
In NORCHIP - The Nordic Microelectronics event (NORCHIP), pages 41-46, November 16-17, 2008.

An Exact Breadth-First Search Algorithm for the
Multiple Constant Multiplications Problem

Levent Aksoy Ece Olcay Gunes Paulo Flores
Istanbul Technical University Istanbul Technical University IST/INESC-ID, TULisbon

Istanbul, Turkey Istanbul, Turkey Lisbon, Portugal
aksoyl@itu.edu.tr ece.gunes@itu.edu.tr pff@inesc-id.pt

Abstract—This paper addresses the multiplication of one data
sample with multiple constants using addition/subtraction and
shift operations, i.e., the multiple constant multiplications (MCM)
problem. The MCM problem finds itself and its variants in many
applications, such as digital finite impulse response (FIR) filters,
linear signal transforms, and computer arithmetic. Although
many efficient algorithms have been proposed to implement
the MCM using the fewest number of operations, due to the
NP-hardness of the problem, they have been heuristics, i.e.,
they cannot guarantee the minimum solution. In this work, we
propose an exact algorithm based on the breadth-first search
that finds the minimum number of operations solution of mid-
size MCM instances in a reasonable time. The proposed exact
algorithm has been tested on a set of instances including FIR
filter and randomly generated instances, and compared with the
previously proposed efficient heuristics. It is observed from the
experimental results that, even though the previously proposed
heuristics obtain similar results with the minimum number of
operations solutions, there are instances for which the exact
algorithm finds better solutions than the prominent heuristics.

I. INTRODUCTION

In several computationally intensive operations, such as
Finite Impulse Response (FIR) filters as illustrated in Figure 1
and fast Fourier transforms, the same input is multiplied by a
set of coefficients, an operation known as Multiple Constant
Multiplications (MCM). These operations are typical in digital
signal processing applications and hardwired dedicated archi-
tectures are the best option for maximum performance and
minimum power consumption.

Constant coefficients allow for a great simplification of
the multipliers, which can be reduced to a set of shift-
adds [1]. When the same input is to be multiplied by a set of
constant coefficients, significant reductions in hardware, and
consequently power, can be also obtained by sharing the partial
products of the input among the set of multiplications. Since
shifts are free in terms of hardware, the MCM problem is
defined as finding the minimum number of addition/subtrac-
tion operations to implement the constant multiplications. The
MCM problem has been proven to be NP-hard in [2].

As an example of an MCM problem, suppose the multiple
constant multiplications of 11 and 13 by the input x as given

x
H4

+ D

×
H3

+ D

×
H2

+ D

×
H1

+ D

×
H0

+

×
H5

D

×

y

Fig. 1. Transposed form of a hardwired FIR filter implementation.

�� �� ��

������

� �

��

�

���

���

���

�

�

��

�

���

���

���

�

�

�� ��

��

�

���

���

���

�

�

�

���

���

�

��

(a) (b) (c)

Fig. 2. (a) Multiple constant multiplications; Shift-adds implementations:
(b) without partial product sharing; (c) with partial product sharing.

in Figure 2(a). The shift-adds implementations of constant
multiplications are presented in Figure 2(b)-(c). Observe that
while the multiplierless implementation without partial prod-
uct sharing requires 4 operations, Figure 2(b), the sharing of
partial product 9x in both multiplications reduces the number
of operations to 3, Figure 2(c).

In the last decade, many efficient algorithms have been
proposed for the optimization of the number of operations in
MCM. These methods range from the Common Subexpression
Elimination (CSE) algorithms [3], [4] to the graph-based
coefficient synthesis techniques [5], [6]. The CSE algorithms
basically find common non-zero digit patterns on the represen-
tations of the constants. For the example given in Figure 2,
the sharing of partial product 9x is possible, when constants
in multiplications 11x and 13x are defined in binary, i.e.,
11x = (1011)binx and 13x = (1101)binx respectively, and
the common partial product, i.e., (1001)binx = x + 8x = 9x,
is identified in both multiplications. The exact CSE algorithms
of [7], [8] formalize the MCM problem as a 0-1 integer
linear programming problem and find the minimum number
of operations solution of the MCM problem by maximizing
the partial product sharing. However, the solution of the exact
CSE algorithm depends on the number representation.

