
On the Multiplierless Design of Correctly Rounded Multiple Constant
Divisions

Levent Aksoy†, Paulo Flores†‡ and José Monteiro†‡
† INESC-ID, ‡ Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal

Abstract— The previously proposed algorithms designed for
the constant divisions use the multiply-add architecture which is
expensive in terms of area and power dissipation in hardware.
This paper introduces the problem of finding the minimum
number of adders/subtractors which realize the correctly
rounded multiple constant divisions (MCD) under the shift-adds
architecture. It proposes a depth-first search method which
guarantees the minimum solution, exploring the whole search
space. It also presents a local search method which can cope
with the instances that the exact algorithm cannot handle due
to the NP-completeness of the MCD problem. Both algorithms
are equipped with techniques which maximize the sharing of
common partial products among the constant multiplications.
To the best of our knowledge, these are the first algorithms
proposed for the multiplierless design of the correctly rounded
MCD operation. Experimental results include the results of
our algorithms, indicating that the local search method can
find solutions close to the minimum using little computational
resources and can obtain better solutions than a state-of-art
algorithm. We also present the gate-level results of MCD designs
under different architectures, showing that the MCD designs
under the shift-adds architecture occupy less area and consume
less power than those under the multiply-add architecture.

I. INTRODUCTION

Constant division is not as common as constant multi-
plication in hardware and software applications generally
because designers tend to avoid constant division due to its
complexity in terms of area in hardware and cycle time in
software. Hence, they realize the constant division x/d by
multiplying the variable x by the approximation of the re-
ciprocal of the divisor d, i.e., 1/d, or they modify d so that it
can be realized using a shift and a few adders/subtractors. In
both cases, a computational error is occurred. Nevertheless,
constant division appears in forward and inverse quantization
blocks of H.264/AVC [1], base conversions [2], and speech
coding [3]. Also, compilers generate integer divisions to
compute loop counts and subtract pointers [4].

Previously proposed constant division techniques can be
grouped in two categories based on the application platform,
i.e., software and hardware. For constant divisions in soft-
ware, the algorithm of [5] implements a constant division
using a shift and a multiplier for the multiplication of the
reciprocal of the divisor by the variable, where the recipro-
cals of constants are stored in a lookup table. Similarly, the
algorithm of [6] approximates the reciprocal of the divisor
and uses a multiplication and a couple of adjustment steps.
The algorithm of [7] overcomes the approximation issues
presented in [4], [5] under the multiply-add architecture,
where ⌊x/d⌋ is computed as ⌊(ax + b)/2s⌋. Observe that

integer a approximates the scaled reciprocal 2s/d, integer b
compensates for rounding errors, and integer s is an amount
of right shift [7]. In [3], the proposed algorithms are also
based on the multiply-accumulate instructions. For constant
divisions in hardware, traditional techniques can be found
in [8]. The shift-adds design of the multiplication of the
variable x by a rational constant, which appears in the form
of constant division, is introduced in [9]. Note that shifts
by a constant can be implemented in hardware using only
wires which represent no cost. In [10], the division by small
integer constants using lookup tables is presented. In [11],
the necessary and sufficient conditions for the realization of
correctly rounded constant division under the multiply-add
architecture for different rounding schemes are presented and
finding a realization of the constant division, which requires
the least hardware among possible alternatives, is formulated.

In this paper, we extend the work of [11] to multiple
divisors and introduce the shift-adds design of correctly
rounded multiple constant divisions (MCD) by replacing the
constant multiplications by adders, subtractors, and shifts and
maximizing the sharing of partial products. Although this pa-
per focuses on the constant division under the round towards
zero (RTZ) scheme, other rounding schemes such as, round
to nearest, even and faithfully rounded schemes [11], can
also be considered. Its main contribution is the introduction
of optimization algorithms which find the smallest number
of adders/subtractors that realize the correctly rounded MCD
operation for the RTZ scheme.

II. BACKGROUND

This section presents the background concepts and intro-
duces the correctly rounded MCD problem.

A. Canonical Signed Digit Representation
The binary representation decomposes a number in a set

of additions of powers of two. The signed digit system makes
the use of positive and negative digits. The canonical signed
digit (CSD) representation [12] has two main properties:
(i) two nonzero digits are not adjacent; (ii) the number of
nonzero digits is minimum.

Consider 23 defined in six bits. Its binary representation,
010111, includes 4 nonzero digits. It is represented as 101001
in CSD using 3 nonzero digits, where 1 stands for −1.

