
498 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Design of Digit-Serial FIR Filters: Algorithms,
Architectures, and a CAD Tool

Levent Aksoy, Member, IEEE, Cristiano Lazzari, Member, IEEE, Eduardo Costa, Member, IEEE,
Paulo Flores, Member, IEEE, and José Monteiro, Senior Member, IEEE

Abstract— In the last two decades, many efficient algorithms
and architectures have been introduced for the design of low-
complexity bit-parallel multiple constant multiplications (MCM)
operation which dominates the complexity of many digital signal
processing systems. On the other hand, little attention has been
given to the digit-serial MCM design that offers alternative low-
complexity MCM operations albeit at the cost of an increased
delay. In this paper, we address the problem of optimizing the
gate-level area in digit-serial MCM designs and introduce high-
level synthesis algorithms, design architectures, and a computer-
aided design tool. Experimental results show the efficiency of the
proposed optimization algorithms and of the digit-serial MCM
architectures in the design of digit-serial MCM operations and
finite impulse response filters.

Index Terms— 0–1 integer linear programming (ILP),
digit-serial arithmetic, finite impulse response (FIR) filters,
gate-level area optimization, multiple constant multiplications.

I. INTRODUCTION

F INITE impulse response (FIR) filters are of great
importance in digital signal processing (DSP) systems

since their characteristics in linear-phase and feed-forward
implementations make them very useful for building stable
high-performance filters. The direct and transposed-form FIR
filter implementations are illustrated in Fig. 1(a) and (b),
respectively. Although both architectures have similar com-
plexity in hardware, the transposed form is generally preferred
because of its higher performance and power efficiency [1].

The multiplier block of the digital FIR filter in its transposed
form [Fig. 1(b)], where the multiplication of filter coefficients
with the filter input is realized, has significant impact on
the complexity and performance of the design because a
large number of constant multiplications are required. This
is generally known as the multiple constant multiplications
(MCM) operation and is also a central operation and perfor-
mance bottleneck in many other DSP systems such as fast

Manuscript received May 25, 2011; revised November 17, 2011; accepted
February 16, 2012. Date of publication March 16, 2012; date of current
version February 20, 2013. This work was supported in part by the Portuguese
Foundation for Science and Technology under the research project “Multicon -
Architectural Optimization of DSP Systems with Multiple Constants Multi-
plications” PTDC/EIAEIA/ 103532/2008 and under INESC-ID multiannual
funding through the PIDDAC Program funds.

L. Aksoy and C. Lazzari are with INESC-ID, Lisbon 1000-029, Portugal
(e-mail: levent@algos.inesc-id.pt; lazzari@algos.inesc-id.pt).

E. Costa is with Universidade Católica de Pelotas, Pelotas 96010-000, Brazil
(e-mail: ecosta@ucpel.tche.br).

P. Flores and J. Monteiro are with INESC-ID/IST TU Lisbon, Lisbon
1000-029, Portugal (e-mail: pff@inesc-id.pt; jcm@inesc-id.pt).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2188917

Fig. 1. FIR filter implementations. (a) Direct form. (b) Transposed form
with generic multipliers. (c) Transposed form with an MCM block.

Fourier transforms, discrete cosine transforms (DCTs), and
error-correcting codes.

Although area-, delay-, and power-efficient multiplier archi-
tectures, such as Wallace [2] and modified Booth [3] multi-
pliers, have been proposed, the full flexibility of a multiplier
is not necessary for the constant multiplications, since filter
coefficients are fixed and determined beforehand by the DSP
algorithms [4]. Hence, the multiplication of filter coefficients
with the input data is generally implemented under a shift-
adds architecture [5], where each constant multiplication is
realized using addition/subtraction and shift operations in an
MCM operation [Fig. 1(c)].

For the shift-adds implementation of constant multiplica-
tions, a straightforward method, generally known as digit-
based recoding [6], initially defines the constants in binary.
Then, for each “1” in the binary representation of the constant,
according to its bit position, it shifts the variable and adds
up the shifted variables to obtain the result. As a simple
example, consider the constant multiplications 29x and 43x .
Their decompositions in binary are listed as follows:

29x = (11101)binx = x � 4 + x � 3 + x � 2 + x

43x = (101011)binx = x � 5 + x � 3 + x � 1 + x

which requires six addition operations as illustrated
in Fig. 2(a).

1063–8210/$31.00 © 2012 IEEE

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 499

Fig. 2. Shift-adds implementations of 29x and 43x . (a) Without partial prod-
uct sharing [6] and with partial product sharing. (b) Exact CSE algorithm [9].
(c) Exact GB algorithm [12].

However, the digit-based recoding technique does not
exploit the sharing of common partial products, which allows
great reductions in the number of operations and, conse-
quently, in area and power dissipation of the MCM design at
the gate level. Hence, the fundamental optimization problem,
called the MCM problem, is defined as finding the minimum
number of addition and subtraction operations that implement
the constant multiplications. Note that, in bit-parallel design
of constant multiplications, shifts can be realized using only
wires in hardware without representing any area cost.

The algorithms designed for the MCM problem can be
categorized in two classes: common subexpression elimina-
tion (CSE) algorithms [7]–[9] and graph-based (GB) tech-
niques [10]–[12]. The CSE algorithms initially extract all pos-
sible subexpressions from the representations of the constants
when they are defined under binary, canonical signed digit
(CSD) [7], or minimal signed digit (MSD) [8]. Then, they find
the “best” subexpression, generally the most common, to be
shared among the constant multiplications. The GB methods
are not limited to any particular number representation and
consider a larger number of alternative implementations of a
constant, yielding better solutions than the CSE algorithms, as
shown in [11] and [12].

Returning to our example in Fig. 2, the exact CSE algorithm
of [9] gives a solution with four operations by finding the most
common partial products 3x = (11)binx and 5x = (101)binx
when constants are defined under binary, as illustrated in
Fig. 2(b). On the other hand, the exact GB algorithm [12]
finds a solution with the minimum number of operations by
sharing the common partial product 7x in both multiplications,
as shown in Fig. 2(c). Note that the partial product 7x =
(111)binx cannot be extracted from the binary representation
of 43x in the exact CSE algorithm [9].

However, all these algorithms assume that the input data
x is processed in parallel. On the other hand, in digit-serial
arithmetic, the data words are divided into digit sets, consisting
of d bits, that are processed one at a time [13]. Since digit-
serial operators occupy less area and are independent of the
data wordlength, digit-serial architectures offer alternative low-
complexity designs when compared to bit-parallel architec-
tures. However, the shifts require the use of D flip-flops, as
opposed to the bit-parallel MCM design where they are free
in terms of hardware. Hence, the high-level algorithms should
take into account the sharing of shift operations as well as the

sharing of addition/subtraction operations in digit-serial MCM
design. Furthermore, finding the minimum number of opera-
tions realizing an MCM operation does not always yield an
MCM design with optimal area at the gate level [14]. Hence,
the high-level algorithms should consider the implementation
cost of each digit-serial operation at the gate level.

In this paper, we initially determine the gate-level imple-
mentation costs of digit-serial addition, subtraction, and left
shift operations used in the shift-adds design of digit-serial
MCM operations. Then, we introduce the exact CSE algo-
rithm [15] that formalizes the gate-level area optimization
problem as a 0–1 integer linear programming (ILP) prob-
lem when constants are defined under a particular number
representation. We also present a new optimization model
that reduces the 0–1 ILP problem size significantly and,
consequently, the runtime of a generic 0–1 ILP solver. Since
there are still instances which the exact CSE algorithm cannot
handle, we describe the approximate GB algorithm [16] that
iteratively finds the “best” partial product which leads to the
optimal area in digit-serial MCM design at the gate level.
This paper also introduces a computer-aided design (CAD)
tool called SAFIR which generates the hardware descriptions
of digit-serial MCM operations and FIR filters based on a
design architecture and implements these circuits using a
commercial logic synthesis tool. In SAFIR, the digit-serial
constant multiplications can be implemented under the shift-
adds architecture, and also can be designed using generic digit-
serial constant multipliers [17].

Experimental results on a comprehensive set of instances
show that the solutions of algorithms introduced in this paper
lead to significant improvements in area of digit-serial MCM
designs compared to those obtained using the algorithms
designed for the MCM problem. The digit-serial FIR filter
designs obtained by SAFIR also indicate that the realization of
the multiplier block of a digit-serial FIR filter under the shift-
adds architecture significantly reduces the area of digit-serial
FIR filters with respect to those designed using digit-serial
constant multipliers [17]. Additionally, it is observed that the
optimal tradeoff between area and delay in digit-serial FIR
filter designs can be explored by changing the digit size d .

The rest of this paper proceeds as follows. Section II
gives the background concepts. The exact CSE and approx-
imate GB algorithms are introduced in Sections III and IV,
respectively. Section V describes the CAD tool. The exper-
imental results are presented in Section VI and conclusions
in Section VII.

II. BACKGROUND

This section presents the main concepts related to the
proposed algorithms, introduces the problem definitions, and
gives an overview on previously proposed algorithms.

