

slices. These overhead results from the extra FUs

required on the data path by the SideWorks
TM

platform. Therefore, for the referred FPGA, we

should be able to accommodate 168 PEs on the

SideWorks
TM

 hardware accelerator if no practical

limitations exist.

9. Analysis of Application Performance

After the circuit has been synthesized and

implemented using the proposed hardware on the

FPGA, the minimum clock cycle attained was

27.7ns, resulting in a maximum frequency of

36MHz. Table 2 presents average load time of a

configuration and different types of data transfers for

128 element vectors.

 Average (in cycles)

Configuration loading time 172

Loading a vector to memory bank in the
FPGA(FireworksTM -> SideworksTM)

367

Loading a vector from memory banks in
FPGA(SideworksTM -> FireworksTM)

244

Loading a register in the FPGA
(FireworksTM -> SideworksTM)

20,26

Loading a register from FPGA
(SideworksTM -> FireworksTM)

26

Loading a vector to the board memory
banks (PC-> FireworksTM)

13279

Loading a vector from the board
memory banks (FireworksTM ->PC)

1004

Table 2 – Configuration and data transfer times in clock

cycles.

From these results is possible to understand the

impact of data transfer times on the application

performance, especially with small partitions,

because smaller partitions require more

computations and more data transfers.

In Table 3 is presented performance of the

application for different partition sizes measured in

Cell Updates Per Second (CUPS), the number of

cells from the H matrix processed per second.

Testing

sequence
X Library
sequence

N. of
partit
ions

Cycles
per

partiti
on

Maximum
computati
on (CUPS)

Total
alignment
time (μs)

Total
alignment
computati
on (CUPS)

1X1 1 72 0,5 M 15 67 K

30X30 1 104 320 M 15 60 M

60X60 2 134 498 M 30 120 M

60X120 4 192 347 M 38 189 M

120X30 1 192 694 M 15 240 M

360X120 12 196 680 M 93 464 M

510X510 85 196 655 M 470 553 M

Table 3 – Processing times in CUPS for different

sequences.

From Table 3 we can calculate that the

application performance increases with the size of

the sequences being processed. This occurs until the

sequences being tested have to be partitioned and

each partition is computed by the SideWorks
TM

accelerator separately. However, the performance of

the total alignment computation increases with the

sequences sizes.

According to [5] an optimized application

(software only) has typically around 52 MCUPS

average performance. Comparing this result with our

results presented in Table 3 is possible to verify

acceleration up to 13 times.

Other FPGA implementations of S-W

algorithm achieve performances for LGP in the

order of 9.2 GCUPS [1], but these results are

achieved with a chain of 168 PEs and without

partitions on the H matrix computation. If the

limitations described for our application are solved,

it is possible to achieve performances in the order of

GCUPS as well.

10. Conclusions

In this work we have implemented the S-W

sequence alignment algorithm using a hardware

accelerator platform. The selected platform was the

Coreworks processing engine, which has a RISC

processor (FireWorks
TM

), and a specific hardware

accelerator (SideWorks
TM

).

Although some practical limitations were

encountered on the selected platform, we were able

to implement a complete alignment application

using the S-W algorithm with partitions.

The results showed that a considerable speed

up was achieved even when partitions have to be

used and some additional overhead is introduced by

data transfer.

As future work we plan to overcome the

platform limitations and implement the trace back

and other parts of the algorithms in the FireWorks
TM

processor.

Acknowledgements

This work was partially supported by national funds

through Fundação para a Ciência e Tecnologia (FCT),

under project HELIX: Heterogeneous Multi-Core

Architecture for Biological Sequence Analysis (reference

number PTDC/EEA-ELC/113999/2009) and by the QREN

Project 3487 – Sideworks.

References

[1] T. Oliver, B. Schmidt, D. Maskell, “Hyper

Customized Processors for Bio-Sequence Database

Scanning on FPGAs”, Proceedings ACM/SIGDA 13th

International Symposium on Field-programmable Gate

Arrays, 2005.

[2] P. Zhang, G. Tan, G.R. Gao, “Implementation of the

Smith-Waterman Algorithm on a Reconfigurable

Supercomputing Platform”, Proceedings of the 1st

International Workshop on High-performance

Reconfigurable Computing Technology and

Applications, September 2007.

[3] N. Sebastião, N. Roma, P. Flores, “Integrated

Hardware Architecture for Efficient Computation of

the n-Best Bio-Sequence Local Alignments in

Embedded Platforms”, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, July 2012.

[4] Z. Nawaz, M. Nadeem, H. van Someren, K. Bertels,

“A parallel FPGA design of the Smith-Waterman

traceback”, International Conference on Field-

Programmable Technology (FPT), December 2010.

[5] L. Hasan, Z. Al-Ars, S. Vassiliadis, “Hardware

Acceleration of Sequence Alignment Algorithms – An

Overview”, International Conference on Design &

Technology of Integrated Systems in Nanoscale Era,

September 2007.