It is argued in [9] that being limited to a number repre-
sentation does not yield the minimum number of operations
solutions. The algorithm of [9] extends the exact CSE algo-
rithm of [8] to handle the constants under general number
representation increasing the search space and finds more
promising solutions than those of the exact CSE algorithm.
However, the algorithm of [9] does not consider the whole
search space as graph-based algorithms, since it has limitations
on the implementation of constants to guarantee the solution
to be represented in a directed acyclic graph.

The graph-based algorithms are not restricted to any num-
ber representation and synthesize the constants iteratively by

1-4244-2493-1/08/$20.00 ©2008 IEEE 41

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

building a graph. Although the graph-based algorithms give
better results than CSE algorithms as shown in [6], they are
based on heuristics and provide no indication on how far
from the minimum their solutions are. In a recent paper [10],
the lower bound on the number of required operations to
implement the MCM was investigated. The solution found by
a heuristic algorithm is determined as minimum, if the number
of operations in the found solution is equal to the lower bound.
To the best of our knowledge, there is no exact graph-based
algorithm proposed for the MCM problem.

In this paper, we introduce an exact graph-based algorithm,
called BFSmcm, that searches the minimum number of opera-
tions solution of the MCM problem in a breadth-first manner.
We present the worst-case complexity of the exact algorithm
and show that it can be applied on mid-size MCM instances.
Although it is observed from the experimental results that
the previously proposed graph-based algorithms find solutions
very close to the exact solutions which shows for the first
time the quality of heuristics used in these algorithms, we also
note that there are instances for which BFSmcm finds better
solutions than the prominent graph-based heuristics.

The rest of the paper is organized as follows: Section II
gives the background concepts and Section III describes the
exact algorithm. Experimental results are presented in Sec-
tion IV and finally, the conclusions and directions for the
future work are given in Section V.

II. BACKGROUND

In this section, initially, we give the main concepts and the
problem definition, and then, we present an overview of the
graph-based algorithms.

A. Definitions

In the MCM problem, the main operation, called A-
operation in [6], is an operation with two integer inputs
and one integer output that performs a single addition or a
subtraction, and an arbitrary number of shifts. It is defined as

w = A(u, v) = |(u � l1) + (−1)s(v � l2)| � r (1)

= |2l1u + (−1)s2l2v|2−r

where l1, l2 ≥ 0 are integers denoting left shifts, r ≥ 0 is an
integer indicating the right shift, and s ∈ {0, 1} is the sign that
denotes the addition/subtraction operation to be performed.
The operation that implements a constant can be represented
in a graph where the vertices are labeled with constants and
the edges are labeled with the sign and shifts as illustrated in
Figure 3. In the MCM problem, the complexity of an adder
and a subtracter is assumed to be equal in hardware. It is also
assumed that the sign of the constant can be adjusted at some
part of the design and the shifting operation has no cost, since
shifts can be implemented with only wires in hardware. Thus,
in the MCM problem, only positive and odd constants are
considered. Observe from (1) that in the implementation of
an odd constant, considering odd constants at the inputs, one
of the left shifts, l1 or l2, is zero and r is zero, or l1 and l2
are zero and r is greater than zero. In finding an operation to
implement a constant, it is also necessary to constrain the left

�

�

�

�
��

��� 	

�

��

�
��

� � �
��
� � ��� 	

�

��
� �

��

Fig. 3. The representation of the A-operation in a graph.

shifts, l1 and l2, otherwise a constant can be implemented in
infinite ways. As shown in [5], it is sufficient to limit the shifts
by the maximum bit-width of the constants to be implemented,
i.e., bw, since allowing larger shifts than bw does not improve
the solutions obtained with the former limits. In BFSmcm, as
in the algorithm of [6], the shifts are allowed to be at most
bw+1. Thus, the MCM problem can be also defined as follows.