A. Number Representation

The binary representation decomposes a number in a set of
additions of powers of 2. The representation of numbers using
a signed digit system makes use of positive and negative
digits, {1, 0,−1}. The CSD representation [18] is a signed

500 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Fig. 3. Combinational circuit and its corresponding CNF formula.

digit system that has a unique representation for each number
and verifies the following main properties: 1) two nonzero
digits are not adjacent; and 2) the number of nonzero digits is
minimum. Any n digit number in CSD has at most �(n+1)/2�
nonzero digits and, on average, the number of nonzero digits
is reduced by 33% when compared to binary. The MSD
representation [8] is obtained by dropping the first property
of the CSD representation. Thus, a constant may have several
representations under MSD, including its CSD representation,
but all with a minimum number of nonzero digits.

Consider the constant 23 defined in six bits. Its binary repre-
sentation 010111 includes four nonzero digits. It is represented
as 101001 in CSD, and both 101001 and 011001 denote 23
in MSD using three nonzero digits (where 1 stands for −1).

B. Boolean Satisfiability

A Boolean function ϕ : {0, 1}n → {0, 1} can be denoted by
a propositional formula. The conjunctive normal form (CNF)
is a representation of a propositional formula consisting of
a conjunction of propositional clauses where each clause is
a disjunction of literals and a literal l j is either a variable
x j or its complement x j . Note that, if a literal of a clause
assumes value 1, then the clause is satisfied. If all literals of
a clause assume the value 0, then the clause is unsatisfied.
The satisfiability (SAT) problem is to find an assignment on
n variables of the Boolean formula in CNF that evaluates the
formula to 1, or to prove that the formula is equal to the
constant 0.

A combinational circuit is a directed acyclic graph with
nodes corresponding to logic gates and directed edges corre-
sponding to wires connecting the gates. Incoming edges of a
node are called fanins and outgoing edges are called fanouts.
The primary inputs of the network are the nodes without
fanins. The primary outputs are the nodes without fanouts.

The CNF formula of a combinational circuit is the conjunc-
tion of the CNF formulas of each gate, where the CNF formula
of each gate denotes the valid input–output assignments to the
gate. The derivation of CNF formulas of basic logic gates
can be found in [19]. As a simple example, consider the
combinational circuit and its CNF formula given in Fig. 3. In
this Boolean formula, the first three clauses represent the CNF
formula of a two-input AND gate, and the last three clauses
denote the CNF formula of a two-input OR gate. Observe from
Fig. 3 that the assignment x1 = x3 = x4 = x5 = 0 and
x2 = 1 makes the formula ϕ equal to 1, indicating a valid
assignment. However, the assignment x1 = x3 = x4 = 0 and
x2 = x5 = 1 makes the last clause of the formula equal to 0
and, consequently, the formula ϕ, indicating a conflict between
the values of the inputs and output of the OR gate.

C. 0–1 ILP

The 0–1 ILP problem is the minimization or the maxi-
mization of a linear cost function subject to a set of linear

Fig. 4. Digit-serial operations when d is equal to 2. (a) Addition operation.
(b) Subtraction operation. (c) Left shift by one time. (d) Left shift by two
times.

constraints and is generally defined as follows:1

Minimize wT · x (1)

s.t. A · x ≥ b, x ∈ {0, 1}n. (2)

In (1), w j in w is an integer value associated with each of
n variables x j , 1 ≤ j ≤ n, in the cost function, and in (2),
A·x ≥ b denotes the set of m linear constraints, where b ∈ Z

m

and A ∈ Z
m × Z

n .
A clause l1 + · · · + lk , where k ≤ n, to be satisfied in

a CNF formula can be interpreted as a linear inequality
l1 + · · ·+ lk ≥ 1, where x j is represented by 1 − x j , as shown
in [20]. These linear inequalities are commonly referred to as
CNF constraints, where ai j ∈ {−1, 0, 1} and bi is equal to 1
minus the total number of complemented variables in its CNF
formula. For instance, the set of clauses, (x1 + x2), (x2 + x3),
and (x1 + x3), has the equivalent linear inequalities given as
x1 + x2 ≥ 1, −x2 + x3 ≥ 0, and −x1 − x3 ≥ −1, respectively.

D. Digit-Serial Arithmetic

In digit-serial designs, the input data is divided into d bits
and processed serially by applying each d-bit data in parallel.
The special cases, called bit-serial and bit-parallel, occur when
the digit size d is equal to 1 and equal to input data wordlength,
respectively. The digit-serial computation plays a key role
when the bit-serial implementations cannot meet the delay
requirements and the bit-parallel designs require excessive
hardware. Thus, an optimal tradeoff between area and delay
can be explored by changing the digit size d .

The basic digit-serial arithmetic operations can be found
in [21]. The digit-serial addition, subtraction, and left shift
operations are depicted in Fig. 4 using a digit size d equal to 2,
where the bits with index 0 and 1 denote the least significant
bit (LSB) and the most significant bit (MSB), respectively.
Notice from Fig. 4(a) that a digit-serial addition operation,
in general, requires d full adders (FAs) and one D flip-flop.
The subtraction operation [Fig. 4(b)] is implemented using 2’s
complement, requiring the initialization of the D flip-flop with
1 and additional d inverter gates with respect to the digit-
serial addition operation. In a left shift operation [Fig. 4(c)
and (d)], the number of required D flip-flops is equal to the
shift amount and is realized in d layers (one for each bit).
The input–output correspondence and the number of flip-flops

1The maximization objective can be easily converted to a minimization
objective by negating the cost function. Less-than-or-equal and equality
constraints are accommodated by the equivalences, A ·x ≤ b ⇔ −A ·x ≥ −b
and A · x = b ⇔ (A · x ≥ b) ∧ (A · x ≤ b), respectively.

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 501

Fig. 5. Digit-serial design of shift-adds implementation of 29x and 43x
given in Fig. 2(c) when d is 2.

cascaded serially for each input at each layer of the digit-serial
left shift operation are given in (3) and (4), respectively, where
i ranges from 0 to d−1 and ls denotes the amount of left shift

ai ⇒ c(i + ls) mod d (3)

F Fai =
{ ⌊ ls

d

⌋
, if i < d − (ls mod d)⌈ ls

d

⌉
, otherwise.

(4)

As an example of digit-serial realization of constant mul-
tiplications under the shift-adds architecture, Fig. 5 presents
the digit-serial implementation of 29x and 43x illustrated in
Fig. 2(c) when d is 2. For the sake of clarity, the initializations
of D flip-flops are omitted in this figure. As can be easily
observed, the network includes two digit-serial additions, one
digit-serial subtraction, and five D flip-flops for all the left shift
operations. In this network, at each clock cycle, two bits of
the input data x (x1x0) are applied to the network input, and at
the outputs of each digit-serial addition/subtraction operation
two bits of a constant multiplication are computed. In general,
d bits are processed at each clock cycle.

The digit-serial design of the MCM operation occupies
significantly less area when compared to its bit-parallel design
since the area of the digit-serial design is not dependent on the
bitwidth of the input data. However, the latency is determined
in terms of clock cycles as

L MC M =
⌈

(bw + N)

d

⌉
(5)

where N is the bitwidth of the input variable x , bw is the
maximum bitwidth of the constants to be implemented, and
d is less than N . Thus, (5) does not apply to bit-parallel
processing (when d = N). Note that in a bit-parallel design,
the latency of the MCM computation is only one clock cycle.
Returning to our example given in Fig. 5, suppose that x is
a 16-bit input value. Thus, to obtain the actual output of 29x
and 43x in the digit-serial network of Fig. 5, we need a total
of 11 clock cycles. As a sign extension, d × L MC M − N bits
must be padded to the input data x , which are zeros if x is an
unsigned input, or sign bits otherwise.

E. Problem Definitions

For the multiplierless realization of constant multiplications,
the fundamental operation, called A-operation in [11], is an
operation with two integer inputs and one integer output that
performs a single addition or a subtraction, and an arbitrary
number of shifts. It is defined as follows:

w = A(u, v) = |2l1 u + (−1)s2l2v|2−r (6)

where s ∈ {0, 1} is the sign, which determines if an addition
or a subtraction operation is to be performed, l1, l2 ≥ 0 are
integers denoting left shifts of the operands, and r ≥ 0 is an
integer indicating a right shift of the result.

In the MCM problem, it is supposed that the input data
is processed in parallel, and hence the shifting operation has
no cost in hardware. It is also assumed that the sign of the
constant can be adjusted at some part of the design, and the
complexity of an adder and a subtracter is equal in hardware.
Thus, only positive and odd constants are considered in the
MCM problem. Observe from (6) that, in the implementation
of an odd constant considering any two odd constants at the
inputs, one of the left shifts l1 or l2 is zero and r is zero,
or both l1 and l2 are zero and r is greater than zero. Also, it
is necessary to constrain the left shifts l1 and l2, otherwise,
there exist infinite ways of implementing a constant. In the
exact GB algorithm of [12], the number of shifts allowed is
at most bw + 1. In CSE algorithms, the left shifts are already
constrained to the bitwidth of the constant under the given
number representation. Thus, the MCM problem [11] can be
defined as follows.

