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Multiplication of data samples with constant coefficients is a ubiquitous

operation and performance bottleneck in Digital Signal Processing (DSP) systems

such as, digital Finite Impulse Response (FIR) filters and linear DSP transforms.

Shift-adds designs of 59x and 89x: (a) Digit-based recoding; (b) Exact Common Subexpresion

Elimination (CSE) algorithm [1]; (c) Exact Graph-Based (GB) algorithm [2];

Optimization of Gate-Level Area in Constant Multiplications

Each addition and subtraction operation realizing a constant multiplication has a

different gate-level implementation cost [3].

The delay in constant multiplications is generally defined as the maximal number

of operations in series, known as the number of adder-steps.

The problem of optimizing gate-level area under a delay constraint is to find a

set of A-operations that does not violate the delay constraint and that yields a

design with optimal gate-level area [3].

The high-level algorithms [3,4] can explore the tradeoff between area and delay

in constant multiplications by changing the delay constraint.

Digit-Serial Design of Constant Multiplications

In digit-serial design, the data is divided into d bits and is processed one at a time.

The digit-serial operations when the digit size d is 3: (a) an addition operation; (b) a subtration

operation; (c) a left shift by 4 times.

Design of a digit-serial FIR filter under different digit sizes.
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Optimization of Gate-Level Area In High-Throughput Constant Multiplications

The throughput in multiplierless design of constant multiplications is increased

using pipeline registers.

The optimization problem is to find a set of A-operations that yields a pipelined

design with optimal area at gate-level [5].

Since the constant coefficients are determined beforehand by DSP algorithms,

constant multiplications can be realized using only adders/subtracters and shifts.

(a) Multiple Constant Multiplications (MCM) frequently occur in FIR filters; (b) Constant Matrix

Vector Multiplication (CMVM) exists in linear DSP transforms.

Optimization of the number of operations does not guarantee a design with

optimal area at gate-level.

The gate-level area optimization problem is to find a set of A-operations, that

yields a design with optimal gate-level area, realizing constant multiplications [3].

The fundamental optimization problem is to find the minimum number of

A-operations that realize the constant multiplications [1,2].

The high-level algorithms [1,2] aim to maximize the sharing of partial products

among the constant multiplications.

A-operation: w = A(u,v) = |u << l
1

+ (-1)sv << l
2
| >> r = |2l1u + (-1)s2l2v|2-r

w: output u, v: inputs l
1
, l

2
: left shifts, r: right shift, s: sign (0 or 1)
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(a) An addition u + 2l2v; (b) A subtraction 2l1u – v; (c) A subtraction (u – v)2-r all under unsigned input.

Summary of gate-level area results: (a) on MCM instances {3]; (b) on CMVM instances [4].

The problem of optimizing gate-level area in digit-serial design is to find a set of

A-operations that yields a digit-serial design with optimal gate-level area [6,7].
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Pipelined designs of 59x and 89x: (a) Exact GB algorithm [2]; (b) The algorithm of [5].

d Shift-Adds Design [6] Design with Constant Multipliers [6]

area (mm2) delay (ns) lat. (ns) power (µW) energy (fJ) area (mm2)delay (ns) lat. (ns) power (µW) energy (fJ)

1 201,7 5,5 190,8 0,503 95,947 252,0 4,0 139,0 0,619 86,010

2 214,8 6,2 110,9 0,593 65,752 264,8 5,8 104,2 0,706 73,579

4 228,9 6,9 62,5 0,694 43,347 269,7 6,9 62,3 0,779 48,516

8 281,1 7,7 38,5 0,923 35,536 377,9 12,0 60,0 1,023 61,380

16 322,9 9,9 9,9 1,060 10,494 439,0 9,0 36,0 1,220 43,920
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