Definition 1: THE MCM PROBLEM - Given the target set,
T = {t1, . . . , tn} ⊂ N, including the positive and odd unre-
peated target constants to be implemented, find the smallest
ready set R = {r0, r1, . . . , rm} with T ⊂ R such that r0 = 1
and for all rk with 1 ≤ k ≤ m, there exist ri, rj with
0 ≤ i, j < k and an operation rk = A(ri, rj).

Hence, the number of operations required to implement the
MCM is |R| − 1 [6].

B. Related Work

For the single constant multiplication problem, an exact al-
gorithm that finds the minimum number of required operations
for a constant up to 12 bit-width is introduced in [11] and it
is extended up to 19 bit-width in [12]. For the MCM problem,
four algorithms, ’add-only’, ’add/subtract’, ’add/shift’, and
’add/subtract/shift’, are proposed in [13]. The latter algorithm,
i.e., ’add/subtract/shift’, is modified in [5], called BHM, by
extending the possible implementations of a constant, consid-
ering only odd numbers, and processing constants in order
of increasing single coefficient cost that is evaluated by the
algorithm of [11]. A graph-based algorithm, called RAG-n,
is also introduced in [5]. RAG-n has two parts: optimal and
heuristic. In the optimal part, each target constant that can
be implemented with a single operation, whose inputs are in
the ready set, are synthesized. If there exist unimplemented
element(s) left in the target set, the algorithm switches to
the heuristic part where an intermediate constant is added to
the target set. In the selection of the intermediate constant,
RAG-n chooses an unimplemented target constant with the
smallest single coefficient cost and synthesizes it with an
intermediate constant that has the smallest value among the
possible constants. The graph-based heuristic of [6], called
Hcub, includes the same optimal part of RAG-n, but uses
a better heuristic that considers the impact of each possible
intermediate constant on all target constants to be implemented
and chooses the one that yields the best cumulative benefit.
Also, Hcub is not restricted to the lookup table that includes
the single coefficient cost of constants as RAG-n, thus it
is applicable to larger size constants. To the best of our
knowledge, Hcub finds significantly better solutions than any
of the previously published algorithms.

We make two simple observations on the algorithms Hcub
and RAG-n. In these observations, |T | denotes the number of

42

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

elements of the target set to be implemented, i.e., the lowest
bound on the number of required operations.

Lemma 1: If Hcub or RAG-n finds a solution with |T |
operations, then the found solution is minimum.

In this case, no intermediate constant is required to imple-
ment the target constants. Since the elements of the target set
cannot be synthesized using less than |T | operations as shown
in [5] and the solution is obtained in the optimal part, then
the found solution is the minimum solution. �

Lemma 2: If Hcub or RAG-n finds a solution with |T | + 1
operations, then the found solution is minimum.

In this case, only one intermediate constant is required to
implement the target constants. If these heuristics cannot find a
solution in the optimal part, then it is obvious that at least one
intermediate constant is required to find the minimum solution.
So, if the found solution includes |T | + 1 operations, then it
is the minimum solution. �

Note that Hcub and RAG-n cannot determine their solutions
as minimum if the obtained solutions include the number of
operations more than the number of target constants to be
implemented plus 1. Because, in this case, the target and
intermediate constants are synthesized once at a time in the
heuristic parts of these algorithms.

III. THE EXACT BREADTH-FIRST SEARCH ALGORITHM

As defined in Section II-A, the MCM problem is to find
the minimum number of intermediate constants such that each
constant, target and intermediate, can be implemented with
an operation as given in (1) where u and v are 1, target,
or intermediate constants. It is obvious that the minimum
number of intermediate constants, thus the minimum number
of operations solution of the MCM problem, can be found
using a breadth-first search.

In the preprocessing phase of BFSmcm, the target constants
are made positive and odd, and added to the target set,
T , without repetition. The maximum bit-width of the target
constants, bw, is determined. In the main part of BFSmcm

given in Algorithm 1, the ready set, R, that includes the
minimum number of elements is computed.