Definition 1 (The MCM Problem): Given the target set
composed of positive and odd unrepeated target constants to
be implemented, T = {t1, . . . , tn} ⊂ N, find the smallest ready
set, R = {r0, r1, . . . , rm}, with T ⊂ R, under the conditions
of r0 = 1 and for all rk with 1 ≤ k ≤ m, there exist ri , r j

with 0 ≤ i, j < k and an A-operation rk = A(ri , r j).
Hence, the number of operations required to be implemented

for the MCM problem is |R| − 1 as given in [11]. Note that
the MCM problem is an NP-complete problem [22].

Contrary to the bit-parallel MCM design, as described in
Section II-D, shifts require D flip-flops in a digit-serial MCM
design. Hence, the problem of optimizing the number of
addition, subtraction, and shift operations is defined as follows.

Definition 2 (The MCM-DS Problem): Given the target set
T = {t1, . . . , tn} ⊂ N, find the ready set R = {r0, r1, . . . , rm}
such that under the same conditions on the ready set given
in Definition 1, the set of A-operations include the minimum
number of addition, subtraction, and shift operations.

In the digit-serial architecture, it is assumed that an
A-operation that generates a constant multiplication has always
a right shift equal to zero due to the excessive hardware
required for the control logic. Note that a constant multiplica-
tion is rarely realized by such an A-operation in GB algorithms
and it never occurs in CSE algorithms.

Note that, while the sharing of addition/subtraction oper-
ations reduces the number of required digit-serial addi-
tion/subtraction operations, the sharing of shift operations for
a constant multiplication also reduces the number of required
D flip-flops. Observe from Fig. 5 that the two D flip-flops
used to generate the left shift of 7x by two times can also
generate the left shift of 7x by one time without adding any
hardware cost. Moreover, as described in Section II-D, the
implementation costs of digit-serial addition, subtraction, and
left shift operations are different at the gate level. Thus, to
optimize the area of a digit-serial MCM operation, one has to
maximize the sharing of addition/subtraction and shift opera-
tions considering the implementation cost of each operation.

502 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Hence, the optimization of gate-level area problem in digit-
serial MCM operation can be defined as follows.

Definition 3 (The Optimization of Gate-Level Area Problem
in Digit-Serial MCM Operation): Given the digit size d and
the target set T = {t1, . . . , tn} ⊂ N, find the ready set R =
{r0, r1, . . . , rm} such that, under the same conditions on the
ready set given in Definition 1, the set of A-operations yields
a digit-serial MCM design using optimal area at gate-level.

F. Related Work

The exact CSE algorithms that formalize the MCM problem
as a 0–1 ILP problem were introduced in [23] and [24].
In these algorithms, the target constants are defined under
a number representation and all possible implementations of
constant multiplications are extracted from the representations
of constants. The problem reduction and model simplification
techniques for the exact CSE algorithms were presented in [9]
and [25]. Prominent CSE heuristics were proposed in [7], [8],
and [26].

The exact GB algorithms that search for a solution with the
minimum number of operations in breadth-first and depth-first
manners were introduced in [12]. Efficient GB algorithms that
includes two parts, i.e., optimal and heuristic, were introduced
in [10]–[12]. In their optimal parts, each target constant that
can be implemented with a single operation is synthesized.
If there exist unimplemented elements left in the target set,
then they switch to their heuristic parts where the required
intermediate constants are found. The RAG-n algorithm [10]
initially chooses a single unimplemented target constant with
the smallest single coefficient cost evaluated by the algorithm
of [27], and then synthesizes it with a single operation
including one(two) intermediate constant(s) that has(have) the
smallest value in its heuristic part. The Hcub algorithm [11]
selects a single intermediate constant that yields the best
cumulative benefit over all unimplemented target constants for
the implementation of each target constant. The approximate
algorithm [12] computes all possible intermediate constants
that can be synthesized with the current set of implemented
constants using a single operation and chooses the one that
leads to the largest number of synthesized target constants.

For the MCM-DS problem, the GB algorithms based on
RAG-n were introduced in [28] and [29]. The RSAG-n algo-
rithm [28] chooses the intermediate constant(s) that require
the minimum number of shifts. The RASG-n algorithm [29]
selects the intermediate constant(s) with the minimum cost
value as done in RAG-n, but if there are more than one
possible intermediate constant, it favors the one that requires
the minimum number of shifts.

For the optimization of gate-level area problem in digit-
serial MCM operation, to the best of our knowledge, there are
only the exact CSE [15] and approximate GB [16] algorithms,
which will be described briefly in the following two sections.

III. EXACT CSE ALGORITHM

The exact CSE algorithm consists of four main steps. First,
all possible implementations of constants are extracted from
the nonzero digits of the constants defined under a number

representation: binary, CSD, or MSD. Then, the implemen-
tations of constants are represented in terms of a Boolean
network. Third, the gate-level area optimization problem is
formalized as a 0–1 ILP problem with a cost function to be
minimized and a set of constraints to be satisfied. Finally, a set
of operations that yields the minimum area solution is obtained
using a generic 0–1 ILP solver. These four steps are described
in detail next.

A. Finding the Partial Terms

In the preprocessing phase, the constants to be multiplied
by a variable are converted to positive, and then made odd by
successive divisions by 2. The resulting constants are stored
without repetition in the target set T. Thus, T includes the
minimum number of necessary constants to be implemented.
The part of the algorithm where the implementations of the
target constants and partial terms are found is as follows.

1) Take an element from T, ti , find its representa-
tion(s) under the given number representation, and store
it(them) in a set called S. Form an empty set Oi , associ-
ated with ti , that will include the inputs and the amount
of left shifts at the inputs of all addition/subtraction
operations which generate ti .

2) For each representation of ti in the set S.

a) Compute all nonsymmetric partial term pairs that
cover the representation of ti .

b) In each pair, make each partial term positive and
odd, and determine its amount of left shift.

c) Add each pair to the set Oi with the amount of left
shifts of partial terms.

d) Add each partial term to T, if it does not represent
the input that the constants are multiplied with, i.e.,
denoted by 1, and is not in T.

3) Repeat Step 1 until all elements of T are considered.

Observe that the target set T only includes the target con-
stants to be implemented in the beginning of the iterative loop,
and in later iterations it is augmented with the partial terms
that are required for the implementation of target constants.
All possible implementations of an element in the target
set ti are found by decomposing the nonzero digits in the
representation of, ti , into two partial terms. As an example,
consider 25 as a target constant defined under MSD, which
has two representations 011001 and 101001. All possible
implementations of 25 are given in Fig. 6.

Observe from Fig. 6 that the last implementations of 25 on
both representations, i.e., 1 + 3 � 3, are identical, therefore
one of them can be eliminated. Also, the duplications of
implementations, such as 1 � 4 + 9 = 9 + 1 � 4, are
not listed in Fig. 6. After the partial terms required for the
implementation of 25 under MSD, i.e., 3, 7, 9, 17, and 33, are
found, they are added to the target set T without repetition
and their implementations are determined in a similar way.

B. Construction of the Boolean Network

After all possible implementations of target constants and
partial terms are found, they are represented in a network that

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 503

25=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

011001=

⎧
⎨

⎩

010000+001001= 1 4+9
001000+010001= 1 3+17
000001+011000= 1+3 3

101001=

⎧
⎨

⎩

100000+001001= 1 5−7
001000+100001= −1 3+33
000001+101000= 1+3 3

Fig. 6. Possible implementations of 25 under MSD representation.

includes only AND and OR gates. Its properties are given as
follows.

1) The primary input of the network is the input variable
to be multiplied with the constants.

2) An AND gate in the network represents an addi-
tion/subtraction operation and has two inputs.

3) An OR gate in the network represents a target constant
or a partial term and combines all its possible imple-
mentations.

4) The outputs of the network are the OR gate outputs
associated with the target constants.

The Boolean network is constructed as follows.

1) Take an element from T, ti .
2) For each pair in Oi , generate a two-input AND gate.

The inputs of the AND gate are the elements of the
pair, i.e., 1, denoting the input that the constants are
multiplied with, or the outputs of OR gates representing
target constants or partial terms in the network.

3) Generate an OR gate associated with ti , where its inputs
are the outputs of the AND gates determined in Step 2.

4) If ti is a target constant, make the output of the corre-
sponding OR gate an output of the network.

5) Repeat Step 1 until all elements in T are considered.

The network generated for the target constant 25 defined
under MSD is given in Fig. 7, where one-input OR gates for
the partial terms 7, 9, 17, and 33 are omitted and the type of
each operation is shown inside of each AND gate.

C. Formalization of the 0–1 ILP Problem

We need to include optimization variables into the network,
so that we can easily formalize the gate-level area optimization
problem as a 0–1 ILP problem. The optimization variables
are associated with two parameters that have different imple-
mentation costs at the gate level, i.e., addition/subtraction
operations and left shifts of constants (partial terms and target
constants).

