Multiplierless Design of Low-Complexity and High-Speed DSP Systems

Paulo Flores and José Monteiro, INESC-ID/IST TU Lisbon, Portugal Levent Aksoy, INESC-ID, Portugal Eduardo Costa, UCPel, Brazil

Multiplierless Design of Constant Multiplications

Multiplication of data samples with constant coefficients is a ubiquitous operation and performance bottleneck in Digital Signal Processing (DSP) systems such as, digital Finite Impulse Response (FIR) filters and linear DSP transforms.

Optimization of Gate-Level Area Under a Delay Constraint

The delay in constant multiplications is generally defined as the maximal number of operations in series, known as the number of adder-steps.

The **problem of optimizing gate-level area under a delay constraint** is to find a set of **A-operations** that does not violate the delay constraint and that yields a design with optimal gate-level area [3].

The high-level algorithms [3,4] can explore the tradeoff between area and delay in constant multiplications by changing the delay constraint.

(a) Multiple Constant Multiplications (MCM) frequently occur in FIR filters; (b) Constant Matrix Vector Multiplication (CMVM) exists in linear DSP transforms.

Since the constant coefficients are determined beforehand by DSP algorithms, constant multiplications can be realized using only **adders/subtracters and shifts**.

A-operation: w = A(u,v) = $|u << l_1 + (-1)^s v << l_2| >> r = |2^{l_1}u + (-1)^s 2^{l_2}v|2^{-r}$ w: output u, v: inputs l_1 , l_2 : left shifts, r: right shift, s: sign (0 or 1)

The **fundamental optimization problem** is to find the minimum number of **A-operations** that realize the constant multiplications [1,2].

The high-level algorithms [1,2] aim to **maximize the sharing of partial products** among the constant multiplications.

Optimization of Gate-Level Area In High-Throughput Constant Multiplications

The throughput in multiplierless design of constant multiplications is increased using pipeline registers.

The **optimization problem** is to find a set of **A-operations** that yields a pipelined design with optimal area at gate-level [5].

Pipelined designs of 59x and 89x: (a) Exact GB algorithm [2]; (b) The algorithm of [5].

Digit-Serial Design of Constant Multiplications

In digit-serial design, the data is divided into **d** bits and is processed one at a time.

Shift-adds designs of 59x and 89x: (a) Digit-based recoding; (b) Exact Common Subexpresion Elimination (CSE) algorithm [1]; (c) Exact Graph-Based (GB) algorithm [2];

Optimization of the number of operations does not guarantee a design with optimal area at gate-level.

Optimization of Gate-Level Area in Constant Multiplications

Each addition and subtraction operation realizing a constant multiplication has a different gate-level implementation cost [3].

(a) An addition $u + 2^{l_2}v$; (b) A subtraction $2^{l_1}u - v$; (c) A subtraction $(u - v)2^{-r}$ all under unsigned input.

The gate-level area optimization problem is to find a set of **A-operations**, that violds a design with optimal gate level area, realizing constant multiplications [2]

The digit-serial operations when the digit size *d* is 3: (a) an addition operation; (b) a subtration operation; (c) a left shift by 4 times.

The **problem of optimizing gate-level area in digit-serial design** is to find a set of **A-operations** that yields a digit-serial design with optimal gate-level area [6,7].

Design of a digit-serial FIR filter under different digit sizes.

d	Shift-Adds Design [6]					Design with Constant Multipliers [6]				
	area (mm²)	delay (ns)	lat. (ns)	power (µW)	energy (fJ)	area (mm²)	delay (ns)	lat. (ns)	power (µW)	energy (fJ)
1	201,7	5,5	190,8	0,503	95,947	252,0	4,0	139,0	0,619	86,010
2	214,8	6,2	110,9	0,593	65,752	264,8	5,8	104,2	0,706	73,579
4	228,9	6,9	62,5	0,694	43,347	269,7	6,9	62,3	0,779	48,516
8	281,1	7,7	38,5	0,923	35,536	377,9	12,0	60,0	1,023	61,380
16	322,9	9,9	9,9	1,060	10,494	439,0	9,0	36,0	1,220	43,920

Acknowledgment

This work was partially supported by the Portuguese Foundation for Science and Technology (FCT) research project "Multicon - Architectural Optimization of DSP Systems with Multiple Constants Multiplications" PTDC/EIA-EIA/103532/2008. http://algos.inesc-id.pt/multicon/

yields a design with optimal gate-level area, realizing constant multiplications [3].

Summary of gate-level area results: (a) on MCM instances {3]; (b) on CMVM instances [4].

References

[1] L. Aksoy, E. Costa, P. Flores, J. Monteiro 'Exact and Approximate Algorithms for the Optimization of Area and Delay in Multiple Constant Multiplications', IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 6, pp. 1013-1026, 2008.

[2] L. Aksoy, E. O. Gunes, P. Flores 'Search Algorithms for the Multiple Constant Multiplications Problem: Exact and Approximate', Elsevier Journal on Microprocessors and Microsystems: Embedded Hardware Design, vol. 34, no. 5, pp. 151-162, 2010.

[3] L. Aksoy, E. Costa, P. Flores, J. Monteiro 'Finding the Optimal Tradeoff Between Area and Delay in Multiple Constant Multiplications', Elsevier Journal on Microprocessors and Microsystems: Embedded Hardware Design, vol. 35, no.8, pp. 729-741, 2011.

[4] L. Aksoy, E. Costa, P. Flores, J. Monteiro 'Optimization Algorithms for the Multiplierless Realization of Linear Transforms', ACM Transactions on Design Automation of Electronic Systems, vol. 17, no. 1, Article 3, 2012.
[5] L. Aksoy, E. Costa, P. Flores, J.Monteiro 'Optimization of Gate-Level Area in High Throughput Multiple Constant Multiplications', European Conference on Circuit Theory and Design, pp. 588-591, 2011.

[6] L. Aksoy, C. Lazzari, E. Costa, P. Flores, J. Monteiro 'High-Level Algorithms for the Optimization of Gate-Level Area in Digit-Serial Multiple Constant Multiplications', Elsevier Integration, the VLSI Journal, to appear, 2012.
[7] L. Aksoy, C. Lazzari, E. Costa, P. Flores, J. Monteiro 'Design of Digit-Serial FIR Filters: Algorithms, Architectures, and a CAD Tool', IEEE Transactions on Very Large Scale Integration Systems, to appear, 2012.