In BFSearch function, initially, the target constants that
can be implemented with the elements of the ready set, {1},
are found iteratively and removed to the ready set using the
Synthesize function (lines 1-2), as done in the optimal parts of
RAG-n and Hcub. If there is no element left in the target set,
then the minimum number of operations solution is obtained.
Otherwise, the intermediate constants to be added to the ready
set are considered exhaustively in the infinite loop, i.e., the line
7 of the algorithm, until all the target constants are synthesized.
The infinite loop starts with the array of ready and target
sets, WR1 and WT1 , i.e., the ready and target sets obtained
on the line 2 of the algorithm. Note that the size of the array
W including ready and target sets as a pair is denoted by n.
Then, in the infinite loop, another array X is assigned to the
array W and its size is represented with m. In an iteration
of the infinite loop, for each ready set of the array X, the
possible intermediate constants are found and added to the
associated ready set forming new ready sets. The possible

Algorithm 1 BFSmcm. The algorithm takes the target set, T ,
including target constants to be implemented and returns the
ready set, R, with the minimum number of elements including
1, target, and intermediate constants.

BFSearch(T, bw)
1: R← {1}
2: (R, T) = Synthesize(R, T)
3: if T = ∅ then
4: return R
5: else
6: n = 1, WR1 ← R, WT1 ← T
7: while 1 do
8: m = n, XR = WR, XT = WT

9: n = 0, WR = WT = []
10: for i = 1 to m do
11: for j = 1 to 2bw+1 − 1 step 2 do
12: if j /∈ XRi and j /∈ XTi then
13: (A, B) = Synthesize(XRi , {j})
14: if B = ∅ then
15: XRi ← XRi ∪ {j}
16: n = n + 1
17: (WRn , WTn) = Synthesize(XRi , XTi)
18: if WTn = ∅ then
19: return WRn

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for k = 1 to |T | do
4: if tk can be synthesized with the elements of R then
5: isadded = 1
6: R← R ∪ {tk}
7: T ← T \ {tk}
8: until isadded = 0
9: return (R, T)

�� ��� � ���

�	 ��� �	 ��

�� ��� � ��� �� ��� � ����� �
� � �
�

�	 ������

���

�� ��� � ��� �� ��� � ���

��� ��� ����	
�� �	
��

�� �� � �� ������

�	

��� �� ���� �

��� �� ���� �

��� �� ����

Fig. 4. The flow of BFSmcm in two iterations.

intermediate constants are determined from odd constants that
are not included in the current ready and target sets, XRi

and XTi
, and can be implemented with the elements of the

current ready set (lines 11-14). Note that there is no need to
consider the constants that cannot be implemented with the
elements of the current ready set, since all these constants are
considered in other ready sets due to the exhaustiveness of
the algorithm. After the intermediate constant is added to the
ready set XRi

, its implications on the target set XTi
are found

by the Synthesize function and the modified ready and target
sets are stored to the array W as a new pair (line 17).

The flow of the algorithm in two iterations is sketched in
Figure 4 indicating the array W at the end of iterations. In
this figure, the edges labeled with the intermediate constants
represent the inclusions of constants to the ready set. An
intermediate constant is denoted by icabc where a, b, and c
denote the number of iteration it is included, the index of the
ready set it is added, and its index in the iteration respectively.

43

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

�

��� ���

�

�

�

�

��

��

�

�

�	

�

��

��

�

� ��

���

���

�

�

�

�

�
��

�

��

��

� � �� �

Fig. 5. The results of algorithms for the target constants 307 and 439: (a) 5 operations with Hcub; (b) 4 operations with BFSmcm.