For each AND gate that represents an addition/subtraction
operation in the network, we introduce an optimization vari-
able associated with the operation, i.e., opta±b, where a
and b denote the inputs of an operation, and we add this
variable to the input of the AND gate. The cost value of
this type of optimization variable in the cost function to be
minimized is determined as the gate-level implementation cost
of the digit-serial operation computed considering its type
(addition or subtraction) and the digit size (d), as described in
Section II-D.

In order to maximize the sharing of left shifts, i.e., the
D flip-flops at the gate level, for each constant c in the

Fig. 7. Network constructed for the target constant 25 under MSD.

network, we initially find the maximum amount of left shift
mlsc that the constant c has. Then, for each constant c
with mlsc greater than zero, we introduce mlsc optimization
variables representing left shifts of c from 1 to mlsc, i.e.,
optc�1, optc�2, . . . , optc�mlsc

. In the cost function to be
minimized, the cost value of this type of optimization variable
is determined as the gate-level cost of one D flip-flop, as
described in Section II-D. The inclusion of these optimization
variables into the network can be done in two ways.2

Model 1: For each AND gate in the network representing an
addition/subtraction operation, if an input signal ins is shifted
by ls > 0 times, then we include ls additional inputs standing
for the optimization variables associated with the ls left shift
of the input signal ins, i.e., optins�1, optins�2, . . . , optins�ls .

Model 2: Initially, for each constant c with mlsc greater
than zero, we generate a chain of mlsc − 1 AND gates with
two inputs, where the inputs of the first AND gate of the chain
are optc�1 and optc�2, and the inputs of the i th AND gate
are optc�i+1 and the output of the (i − 1)th (previous) AND

gate in the chain, where 2 ≤ i ≤ mlsc − 1. Then, for each
AND gate representing an addition/subtraction operation, if an
input signal ins is shifted by ls > 0 times, we add a single
input to the AND gate. This input is optins�1, if ls is equal
to 1, or otherwise, the output of the (ls − 1)th AND gate in
the chain of AND gates including the optimization variables
for the mlsins left shift of the input signal ins.

Some simplifications in the network can be also achieved.
The input variable x denoted by 1 can be eliminated from
the inputs of the AND gates, because its logic value is always
1 (i.e., it is always available). Figs. 8(a) and (b) illustrate the
networks generated for the target constant 25 under MSD after
the simplifications are done and the optimization variables are
added under Models 1 and 2, respectively.

After the optimization variables are added into the network,
the 0–1 ILP problem is generated. The cost function of the
0–1 ILP problem is constructed as the linear function of
optimization variables, where the cost value of each opti-
mization variable is determined as described previously. The
constraints of the 0–1 ILP problem are obtained by finding

2Recall that in digit-serial arithmetic, the left shift of a constant c by mlsc
times requires a total of mlsc D flip-flops and any left shift of c less than mlsc
can be obtained with this circuit, without requiring any additional hardware.

504 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Fig. 8. Networks constructed for the target constant 25 under MSD after the optimization variables are added. (a) Under Model 1. (b) Under Model 2.

the CNF formulas of each gate in the network and expressing
each clause of the CNF formulas as a linear inequality, as
described in Section II-C. The outputs of the network, i.e.,
the outputs of OR gates associated with the target constants,
are set to 1, since the implementation of target constants is
aimed.

Note that, if the cost values of the optimization variables in
the cost function to be minimized are set to 1, the 0–1 ILP
formalization of the MCM-DS problem will be obtained.

Observe from Fig. 8(a) and (b) that Model 1 generates a
0–1 ILP problem including slightly less number of variables
than Model 2 due to the chain of AND gates used in Model 2.
However, the 0–1 ILP problem constructed under Model 2 has
significantly less number of constraints than that of Model 1
since the number of inputs of an AND gate representing an
addition/subtraction operation is increased only by 1 during the
inclusion of the optimization variables denoting the left shift
of a constant in Model 2. Note that the number of optimization
variables under both models is the same.

D. Finding the Minimum Area Solution

A generic 0–1 ILP solver will search for the minimum value
of the cost function on the generated 0–1 ILP problem by sat-
isfying the constraints that represent how target constants and
partial terms are implemented. The set of operations that yields
the minimum area solution consists of the addition/subtraction
operations whose optimization variables are set to 1 in the
solution obtained by the 0–1 ILP solver.

IV. APPROXIMATE GB ALGORITHM

Note that the solution of an exact CSE algorithm described
in Section III is not the global minimum since all possible
implementations of a constant are found from its represen-
tation. Also, the optimization of gate-level area problem in

digit-serial MCM design is an NP-complete problem due to the
NP-completeness of the MCM problem. Thus, naturally, there
will be always 0–1 ILP problems generated by the exact CSE
algorithm that current 0–1 ILP solvers find difficult to handle.
Hence, the GB heuristic algorithms, which obtain a good
solution using less computational resources, are indispensable.

In our approximate algorithm called MINAS-DS, as done in
algorithms designed for the MCM problem given in Defini-
tion 1, we find the fewest number of intermediate constants
such that all the target and intermediate constants are syn-
thesized using a single operation. However, while selecting
an intermediate constant for the implementation of the not-
yet synthesized target constants in each iteration, we favor
the one among the possible intermediate constants that can
be synthesized using the least hardware and will enable us
to implement the not-yet synthesized target constants in a
smaller area with the available constants. After the set of target
and intermediate constants that realizes the MCM operation
is found, each constant is synthesized using an A-operation
that yields the minimum area in the digit-serial MCM design.
In MINAS-DS, the area of the digit-serial MCM operation is
determined as the total gate-level implementation cost of each
digit-serial addition, subtraction, and shift operation under the
digit size parameter d as described in Section II-D.

The preprocessing phase of the MINAS-DS algorithm is the
same as that of the exact CSE algorithm, and its main part and
routines are given in Figs. 9 and 10, respectively. Note that,
as done in [29], the right shift of an A-operation is assumed
to be zero in MINAS-DS.

In MINAS-DS, the ready set R = {1} is formed initially, and
then the target constants, which can be implemented with the
elements of the ready set using a single operation, are found
and moved to the ready set iteratively using the Synthesize
function presented in Fig. 10. If there exist unimplemented
constants in the target set, then in its iterative loop (lines

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 505

Fig. 9. Main part of the MINAS-DS algorithm.

3–17 of Fig. 9) an intermediate constant is added to the
ready set until there is no element left in the target set. The
MINAS-DS algorithm considers the positive and odd constants
that are not included in the current ready and target sets (lines
4 and 5) and that can be implemented with the elements of the
current ready set using a single operation (lines 6 and 7) as
possible intermediate constants. In MINAS-DS, the Compute-
Cost function (line 6) searches all A-operations that compute
the constant with the elements of the current ready set. If the
implementations of the constant are found, it determines the
cost of each operation under the digit-serial architecture as
described in Section II-D and returns its minimum implemen-
tation cost among possible operations. Otherwise, it returns
a 0 value, indicating that the constant cannot be synthesized
using an operation with the elements of the current ready set.
After a possible intermediate constant is found, it is added
into the working ready set A, and its implications on the
current target set are found by the ComputeTCost function
(lines 8 and 9). In this function, similar to ComputeCost,
the minimum digit-serial implementation costs of the target
constants that can be synthesized with the elements of the
working ready set A are determined. For each target constant
tk that cannot be implemented with the elements of A, its
cost value is determined as its maximum implementation cost
maxcost(tk), computed as if it requires a digit-serial addition
operation with digit size d and �log2tk� D flip-flops for the left
shifts. Then, the cost of the intermediate constant is determined
as its minimum implementation cost plus the costs of the
not-yet synthesized target constants (line 10). After the cost
value of each possible intermediate constant is found, the one
with the minimum cost is added to the current ready set, and
its implications on the current target set are found using the
Synthesize function (lines 14–16).

When there are no elements left in the target set, the
SynthesizeMinArea function (line 18) is applied on the final
ready set to find the set of A-operations that yields a solu-
tion with the optimal area. Note that, in each iteration of
MINAS-DS, the cost of an intermediate constant is determined
by an operation whose inputs are available in the current
ready set. However, the recently added intermediate constants
may yield better realizations of previously added constants.

Fig. 10. Routines of the MINAS-DS algorithm.

Hence, we formalize this problem as a 0–1 ILP problem,
similar to the formalization described in Section III. In this
case, the possible implementations of the constants are found
by the GenerateImp function given in Fig. 10. Note that the
size of the 0–1 ILP problem is much smaller than that of
the 0–1 ILP problem generated by the exact CSE algorithm,
and therefore finding the minimum solution of this 0–1 ILP
problem is much simpler. This is because the possible imple-
mentations of a constant are limited to the elements in the final
ready set.

506 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

V. COMPUTER-AIDED DESIGN TOOL

This section initially presents the design of a digit-serial
MCM operation under the shift-adds architecture. Then, a
generic digit-serial constant multiplier architecture adapted
from [17], which is used for an alternative digit-serial realiza-
tion of the MCM block and for comparison with the shift-adds
architecture in Section VI, is introduced. Finally, the design
process of a digit-serial FIR filter is presented. In SAFIR, all the
circuits are described in VHDL, and a commercial synthesis
tool is used to design these circuits.