B. Shift-Adds Design of Multiple Constant Multiplications
The multiple constant multiplications (MCM) operation

realizes the multiplication of an input variable x by a set of

�� � �� � �� �

�

�

�

���

��	

��
 ���

	�

�

�

�

�

�

�

���

	�

���

��

���

��

�

�

�

�

���

�

���

�

���

	�

��� ����

Fig. 1. Multiplierless realizations of 21x and 53x: (a) DBR technique [8];
(b) exact CSE algorithm [14]; (c) exact GB algorithm [17].

constants. The digit-based recoding (DBR) method [8] is a
straightforward way of realizing MCM without multipliers
and has two steps: (i) define the constants under a number
representation, e.g., binary or CSD; (ii) for the nonzero
digits in the representations of constants, shift the variable
according to the digit positions and add/subtract the shifted
variable with respect to the digit values. As a simple example,
consider 21x and 53x. The decompositions of constant
multiplications under CSD are given as follows:

21x = (10101)CSDx = x≪4 + x≪2 + x

53x = (1010101)CSDx = x≪6− x≪4 + x≪2 + x

which lead to a design with 5 operations as shown in Fig. 1a.
Further reductions in the number of operations can be

obtained by maximizing the sharing of partial products.
Previously proposed algorithms can be grouped in two
categories: (i) the common subexpression elimination (CSE)
methods [12]–[14] define the constants under a particular
number representation. They consider the possible subex-
pressions, which can be extracted from the nonzero digits
in representations of constants, and choose the “best” subex-
pression, generally the most common, to be shared among
the constant multiplications. Their main drawback is their
dependency on a number representation; (ii) the graph-based
(GB) techniques [15]–[17] are not restricted to any particular
number representation and aim to find intermediate subex-
pressions which enable to realize the constant multiplications
with a minimum number of operations. They consider a
larger number of realizations of a constant and obtain better
solutions than the CSE methods, but require more compu-
tational resources due to the larger search space. Note that
finding the minimum number of adders/subtractors realizing
the MCM operation is an NP-complete problem [18].

For our MCM example, the exact CSE algorithm [14]
obtains a solution with 4 operations when constants are de-
fined under CSD by finding the most common subexpression
5x = (101)CSDx (Fig. 1b). The exact GB algorithm of [17]
obtains a minimum solution with 3 operations by finding the
intermediate subexpression 3x (Fig. 1c).

In algorithms proposed for the correctly rounded MCD
problem, we prefer to use the GB methods of [16], [17]
since they find better solutions than the CSE methods.

C. Correctly Rounded MCD under the RTZ Scheme

As described in [11], for the multiply-add realization of a
single constant division under RTZ, ⌊x/d⌋ = ⌊(ax+ b)/2s⌋
with ∀x ∈ [0, 2n − 1], where n denotes the bitwidth of the
input variable x, a 3-tuple (a, b, s) must satisfy the necessary
and sufficient conditions given as follows.

−(b+1)/⌊2n/d⌋ < ad−2s < a−b if ad−2s < 0

ad−2s < (a−b)/⌊2n/d⌋ if ad−2s > 0
(1)

Thus, there may exist more than one 3-tuple for a constant
divisor. Hence, we developed an exhaustive search algorithm
to find all possible 3-tuples for each odd1 constant d in
between [3, 2n−1] under the given n value and stored them
in a lookup table Ln. In this method, s ranges between
[0, 2n], otherwise there exist an infinite number of 3-tuples
(a, b, s) which satisfy the conditions given in Eq. 1. Also,
only odd values of the integer a are considered, since its even
versions can be obtained using a left shift. During the search
of 3-tuples for a single divisor, if there exist multiple 3-tuples
with the same a value and different b values, the one, which
has the minimum b value, is favored. This is because while a
3-tuple with b>0 requires the realization of ax and an adder,
the one with b is zero only needs the realization of ax.

As an example, suppose d and n are 3 and 6, respectively.
For the realization of ⌊x/3⌋ with 6-bit x values, there exist
43 possible 3-tuples. Five of them with the smallest s value
are given as follows: (43, 0, 7); (85, 23, 8); (169, 107, 9);
(171, 0, 9); (173, 0, 9). Observe that while the first 3-tuple
requires the constant multiplication 43x to be realized, the
second one needs 85x to be realized and an extra adder since
b is greater than zero.

D. Problem Definition

The correctly rounded MCD problem can be defined
as finding a minimum number of adders/subractors which
implement the correctly rounded MCD operation. However,
since each divisor requires alternative constant multiplica-
tions to be realized and may need an extra adder, it can also
be defined as: given n, the set of divisors D, and the lookup
table Ln which includes all possible 3-tuples of divisors, for
each divisor in D, select a 3-tuple such that the multiplierless
design of the correctly rounded MCD operation requires the
minimum number of adders/subtractors.

III. DEPTH-FIRST AND LOCAL SEARCH ALGORITHMS

This section presents the depth-first and local search
methods proposed for the correctly rounded MCD problem.
In their preprocessing phases, each integer divisor of D is
converted to a positive number by multiplying it by −1 if it
is negative and to an odd number by successively dividing
it by 2 if it is even. The repeated constants and 1, which
denotes the variable x, if they exist, are eliminated from D.

1The division of the variable x by an even constant e can be realized by
its odd version o and a right shift with an amount of r > 0, where e = o2r .