Observe from Figure 4 that BFSmcm explores the search
space in a breadth-first manner. In each iteration, each ready
set is augmented with a single intermediate constant. For
example, while the ready set WR1 at the end of the second
iteration includes 1, the intermediate constants ic111, ic211, and
the target constants that can be implemented with the elements
of WR1 , the associated target set WT1 consists of the target
constants have not been implemented by the elements of WR1

so far. Hence, when there is no element left in a target set, the
minimum number of operations solution is obtained with the
associated ready set (lines 18-19).

We make an observation on BFSmcm algorithm where |T |
denotes the number of target constants to be implemented.

Lemma 3: The solution obtained by BFSmcm algorithm
yields the minimum number of operations solution.

If a solution is returned on the line 4 of the BFSearch
function, then no intermediate constant is required to imple-
ment the target constants. Hence, each target constant can
be implemented using a single operation whose inputs are 1
or target constants as ensured by the Synthesize function. In
this case, the number of required operations to implement the
target constants is |T |. Because the target constants cannot be
implemented using less than |T | operations as shown in [5],
the obtained ready set yields the minimum solution.

If a solution is returned on the line 19 of the BFSearch
function, then intermediate constant(s) are required to imple-
ment the target constants. In this case, the number of required
operations to implement the target constants is |T | plus the
number of intermediate constant(s). Because each element of
the ready set, except 1, is guaranteed to be implemented using
a single operation and all possible intermediate constants are
considered in a breadth-first manner, the obtained ready set
yields the minimum number of operations solution. �

As can be observed from Lemma 3, after a ready set
including the minimum number of intermediate constants is
obtained by BFSmcm, the minimum number of operations
implementation of the MCM problem can be realized by
synthesizing the target and intermediate constants using a
single operation whose inputs are 1, target, or intermediate
constants as given in (1).

As a small example, suppose the target set including 307
and 439. Figure 5 presents the solutions obtained by Hcub
and BFSmcm. As can be easily observed from Figure 5(a),
since Hcub synthesizes each target constant in an iteration by
including an intermediate constant, the intermediate constants
included for the implementation of target constants in previous
iterations may not be shared in the implementation of target
constants in later iterations, although Hcub is particularly
designed for this case. In BFSmcm, initially, it is observed

TABLE I
UPPER BOUNDS ON THE NUMBER OF READY SETS EXPLOITED BY THE

EXACT GRAPH-BASED ALGORITHM UNDER DIFFERENT BIT-WIDTHS.

bw #ready sets considered in iterations
1 2 3 4 Total

8 15 378 12,398 1,668,403 1,681,194
9 17 504 20,118 5,897,424 5,918,063

10 19 648 30,428 19,000,657 19,031,752
11 21 810 43,761 57,559,925 57,604,517
12 23 990 60,435 165,546,959 165,608,407
13 25 1,188 80,907 458,873,308 458,955,428
14 27 1,404 105,462 1,230,677,125 1,230,784,018

that the target constants cannot be implemented using a single
operation whose inputs are the elements of the ready set, i.e.,
{1}. Then, in the first iteration, the intermediate constants that
can be implemented using a single operation with the elements
of the ready set {1}, i.e., 3, 5, . . . , 1023, are found. However,
all the possible ready sets including one intermediate constant,
i.e., {1, 3}, {1, 5}, . . . , {1, 1023}, also cannot synthesize all
the target constants. In the second iteration, for each ready
set obtained in the first iteration, the intermediate constants
that can be implemented with the elements of the associated
ready set are found and added to the associated ready set. As
can be observed from Figure 5(b), all the target constants are
synthesized when the intermediate constant 55 is added to the
ready set {1, 63}, i.e., one of the ready sets obtained in the
first iteration of the exact algorithm.

The complexity of search space in BFSmcm is dependent on
both the number of considered ready sets and the maximum
bit-width of the target constants, i.e. bw, since the number
of considered ready sets increases as bw increases. Table I
presents the number of ready sets exploited by BFSmcm

including up to 4 intermediate constants when bw is in between
8 and 14. The exponential growth of the search space can
be clearly observed when the number of iterations increases.
Because, the inclusion of an intermediate constant to a ready
set in the current iteration increases the number of possible
intermediate constants to be considered in the next iteration.