A. Design of Digit-Serial MCM Operations Under the
Shift-Adds Architecture

In this case, we use the solution of a high-level algorithm on
an MCM instance that consists of A-operations implementing
the constant multiplications. Initially, to design the necessary
circuit for the implementation of left shift operations, for each
constant c in the solution of a high-level algorithm we find the
maximum amount of left shift that c has, i.e., mlsc. Then, we
describe the d-layer cascaded D flip-flop circuit, where the
number of required D flip-flops in each layer is determined
by (4), as described in Section II-D. The d-bit inputs of this
circuit are the d-bits of the input variable x if c is 1 or the
d-bit outputs of a digit-serial addition/subtraction operation
implementing cx , as described in the following.

For each addition/subtraction operation in the solution
of a high-level algorithm, we describe a digit-serial addi-
tion/subtraction operation, as presented in Section II-D. If an
input of the A-operation has a zero left shift, then the d bits of
this input are the d-bits of the input variable x if this input is 1
or the d-bit outputs of the digit-serial operation implementing
this input. The d-bit inputs of an operation with a left shift
greater than zero are taken from the corresponding outputs of
the cascaded D flip-flop circuit generated for the left shifts, as
determined in (3).

When the conversion from digit-serial to bit-parallel is
required, the d-bit outputs of the operations realizing the target
constants generated at each clock cycle need to be stored.
Note that the bitwidth of the constant multiplication cx , i.e.,
bwcx , is computed as �log2c� + N . Thus, given the digit size
d , we need �bwcx/d� cascaded D flip-flops (actually, a shift
register) in d layers (a total of d × �bwcx/d� D flip-flops)
to store the digit-serial output produced in each clock cycle.
The circuits required to store the d-bits of the output of an
operation generating cx in each clock cycle when d is 2 and
3 are shown in Figs. 11(a) and (b), respectively, where bwcx

is 8 and cx0 is the LSB and cx7 is the MSB.
Furthermore, the MCM operation generally includes con-

stants with different bitwidths. Hence, we need a control logic
to store the constant multiplications accurately. To do this, we
used a �log2 L MC M�-bit counter which increments by 1 in each
clock cycle, where L MC M is the latency of the MCM operation
and is determined as given in (5). Then, we control the storage
of the constant multiplication cx by shifting the outputs of the
operation implementing cx into the related storage block if
�bwcx/d� is less than or equal to the value of the counter.
Otherwise, the outputs of the operation are not shifted. Thus,

Fig. 11. Storage circuit for an 8-bit constant multiplication cx . (a) When d
is 2. (b) When d is 3.

at the end of the maximum clock cycle determined by L MC M ,
the outputs of the constant multiplications are available at the
outputs of the D flip-flops as illustrated in Fig. 11.

Recall that, in high-level algorithms, the constants to be real-
ized are converted to positive and odd constants beforehand.
Hence, when an output of the network is an even or negative
version of a target constant, we realize this output by shifting
the related target constant or taking its 2’s complement.

B. Design of Digit-Serial MCM Operations Using Digit-Serial
Constant Multipliers

Generic digit-serial multiplier architectures in which both
operands are time-variant can be found in [30] and [31].
However, these architectures are not flexible enough to take the
advantage of constant multiplications. On the other hand, bit-
serial constant multiplier architectures in which one operand
is constant (time-invariant) were presented in [32] and [33].
In these constant multiplier architectures, the hardware of the
design is significantly reduced with respect to the generic
digit-serial multipliers by utilizing the nonzero digits of the
constant to be multiplied by the input variable x . Moreover,
in [33], a CSE technique used to maximize the sharing of
partial products among the constant multiplications was also
proposed.

The digit-serial constant multiplier realized in SAFIR is
based on the sequential multiplication algorithm presented
in [17], which is illustrated on a simple example in Fig. 12(a).
As can be easily seen, this method can be realized by iter-
atively generating the partial product, i.e., the multiplication
of d-bit input data x with the constant c, shifting the partial
product, and adding with the previous partial product sum.
As depicted in Fig. 12(b), in our design, at each clock cycle
the d-bit input data x (xi) is applied to the select input of
the 2d − 1 multiplexer and the partial product is generated at
the multiplexer output based on the xi value. Since the constant
c is known, rather than using a multiplication operation the
inputs of the multiplexer are assigned to the integer values
of 0, c, 2c, 3c, . . . , (2d − 1)c. Thus, the bitwidth of the
multiplexer output, i.e., m, is �log2(2

d − 1)c�. The partial
product store (PPS) block is a shift register with a total of
�log2c� + N D flip-flops and its leftmost m bits are assigned
to the inputs of the addition operation. When the current partial
product (the multiplexer output) is added with the leftmost m
bits of the PPS block, the output of the adder is stored in the
leftmost D flip-flops of the PPS block and is shifted right by
d bits, filling zeros to the leftmost d bits. Note that the carry
output bit of the addition operation is always zero due to the d

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 507

Fig. 12. Digit-serial constant multiplier using the sequential multiplication
algorithm [17]. (a) Illustrative example. (b) Design architecture.

leftmost zero bits at the m-bit output of the PPS block. At the
end of �N/d� clock cycles, the constant multiplication cx is
available at the outputs of D flip-flops in the PPS block. Note
that the latency of this architecture is different from that of
the shift-adds architecture given in (5). This is because in each
clock cycle, except the last one, the d-bits of cx are obtained,
and at the last clock cycle the most significant m-bits of cx
are generated.

In this scheme, we only consider the positive and odd
constants. If an even or negative version of a constant is
required as an output, it is realized by shifting the related
constant or taking its 2’s complement.

C. Design of Digit-Serial FIR Filters

In the design of digit-serial FIR filters [Fig. 1(b) and
(c)], we initially implement the multiplier block of the
FIR filter based on the design architectures described in
Sections V-A and V-B, i.e., using digit-serial addition,
subtraction, and shift operations or using digit-serial constant
multipliers, respectively. Then, we define the necessary logic
required to compute the filter output, i.e., the adders and
registers shown in Fig. 1(b) and (c). In this part, an addition
operation is defined as a d-bit digit-serial addition/subtraction
operation depending on the sign of the constant multiplication
output. Also, a register consists of one D flip-flop on d layers,
a total of d D flip-flops.

In order to convert the digit-serial filter output to a bit-
parallel one, we again need a storage circuit. As can be
observed from Fig. 1(b), the bitwidth of the filter output, i.e.,
bwy , can be computed as �log2(

∑k−1
i=0 |hi |)� + N , where hi

denotes a filter coefficient. Thus, we need �bwy/d� cascaded
D flip-flops in d layers, a total of d × �bwy/d� D flip-flops.
Also, note that the latency to obtain the filter output in terms
of clock cycles, i.e., LFIR, is �bwy/d�. Thus, in our control
logic we require a �log2 LFIR�-bit counter.

VI. EXPERIMENTAL RESULTS

This section is divided in two parts: the first part presents
the results of high-level algorithms on MCM blocks of FIR
filters; the second part introduces the gate-level design results
on MCM blocks and FIR filters.

A. Results on High-Level Implementations

As the first experiment set, we used the FIR filter instances
given in Table I where the filter coefficients were computed

TABLE I

FIR FILTER SPECIFICATIONS

Filter Pass Stop #Tap Width

1 0.20 0.25 120 8

2 0.10 0.25 100 10

3 0.15 0.25 40 12

4 0.20 0.25 80 12

5 0.24 0.25 120 12

6 0.15 0.25 60 14

7 0.15 0.20 60 14

8 0.10 0.15 60 14

with the remez algorithm in MATLAB. In this table, pass and
stop are normalized frequencies that define the passband and
stopband, respectively, tap is the number of coefficients, and
width is the bitwidth of the filter coefficients.

Table II presents the size of 0–1 ILP problems generated
by the exact CSE algorithm under CSD and MSD using
Models 1 and 2 described in Section III-C for bit-serial design
of multiplier blocks of the FIR filters. In this table, vars, cons,
and ovars stand for the number of variables, constraints, and
optimization variables, respectively. Also, CPU denotes the
required CPU time in seconds of the 0–1 ILP solver SCIP

2.0 [34] to find the minimum solution on a PC with Intel
Xeon at 2.33 GHz and 4 GB of memory.

Observe from Table II that the exact CSE algorithm gener-
ates a 0–1 ILP problem with higher complexity under MSD
representation with respect to CSD. This is simply because a
constant may have more than one possible representation under
MSD and one of them is its CSD representation. Moreover,
Model 2 generates a 0–1 ILP problem including significantly
less number of constraints with a slight increase in the number
of variables when compared to Model 1. Since the size of a
0–1 ILP problem has a significant impact on the runtime of the
0–1 ILP solver, the minimum solution is generally obtained in
less time using Model 2.

Table III presents the results of the algorithms of [9] and
[12] designed for the MCM problem and the algorithms
designed for the optimization of gate-level area in digit-serial
MCM design when d is equal to 1. In this table, oper and shift
stand for the number of operations and shifts, respectively,
and icost denotes the implementation cost of bit-serial MCM
designs. The implementation costs of an FA, a D flip-flop, and
an inverter were taken as 6, 52, and 90, respectively, the area
(in μm2) of these components in UMCLogic 0.18 μm Generic
II library.