We note that the complexity of the search space also
depends on the target constants to be implemented in an
MCM instance. There are cases where multiple constants
may reduce the complexity of the search space. For example,
consider the single target constant 981 defined in 10 bit-
width. The minimum number of operations implementation
of 981 requires four operations, 3 = 1�2 − 1, 5 = 1�2 + 1,
43 = 5�3 + 3, and 981 = 1�10 − 43, thus three intermediate
constants, 3, 5, and 43. To find this minimum solution, in the
worst case, a total of 19 + 648 + 30428 = 31905 ready sets
must be considered. Now, suppose the multiple target constants
43 and 981. In this case, the minimum number of operations
solution is found in two iterations with the ready set, {1, 3, 5},

44

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

including two intermediate constants, i.e., in the worst case,
19 + 648 = 667 ready sets are exploited. As can be observed
from this example, the number of ready sets exploited by the
exact algorithm depends heavily on the target constants to be
implemented. Hence, the exact algorithm can be efficiently
applied on instances including large number of constants as
shown in Section IV. Also, note that the minimum solution is
generally obtained before the total number of ready sets are
considered. Hence, Table I presents the upper bounds on the
number of ready sets exploited by BFSmcm. We note that the
exact graph-based algorithm can obtain the minimum solutions
of the MCM instances that require less than 5 intermediate
constants in a reasonable time.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of BFSmcm on
FIR filter and randomly generated instances and compare
with those of the exact CSE algorithm [8] and those of the
previously proposed graph-based heuristics [5] and [6]. The
graph-based heuristics were obtained from [14].

As the first experiment set, we used uniformly distributed
randomly generated instances where constants were defined
under 14 bit-width. The number of constants ranges between
10 and 100, and we generated 30 instances for each of them.
Thus, the experiment set includes 300 instances. Figure 6
presents the solutions obtained by the exact CSE algorithm
of [8] when constants are defined under binary, canonical
signed digit (CSD), and minimum signed digit (MSD) repre-
sentations, and the minimum number of operations solutions
obtained by BFSmcm.

As can be observed from Figure 6, the solutions obtained
by the exact CSE algorithm are far from the minimum
number of operations solutions, since the implementations of
constants in the exact CSE algorithm are restricted to the
number representation. The average difference of the number
of operations solutions between the exact CSE algorithm under
binary, CSD, and MSD, and BFSmcm is 8.5, 10.8, and 8.6
respectively on overall 300 instances. Since both algorithms
are exact according to the techniques they are based on, i.e.,
CSE and graph-based, we can clearly state that the graph-
based algorithms obtain significantly better solutions than the
CSE algorithms.

As the second experiment set, we used FIR filter instances
where filter coefficients were computed with the remez algo-
rithm in MATLAB. The specifications of filters are presented

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

Number of the constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 14 bits

Exact CSE − Binary
Exact CSE − CSD
Exact CSE − MSD
BFSmcm

Fig. 6. Comparison of the solutions of the exact CSE algorithm with the
minimum number of operations solutions.

in Table II where: pass and stop are normalized frequencies
that define the passband and stopband respectively; #tap is
the number of coefficients; and width is the bit-width of
the coefficients. We note that the filter 11 was used as an
example filter in [10]. In this table, |T | denotes the number
of positive and odd unrepeated filter coefficients, i.e., the
lowest bound on the number of operations, and the LBs
indicates the lower bounds on the number of operations and the
number of operations in series, generally known as adder-step,
obtained by the formulas given in [10]. The results of graph-
based algorithms are also presented in Table II where adder
denotes the number of operations, step indicates the number
of adder-step, and CPU is the required CPU time in seconds
of BFSmcm implemented in MATLAB to obtain the minimum
solution on a PC with 2.4GHz Intel Core 2 Quad CPU. In this
table, the required CPU times for the heuristics are not listed,
since they obtained the solutions in a few seconds.