Observe from Table III that the high-level algorithms
designed for the optimization of area lead to digit-serial MCM
operations that require less hardware than those obtained by
the algorithms designed for the MCM problem. Since the
exact CSE algorithm considers alternative implementations of
a constant under MSD representation when compared to CSD,
it finds better solutions in terms of the implementation cost
under MSD. Moreover, MINAS-DS gives better solutions than
the exact CSE algorithm, since it considers more possible
implementations of a constant yielding MCM designs with
less number of operations. We note that the total runtime of
MINAS-DS on these instances is 9.79 s, which is smaller than
those of the exact CSE algorithms given in Table II.

508 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

TABLE II

SIZE OF 0–1 ILP PROBLEMS AND RUNTIME OF THE 0–1 ILP SOLVER [34] ON MCM BLOCKS OF THE FIR FILTERS IN TABLE I FOR d = 1

Exact CSE - CSD Exact CSE - MSD
Fil. Model 1 Model 2 Model 1 Model 2

vars cons ovars CPU vars cons ovars CPU vars cons ovars CPU vars cons ovars CPU

1 163 423 94 0.01 186 322 94 0.01 367 995 195 0.24 394 724 195 0.06
2 462 1425 251 0.21 509 969 251 0.11 838 2679 440 0.41 897 1780 440 0.15
3 636 2041 343 6.08 704 1372 343 1.44 1599 5440 822 4.30 1690 3634 822 3.72
4 982 3321 512 2.41 1055 2110 512 2.93 2332 8041 1189 17.33 2432 5184 1189 9.13
5 843 2789 463 0.94 936 1767 463 0.27 1556 5265 820 0.17 1674 3288 820 0.13
6 1416 5100 734 9.15 1514 3208 734 16.65 4807 17 573 2442 77.18 4969 11 658 2442 35.85
7 1514 5347 807 24.34 1654 3452 807 9.26 2506 8874 1298 29.51 2653 5746 1298 13.00
8 1897 7180 995 42.32 2053 4397 995 18.34 4223 16 369 2149 71.09 4430 10 056 2149 44.21

Tot. 7913 27 626 4199 85.46 8611 17 597 4199 49.01 18 228 65 236 9355 200.23 19 139 42 070 9355 106.25

TABLE III

SUMMARY OF RESULTS OF ALGORITHMS ON MCM BLOCKS OF THE FIR FILTERS IN TABLE I FOR d = 1

Optimization of the number of operations Optimization of area in digit-serial MCM design

Fil. Exact CSE - CSD [9] Exact CSE - MSD [9] Exact GB [12] Exact CSE - CSD Exact CSE - MSD MINAS-DS

oper shift icost oper shift icost oper shift icost oper shift icost oper shift icost oper shift icost

1 10 14 2184 10 14 2184 10 13 2120 11 7 1974 11 7 1950 10 4 1640

2 18 27 4020 18 27 4020 17 30 4016 19 16 3584 20 9 3332 17 9 2894

3 16 40 4412 16 40 4412 15 35 3992 20 18 3842 19 15 3502 15 14 2876

4 29 37 6120 29 37 6120 28 35 5874 31 20 5520 32 12 5240 28 8 4398

5 34 49 7502 34 44 7236 34 43 7136 36 18 6138 35 16 5856 34 12 5488

6 23 44 5626 22 35 5004 20 37 4806 25 29 5130 24 23 4664 20 22 4020

7 35 56 7990 34 55 7802 29 40 6264 39 22 6814 38 18 6416 29 25 5478

8 35 62 8338 33 56 7718 28 43 6302 39 25 6958 35 23 6250 28 29 5544

Tot. 200 329 46 192 196 308 44 496 181 276 40 510 220 155 39 960 214 123 37 210 181 123 32 338

TABLE IV

FIR FILTER SPECIFICATIONS, SIZE OF 0–1 ILP PROBLEMS, AND RUNTIME OF THE 0–1 ILP SOLVER [34]

Filter Exact CSE - CSD

Filter specifications Model 1 Model 2

pass stop tap width vars cons ovars CPU vars cons ovars CPU

1 0.10 0.15 200 16 8854 35 566 4559 1324 9359 20 626 4559 274

2 0.10 0.15 240 16 9788 39 721 5057 6970 10 358 23 057 5057 1839

3 0.10 0.25 180 16 10 847 45 002 5555 28 188 11 352 26 772 5555 5791

4 0.10 0.25 200 16 15 041 63 532 7715 19 231 15 737 36 699 7715 3849

5 0.10 0.20 240 16 9868 40 646 5091 32 616 10 410 23 796 5091 4970

6 0.10 0.20 300 16 9462 38 575 4890 95 402 10 014 22 563 4890 13 088

7 0.15 0.25 200 16 5786 22 795 2978 132 6118 13 486 2978 66

8 0.15 0.25 240 16 5947 22 875 3099 2344 6351 13 494 3099 312

9 0.20 0.25 240 16 4930 18 862 2593 399 5308 10 835 2593 234

10 0.20 0.25 300 16 3492 12 320 1820 15 3714 7542 1820 6

Total 84 015 339 894 43 357 186 621 88 721 198 870 43 357 30 429

As the second experiment set, we used the FIR filters given
in Table IV to find out the limitations of the exact CSE
algorithm introduced in this paper. These filters were chosen
since they include a large number of coefficients defined
under 16 bits. This table also presents the size of 0–1 ILP
problems generated by the exact CSE algorithm under CSD
using Models 1 and 2 when d is 1 and the runtime of the
0–1 ILP solver [34]. The results of the exact CSE algorithm
under MSD are not given because of the space limitations.
However, it generates larger size 0–1 ILP problems, and
the 0–1 ILP solver [34] takes longer runtime to obtain the
minimum solution when compared to those obtained under
CSD. Observe from Tables II and IV that the size of a
0–1 ILP problem and, consequently, the runtime of the
0–1 ILP solver tend to increase as the bitwidth and the number

of constants increase. This experiment shows that, although
Model 2 reduces the number of constraints in the 0–1 ILP
problem and the runtime of the 0–1 ILP solver with respect to
Model 1, there are instances where minimum solutions cannot
be obtained easily by the 0–1 ILP solvers.

Table V presents the results of high-level algorithms on
FIR filters, where mul stands for the number of required
bit-serial constant multipliers, which is actually the number
of unrepeated positive and odd filter coefficients. Observe
that MINAS-DS obtains the best solution in terms of the
implementation cost on each instance among these algorithms.
Also, the algorithms of [9] and [12] designed for the MCM
problem require much less computational effort since the
exact CSE algorithm [9] generates a 0–1 ILP problem with
much less complexity and the exact GB algorithm [12] does

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 509

TABLE V

SUMMARY OF RESULTS OF ALGORITHMS ON MCM BLOCKS OF THE FIR FILTERS IN TABLE IV FOR d = 1

Optimization of the number of operations Optimization of area in digit-serial MCM design

Filter Exact CSE - CSD [9] Exact GB [12] Exact CSE - CSD MINAS-DS mul

oper shift icost CPU oper shift icost CPU oper shift icost oper shift icost CPU

1 83 156 20 126 0.07 79 130 18 164 1.69 96 41 16 028 79 31 12 908 317.62 78

2 88 144 20 254 0.26 83 126 18 554 1.83 97 49 16 604 83 32 13 540 758.39 82

3 56 118 14 280 5.20 47 93 11 642 1.46 62 36 10 814 47 34 8508 401.69 46

4 94 127 20 252 0.16 87 111 18 348 1.61 101 54 17 408 87 43 14 668 3.65 87

5 66 117 15 690 0.20 63 115 15 130 1.34 78 37 13 198 63 26 10 394 549.34 62

6 74 124 17 172 1.56 68 104 15 220 3.84 82 44 14 154 68 29 11272 68.36 67

7 65 105 14 882 0.08 59 92 13 270 0.73 74 32 12 364 59 24 9740 1.68 59

8 73 116 16 626 0.07 69 99 15 126 1.44 76 49 13 538 69 23 11 048 657.78 68

9 80 125 18 076 0.01 78 92 16 052 0.83 89 33 14 606 78 32 12 818 4.60 78

10 84 114 18 102 0.01 81 94 16 654 0.87 89 30 14 444 81 21 12 660 4.84 81

Total 763 1246 175 460 7.62 714 1056 158 160 15.64 844 405 143 158 714 295 117 556 2767.95 708

1 2 3 4 5 6 7 8 9 10

30

40

50

60

70

80

90

100

110

120

Summary of Area Results on Filter Instances

Filter instance

A
re

a
(m

m
2)

Cons. Mult. [17]
Exact CSE − CSD [9]
Exact GB [12]
Exact CSE − CSD
MINAS−DS

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Summary of Delay Results on Filter Instances

Filter instance

D
el

ay
 (n

s)

Cons. Mult. [17]
Exact CSE − CSD [9]
Exact GB [12]
Exact CSE − CSD
MINAS−DS

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Summary of Power Dissipation Results on Filter Instances

Filter instance

P
ow

er
 d

is
si

pa
tio

n
(n

W
)

Cons. Mult. [17]
Exact CSE − CSD [9]
Exact GB [12]
Exact CSE − CSD
MINAS−DS

(a) (b) (c)

Fig. 13. Summary of gate-level results of MCM blocks of the FIR filters in Table IV for d = 1. (a) Area. (b) Delay. (c) Power dissipation.

not consider all possible realizations of a constant when it
finds an operation implementing the constant as opposed to
MINAS-DS.