As can be easily observed from Table II, BFSmcm finds
the minimum number of operations solutions with a little
computational effort, since the minimum solutions require at
most three extra intermediate constants. Observe that the CPU
time required to find the minimum solution increases, as the
minimum number of the required intermediate constants in-
creases. We note that Hcub finds similar results with BFSmcm,
but it obtains worse solutions on filters 1, 2, and 6, and
according to Lemma 2, Hcub determines only its solution on
filter 4 as the minimum solution. On the other hand, BHM
and RAG-n obtain suboptimal results on all filter instances
that are far from the minimum solutions. Also, observe that

TABLE II
FILTER SPECIFICATIONS AND SUMMARY OF RESULTS OF ALGORITHMS ON FIR FILTER INSTANCES.

Filter Filter Specifications |T | LBs [10] BHM [5] RAG-n [5] Hcub [6] BFSmcm
pass stop #tap width adder step adder step adder step adder step adder step CPU

1 0.10 0.15 40 14 19 20 3 25 10 24 10 23 7 22 8 126.8
2 0.10 0.15 80 16 39 40 3 48 6 44 9 42 8 41 9 25.3
3 0.10 0.25 30 14 14 14 3 18 6 19 5 16 5 16 5 42.3
4 0.10 0.25 80 16 33 33 3 35 6 37 5 34 5 34 5 1.1
5 0.10 0.20 40 14 18 19 3 23 8 22 5 20 5 20 5 4.5
6 0.10 0.20 80 16 36 37 3 40 9 40 5 38 5 37 6 0.6
7 0.15 0.25 40 14 19 19 3 25 6 22 5 21 7 21 5 2.9
8 0.15 0.25 60 16 29 29 3 36 6 33 7 31 7 31 7 17.5
9 0.20 0.25 40 14 19 20 3 24 7 25 5 21 6 21 7 28.9

10 0.20 0.25 60 16 29 30 3 36 7 34 6 31 7 31 7 20.4
11 0.25 0.30 25 12 13 14 3 19 5 17 9 16 7 16 8 210.8

Total — — — — 268 275 33 329 76 317 71 293 69 290 72 481.1

45

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

2 5 10 15 20 30 50 75 100

10

20

30

40

50

60

70

80

90

100

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 10 bits

BHM
RAG−n
Hcub
BFSmcm

2 5 10 15 20 30 50 75 100

10

20

30

40

50

60

70

80

90

100

110

Number of constants

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

Randomly generated instances in 12 bits

BHM
RAG−n
Hcub
BFSmcm

(a) (b)

Fig. 7. Comparison of algorithms on randomly generated hard instances: (a) with constants defined under 10 bits; (b) with constants defined under 12 bits.

the lower bounds on the number of operations [10] cannot be
used to determine any of the solutions found by the heuristics
as the minimum solution. This is because the formula of [10]
computes a lower bound that is close to the lowest bound.
Thus, this experiment clearly indicates that an exact algorithm
is indispensable to compute the minimum solution.

As the third experiment set, we used randomly generated
instances where the constants are defined in between 10 and 12
bit-width. We tried to generate hard instances to distinguish the
algorithms clearly. Hence, under each bit-width, i.e., bw, the
constants were generated randomly in [2bw−2 +1, 2bw−1 − 1].
Also, the number of constants were determined as 2, 5, 10,
15, 20, 30, 50, 75, and 100, and we generated 30 instances
for each of them. The experiment set includes 810 instances.
Figure 7 presents the results of the algorithms on randomly
generated hard instances defined under 10 and 12 bit-width.

As can be easily observed from Figure 7(a)-(b), the graph-
based heuristics, except BHM, obtain competitive results with
those of BFSmcm. However, on the instances with 30 constants
defined in 12 bits, the difference of the average number of
operations between Hcub and BFSmcm is almost 1, and on
the instances with 15 constants defined in 12 bits, this value
between RAG-n and BFSmcm is 2.7. We note that the number
of instances that BHM, RAG-n, and Hcub found the same
solutions with BFSmcm is 65, 419, and 562 respectively on
overall 810 instances. However, the number of instances that
RAG-n and Hcub guaranteed the minimum solutions according
to Lemma 1-2 is 343 and 354 respectively. This experiment
indicates that although the heuristics obtain similar results
with our exact graph-based algorithm, the number of instances
proven to be minimum by the heuristics themselves is much
less than the number of instances guaranteed to be minimum
by the results of our exact algorithm.