B. Results on Gate-Level Implementations

In this second part, we present the gate-level results of
digit-serial MCM operations and FIR filters implemented with
the Synopsys design compiler using UMCLogic 0.18 μm
Generic II library, where the wire load model is defined by
the library based on the number of gates in the design under
the enclosed mode. Fig. 13 presents the results of the bit-serial
MCM designs obtained by the algorithms in Table V, and also
the results of MCM blocks designed using bit-serial constant
multipliers (cons. mult.) [17]. The bitwidth of the filter input
(N) was taken as 16, the bit-serial MCM operations were
synthesized under the minimum area design strategy during the
technology mapping, and the power dissipation values were
obtained at the maximum clock frequency of the circuits.

Observe from Fig. 13(a) that MINAS-DS yields bit-serial
MCM designs with the least complexity among the high-
level algorithms on each instance. However, the delay of an
MCM design obtained by MINAS-DS is increased slightly. We
also note that the bit-serial MCM operations obtained by the
algorithms [9], [12] designed for the MCM problem consume
more power on average than those obtained by the exact CSE
and MINAS-DS algorithms introduced in this paper. Moreover,
the shift-adds design of a bit-serial MCM block achieves major
area improvements at the gate level when compared to designs
realized with bit-serial constant multipliers.

TABLE VI

GATE-LEVEL RESULTS ON DIGIT-SERIAL MCM BLOCK OF FILTER 4

Algorithm d 1 2 4 8

area (mm2) 83.6 88.3 96.1 114.1
delay (ns) 4.14 4.26 5.26 4.67

Exact CSE latency (ns) 132.48 68.16 42.08 18.68
CSD power (nW) 164 197 237 316

energy (a J) 21 727 13 428 9973 5903
area (mm2) 82.8 87 94.1 111.5

delay (ns) 4.47 4.9 5.65 7.33
MINAS-DS latency (ns) 143.04 78.4 45.2 29.32

power (nW) 165 196 235 318
energy (a J) 23 602 15 366 10 622 9324

Among the filters in Table IV, we selected Filter 4 to
further analyze our algorithms since the multiplier block of this
filter requires the largest number of addition and subtraction
operations as shown in Table V. Table VI presents the gate-
level results on its multiplier block designed based on the
solutions of exact CSE and MINAS-DS algorithms introduced
in this paper when d is 1, 2, 4, and 8. We note that N
was taken as 16 and the maximum bitwidth of the filter
coefficients (bw) is 16. Thus, according to (5), the number
of clock cycles required to obtain the results of all constant
multiplications is 32, 16, 8, and 4 when d is equal to 1, 2,
4, and 8, respectively. This table also presents the latency in
ns computed as clockcycles × delay and the energy in a J
(10−18 W.s) determined as clockcycles × delay × power .

As can be observed from Table VI, as the digit size
is decreased, the area, delay, and power dissipation values
generally decrease. However, the latency and energy consump-
tion increase in this case. Also, observe that, although the

510 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

TABLE VII

GATE-LEVEL RESULTS ON COMPLETE DESIGN OF FILTER 4

Arch. DS d 1 2 4 8 16

area (mm2) 201.7 214.8 228.9 281.1 322.9
delay (ns) 5.45 6.16 6.94 7.70 9.90

MA latency (ns) 190.75 110.88 62.46 38.50 9.90
power (nW) 503 593 694 923 1060

shift-
energy (a J) 95 947 65 752 43 347 35 536 10 494

adds area (mm2) 220.6 222.8 233.2 291.1 490.8
delay (ns) 1.78 2.21 3.04 3.89 3.88

MCF latency (ns) 62.30 39.78 27.36 19.45 3.88
power (mW) 271 258 224 241 464
energy (pJ) 27 412 17 145 10 287 5465 1901
area (mm2) 252.0 264.8 269.7 377.9 439.0

delay (ns) 3.97 5.79 6.92 12.00 9.00
MA latency (ns) 138.95 104.22 62.28 60.00 9.00

power (nW) 619 706 779 1023 1220
cons. energy (a J) 86 010 73 579 48 516 61 380 10 980
mult. area (mm2) 299.6 316.4 310.4 418.8 612.7

delay (ns) 1.48 1.81 2.39 3.98 5.20
MCF latency (ns) 51.80 32.58 21.51 19.90 5.20

power (mW) 440 431 376 281 490
energy (pJ) 22 792 14 042 8088 5592 2548

solutions of MINAS-DS lead to less complex digit-serial MCM
designs, since its designs have greater delay, they yield more
latency and energy consumption with respect to MCM designs
obtained using the solutions of the exact CSE algorithm. We
note that, since the MCM designs include the control and
storage logic required to convert digit-serial outputs to bit-
parallel, the area ratio on different digit sizes is not equal
to the digit size ratio. For example, the area ratio on MCM
operations obtained by the solutions of MINAS-DS when d is
8 and 1 is 1.34.

The gate-level results of digit-serial designs of the complete
Filter 4 are given in Table VII. The filter was designed
using two architectures: shift-adds (shift-adds) and generic
constant multipliers (cons. mult.). When d is 1, 2, 4, and
8, the multiplier block of the FIR filter is designed by
the solution of MINAS-DS under the shift-adds architecture
and it is implemented using digit-serial constant multipliers
described in Section V-B under the cons. mult. architecture.
For bit-parallel processing (d = 16), the multiplier block is
designed using addition and subtraction operations obtained
by the solution of the exact GB algorithm [12] under the shift-
adds architecture and it is designed by the logic synthesis tool
after the multiplication of each filter coefficient by the filter
input is described as constant multiplications in VHDL under
the cons. mult. architecture. The FIR filters were synthesized
under two design strategies (DS) using the logic synthesis tool,
i.e., the minimum area (MA) and the minimum area under the
maximum clock frequency (MCF) constraint. In the former,
there was no constraint on the clock frequency. In the latter, we
found the MCF that can be applied to the filter iteratively in a
binary search manner with the use of a design script in SAFIR.
Note that the bitwidth of the filter output is 35, and the number
of clock cycles required to obtain the filter output is 35, 18,
9, and 5 when d is equal to 1, 2, 4, and 8, respectively. In bit-
parallel designs, the filter output is obtained in 1 clock cycle.

As can be easily observed from Table VII, the design of
FIR filters under the shift-adds architecture leads to significant
savings in area and power dissipation with respect to those
that include constant multipliers. The area reduction obtained

under the shift-adds architecture with respect to the cons. mult.
architecture reaches up to 34.1% and 43.6% with the MA
and MCF DS, respectively, when d is equal to 8. Moreover,
using the MCF design strategy, the delay of the designs
can be reduced by accepting an increase in area and power
dissipation. This design strategy diminishes the disadvantages
of digit-serial designs on latency significantly.

VII. CONCLUSION

In this paper, we introduced the 0–1 ILP formalization
for designing digit-serial MCM operation with optimal area
at the gate level by considering the implementation costs of
digit-serial addition, subtraction, and shift operations. Since
there are still instances with which the exact CSE algo-
rithm cannot cope, we also proposed an approximate GB
algorithm that finds the best partial products in each iter-
ation which yield the optimal gate-level area in digit-serial
MCM design. This paper also introduced the design archi-
tectures for the digit-serial MCM operation and a CAD tool
for the realization of digit-serial MCM operations and FIR
filters.

The experimental results indicate that the complexity of
digit-serial MCM designs can be further reduced using the
high-level optimization algorithms proposed in this paper. It
was shown that the realization of digit-serial FIR filters under
the shift-adds architecture yields significant area reduction
when compared to the filter designs whose multiplier blocks
are implemented using digit-serial constant multipliers. It is
observed that a designer can find the circuit that fits best in
an application by changing the digit size.

REFERENCES

[1] L. Wanhammar, DSP Integrated Circuits. New York: Academic, 1999.
[2] C. Wallace, “A suggestion for a fast multiplier,” IEEE Trans. Electron.

Comput., vol. 13, no. 1, pp. 14–17, Feb. 1964.
[3] W. Gallagher and E. Swartzlander, “High radix booth multipliers using

reduced area adder trees,” in Proc. Asilomar Conf. Signals, Syst. Com-
put., vol. 1. Pacific Grove, CA, Oct.–Nov. 1994, pp. 545–549.

[4] J. McClellan, T. Parks, and L. Rabiner, “A computer program for
designing optimum FIR linear phase digital filters,” IEEE Trans. Audio
Electroacoust., vol. 21, no. 6, pp. 506–526, Dec. 1973.

[5] H. Nguyen and A. Chatterjee, “Number-splitting with shift-and-add
decomposition for power and hardware optimization in linear DSP
synthesis,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8,
no. 4, pp. 419–424, Aug. 2000.

[6] M. Ercegovac and T. Lang, Digital Arithmetic. San Mateo, CA: Morgan
Kaufmann, 2003.

[7] R. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 43, no. 10,
pp. 677–688, Oct. 1996.

[8] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on minimal
signed digit representation,” in Proc. DAC, 2001, pp. 468–473.

[9] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and approximate
algorithms for the optimization of area and delay in multiple constant
multiplications,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 6, pp. 1013–1026, Jun. 2008.

[10] A. Dempster and M. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 42,
no. 9, pp. 569–577, Sep. 1995.

[11] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multi-
plication,” ACM Trans. Algor., vol. 3, no. 2, pp. 1–39, May 2007.

[12] L. Aksoy, E. Gunes, and P. Flores, “Search algorithms for the multiple
constant multiplications problem: Exact and approximate,” J. Micro-
process. Microsyst., vol. 34, no. 5, pp. 151–162, Aug. 2010.

[13] R. Hartley and K. Parhi, Digit-Serial Computation. Norwell, MA:
Kluwer, 1995.

AKSOY et al.: DESIGN OF DIGIT-SERIAL FIR FILTERS 511

[14] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of area
in digital FIR filters using gate-level metrics,” in Proc. DAC, 2007, pp.
420–423.

[15] L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro, “Optimization
of area in digit-serial multiple constant multiplications at gate-level,” in
Proc. ISCAS, 2011, pp. 2737–2740.

[16] L. Aksoy, C. Lazzari, E. Costa, P. Flores, and J. Monteiro, “Efficient
shift-adds design of digit-serial multiple constant multiplications,” in
Proc. Great Lakes Symp. VLSI, 2011, pp. 61–66.

[17] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs.
New York: Oxford Univ. Press, 2000.

[18] A. Avizienis, “Signed-digit number representations for fast parallel
arithmetic,” IRE Trans. Electron. Comput., vol. 10, no. 3, pp. 389–400,
Sep. 1961.

[19] T. Larrabee, “Test pattern generation using Boolean satisfiability,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 1, pp.
4–15, Jan. 1992.

[20] P. Barth, “A Davis-Putnam based enumeration algorithm for linear
pseudo-Boolean optimization,” Max-Planck-Institut für Informatik, Saar-
brücken, Germany, Tech. Rep. MPI-I-95-2-003, 1995.

[21] R. Hartley and P. Corbett, “Digit-serial processing techniques,” IEEE
Trans. Circuits Syst., vol. 37, no. 6, pp. 707–719, Jun. 1990.

[22] P. Cappello and K. Steiglitz, “Some complexity issues in digital signal
processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 5,
pp. 1037–1041, Oct. 1984.

[23] P. Flores, J. Monteiro, and E. Costa, “An exact algorithm for the maximal
sharing of partial terms in multiple constant multiplications,” in Proc.
Int. Conf. Comput.-Aided Design, Nov. 2005, pp. 13–16.

[24] O. Gustafsson and L. Wanhammar, “ILP modelling of the common
subexpression sharing problem,” in Proc. ICECS, 2002, pp. 1171–1174.

[25] Y.-H. Ho, C.-U. Lei, H.-K. Kwan, and N. Wong, “Global optimization of
common subexpressions for multiplierless synthesis of multiple constant
multiplications,” in Proc. ASPDAC, 2008, pp. 119–124.

[26] M. Potkonjak, M. Srivastava, and A. Chandrakasan, “Multiple constant
multiplications: Efficient and versatile framework and algorithms for
exploring common subexpression elimination,” IEEE Trans. Comput-
Aided Design Integr. Circuits Syst., vol. 15, no. 2, pp. 151–165, Feb.
1996.

[27] A. Dempster and M. Macleod, “Constant integer multiplication using
minimum adders,” IEE Proc.-Circuits, Devices, Syst., vol. 141, no. 5,
pp. 407–413, Oct. 1994.

[28] K. Johansson, O. Gustafsson, A. Dempster, and L. Wanhammar, “Algo-
rithm to reduce the number of shifts and additions in multiplier blocks
using serial arithmetic,” in Proc. IEEE Medit. Electrotech. Conf., May
2004, pp. 197–200.

[29] K. Johansson, O. Gustafsson, and L. Wanhammar, “Multiple constant
multiplication for digit-serial implementation of low power FIR filters,”
WSEAS Trans. Circuits Syst., vol. 5, no. 7, pp. 1001–1008, 2006.

[30] Y.-N. Chang, J. Satyanarayana, and K. Parhi, “Low-power digit-serial
multipliers,” in Proc. ISCAS, 1997, pp. 2164–2167.

[31] H. Suzuki, Y.-N. Chang, and K. Parhi, “Performance tradeoffs in digit-
serial DSP systems,” in Proc. Asilomar Conf. Signals, Syst. Comput.,
1998, pp. 1225–1229.

[32] K. Parhi, “A systematic approach for design of digit-serial signal
processing architectures,” IEEE Trans. Circuits Syst., vol. 38, no. 4, pp.
358–375, Apr. 1991.

[33] F. Dittmann, B. Kleinjohann, and A. Rettberg, “Efficient bit-serial
constant multiplication for FPGAs,” in Proc. NASA Symp. VLSI Design,
2003, pp. 1–6.

[34] Solving Constraint Integer Programs. (2012) [Online]. Available:
http://scip.zib.de/

Levent Aksoy (M’09) received the M.S. degree in electronics and commu-
nication engineering and the Ph.D. degree in electronics engineering from
Istanbul Technical University (ITU), Istanbul, Turkey, in 2003 and 2009,
respectively.

He was a Research Assistant with the Division of Circuits and Systems,
Faculty of Electrical and Electronics Engineering, ITU, from 2001 to 2009.
Since November 2009, he has been with the Algorithms for Optimization
and Simulation Research Unit, Instituto de Engenharia de Sistemas e Com-
putadores, Lisbon, Portugal, where he is currently a Post-Doctoral Researcher.
His current research interests include satisfiability algorithms, pseudo-Boolean
optimization, and electronic design automation problems.

Cristiano Lazzari (M’08) received the M.S. degree in computer science from
the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, in 2003,
and the Ph.D. degree in microelectronics from the Universidade Federal do Rio
Grande do Sul and the Institut National Polytechnique de Grenoble, Toulouse,
France, in 2007.

He is a Researcher with the Algorithms for Optimization and Simulation
Research Unit, Instituto de Engenharia de Sistemas e Computadores, Lisbon,
Portugal. His current research interests include developing techniques for
design and test of NoCs and developing algorithms for logic synthesis and
technology mapping of multivalued circuits.

Eduardo Costa (M’10) received the five-year engineering degree in electrical
engineering from the University of Pernambuco, Recife, Brazil, in 1988, the
M.Sc. degree in electrical engineering from the Federal University of Paraiba,
Campina Grande, Brazil, in 1991, and the Ph.D. degree in computer science
from the Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, in
2002. Part of his doctoral work was carried out at the Instituto de Engenharia
de Sistemas e Computadores, Lisbon, Portugal.

He is currently a Professor with the Departments of Electrical Engineering
and Informatics, Catholic University of Pelotas (UCPel), Pelotas, Brazil. He
is associated with the Master Degree Program in Computer Science, UCPel,
as a Professor and Researcher. His current research interests include VLSI
architectures and low-power designs.

Paulo Flores (M’92) received the five-year engineering, M.Sc., and Ph.D.
degrees in electrical and computer engineering from the Instituto Superior
Técnico, Technical University of Lisbon, Lisbon, Portugal, in 1989, 1993,
and 2001, respectively.

He has been with the Instituto Superior Técnico since 1990, where he
is currently an Assistant Professor with the Department of Electrical and
Computer Engineering. He has also been with the Instituto de Engenharia
de Sistemas e Computadores, Lisbon, Portugal, since 1988, where he is
currently a Senior Researcher. His current research interests include embedded
systems, test and verification of digital systems, and computer algorithms, with
particular emphasis on optimization of hardware and software problems using
satisfiability models.

Dr. Flores is a member of the IEEE Circuits and Systems Society.

José Monteiro (SM’10) received the five-year engineering and M.Sc. degrees
in electrical and computer engineering from the Instituto Superior Técnico,
Technical University of Lisbon, Lisbon, Portugal, and the Ph.D. degree in
electrical engineering and computer science from the Massachusetts Institute
of Technology, Cambridge, in 1989, 1992, and 1996, respectively.

He has been with the Instituto Superior Técnico since 1996, where he is
currently an Associate Professor with the Department of Computer Science
and Engineering. He is also the Director of the Instituto de Engenharia
de Sistemas e Computadores, Lisbon. His current research interests include
computer architecture and computer-aided design for VLSI circuits, with
emphasis on synthesis, power analysis, and low-power and design validation.

Dr. Monteiro was a recipient of the Best Paper Award from the IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

in 1995. He has served on the technical program committees of several
conferences and workshops.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