V. CONCLUSIONS

In this work, we introduce an exact graph-based algorithm
that uses a breadth-first search to find the minimum number
of operations solution of the MCM problem. Unlike the exact
CSE algorithms, the proposed exact algorithm is independent
from the representation used for constants. The experimental
results show that our exact algorithm can be applied on low
complex instances of real size FIR filters. It is also observed

that the previously proposed graph-based heuristic of [6] that
finds significantly better solutions than any other previously
published graph-based heuristics also obtains solutions close
to the minimum number of operations solutions. This shows
the quality achieved by the heuristic algorithm. However,
it is shown that it may find suboptimal solutions on small
size instances where the exact algorithm finds the minimum
solutions in a reasonable time.

REFERENCES

[1] H. Nguyen and A. Chatterjee, “Number-Splitting with Shift-and-Add
Decomposition for Power and Hardware Optimization in Linear DSP
Synthesis,” IEEE Transactions on VLSI, vol. 8, pp. 419–424, 2000.

[2] P. Cappello and K. Steiglitz, “Some Complexity Issues in Digital
Signal Processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037–1041, October 1984.

[3] R. Hartley, “Subexpression Sharing in Filters using Canonic Signed Digit
Multipliers,” IEEE Transactions on Circuits and Systems II, vol. 43,
no. 10, pp. 677–688, 1996.

[4] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D. Durackova,
“A New Algorithm for Elimination of Common Subexpressions,” IEEE
Transactions on Computer-Aided Design, vol. 18, pp. 58–68, 1999.

[5] A. Dempster and M. Macleod, “Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters,” IEEE Transactions on Circuits and
Systems II, vol. 42, no. 9, pp. 569–577, 1995.

[6] Y. Voronenko and M. Puschel, “Multiplierless Multiple Constant Mul-
tiplication,” ACM Transactions on Algorithms, vol. 3, no. 2, 2007.

[7] O. Gustafsson and L. Wanhammar, “ILP Modelling of the Common
Subexpression Sharing Problem,” in Proceedings of International Con-
ference on Electronics, Circuits and Systems, 2002, pp. 1171–1174.

[8] P. Flores, J. Monteiro, and E. Costa, “An Exact Algorithm for the
Maximal Sharing of Partial Terms in Multiple Constant Multiplications,”
in Proceedings of International Conference on Computer-Aided Design,
2005, pp. 13–16.

[9] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Minimum Number of
Operations under a General Number Representation for Digital Filter
Synthesis,” in Proceedings of European Conference on Circuit Theory
and Design, 2007, pp. 252–255.

[10] O. Gustafsson, “Lower Bounds for Constant Multiplication Problems,”
IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 54, no. 11, pp. 974–978, 2007.

[11] A. Dempster and M. Macleod, “Constant Integer Multiplication using
Minimum Adders,” IEE Proceedings - Circuits, Devices, and Systems,
vol. 141, no. 5, pp. 407–413, 1994.

[12] O. Gustafsson, A. Dempster, and L. Wanhammar, “Extended Results
for Minimum-adder Constant Integer Multipliers,” in Proceedings of the
International Symposium on Circuits and Systems, 2002, pp. 73–76.

[13] D. Bull and D. Horrocks, “Primitive Operator Digital Filters,” IEE
Proceedings G: Circuits, Devices and Systems, vol. 138, no. 3, pp. 401–
412, 1991.

[14] Spiral webpage. [Online]. Available: http://www.spiral.net

46

Authorized licensed use limited to: INESC. Downloaded on May 27, 2009 at 14:11 from IEEE Xplore. Restrictions apply.