CASTOR(D,n, Ln)
1: bs = { }, bc = ∞
2: depth = 0, ituple = [00 . . . 0]
3: [Tn] = Configure(Ln, D)
4: while 1 do
5: [depth, ituple] = Branch(depth, ituple, Tn, D)
6: if depth ≥ 2|D|/3 then
7: lb = ComputeLowerBound(depth, ituple, Tn, D)
8: if lb < bc then
9: if depth = |D| then

10: [cost, sol] = ComputeCost(ituple, Tn)
11: if cost < bc then
12: bs = sol, bc = cost
13: [depth, ituple] = Backtrack(depth, ituple, Tn, D)
14: if depth = 0 then
15: return bs
16: else
17: [depth, ituple] = Backtrack(depth, ituple, Tn, D)
18: if depth = 0 then
19: return bs

Fig. 2. Depth-first search algorithm.

A. Depth-First Search Algorithm

Pseudo-code of the depth-first search algorithm, called
CASTOR, is given in Fig. 2, where bs and bc denote the
best solution consisting of 3-tuples selected for the divi-
sors of D and the best cost in terms of total number of
adders/subtractors computed based on bs, respectively. The
search tree constructed by CASTOR is shown in Fig. 3. The
level in the search tree is denoted by depth, a node at each
level is associated with a divisor of D, di with 1 ≤ i ≤ |D|,
and a branch denotes a possible assignment of a 3-tuple to a
divisor. CASTOR traverses the search tree from top to bottom
and left to right. Also, ituple in the pseudo-code denotes an
array with a size of |D| and its each entry is the index of a
3-tuple assigned to a divisor of D in Tn which includes all
possible 3-tuples for divisors of D.

Using the Configure function, CASTOR starts by storing
all possible 3-tuples of each divisor of D in Ln to Tn

and sorting these 3-tuples according to their S(a) + sign(b)
values in ascending order, where S(a) denotes the number
of nonzero digits of the integer a under CSD and sign is
the signum function. By doing so, CASTOR aims to find
a solution close to the minimum in an earlier stage of
the search that may enable to prune the search space in
later stages. Then, in its infinite loop, the depth value is
increased by 1 and an assignment (a 3-tuple), which has not
been considered, is made to the divisor at the current level
using the Branch function. In this case, if the depth value
is greater than or equal to 2|D|/3 2, the lower bound on
the number of adders/subtractors lb is computed based on
the 3-tuples assigned so far using the ComputeLowerBound
function. To do so, the technique of [19], which finds the
lower bound on an MCM instance in terms of the number of
adders/subtractors, is applied to all a values of the assigned
3-tuples and this value is incremented by 1 for each b value
greater than zero in the assigned 3-tuples. If lb is greater than
the best cost value found so far bc, the search is backtracked

2This value is determined empirically not to waste an effort for computing
an estimate which usually does not yield a backtrack.

��� �� �

��� �� �

��� �� �

��� �� 	
 	

� �

� �

� �

� 	
 	

� �

� �

� 	
 	

Fig. 3. Search tree constructed by CASTOR.

�

���

�

�� �

����

�

�

��	 �

��

���

�

�

���

��

����

�

�	�	 �

����

�

�

�

��

���

���

�

��	 �

���

�

�� � �� � �� �

� �	� � �	� � �	� � �	� � �	� � �	�

Fig. 4. Realizations of ⌊x/31⌋ and ⌊x/39⌋: (a) first solution of CASTOR;
(b) final solution of CASTOR ; (c) final solution of POLLUX.

chronologically to a previous node until there exists at least
one unassigned 3-tuple and an untried one is assigned to
this node using the Backtrack function. Otherwise, if all
divisors are assigned to a 3-tuple, the cost value of this set
of 3-tuples cost is found using the ComputeCost function.
To do so, the exact GB algorithm of [17] is applied to an
MCM instance consisting of all a values of 3-tuples for its
multiplierless design, a minimum solution is found, and the
number of adders/subtractors in this solution is incremented
by 1 for each b value greater than zero in all 3-tuples. If this
cost value is smaller than bc, this set of 3-tuples and cost
are respectively assigned to bs and bc. CASTOR terminates
whenever the depth value is return to 0 indicating that all
the search space is explored.

The performance of CASTOR depends heavily on the
number of divisors, i.e., |D|, and on the bitwidth of the input
variable x, i.e., n. As |D| increases, the number of levels in
the search tree increases and as n increases, the number of
possible 3-tuples of a divisor increases, increasing the size
of the search space to be explored. Also, as n increases, the
values of a in 3-tuples increase, increasing the run-time of
the exact MCM algorithm of [17].

As a simple example, suppose n is 6 and D = {31, 39}.
The divisors 31 and 39 have 6 and 52 possible 3-tuples,
respectively. The first solution of CASTOR requires 4 oper-
ations, where 3-tuples (33, 4, 10) and (5, 63, 8) are respec-
tively assigned to the divisors 31 and 39, as illustrated in
Fig. 4a. Observe that 33x and 5x are respectively imple-
mented as x ≪ 5 + x and x ≪ 2 + x using 2 operations.
However, its final solution includes 3-tuples (67, 0, 11) and
(17, 363, 10) for the divisors 31 and 39, respectively, requir-
ing a total of 3 adders/subtractors, as shown in Fig. 4b.
Observe that 17x and 67x are realized using 2 operations
as x ≪ 4 + x and 17x ≪ 2− x, respectively.

B. Local Search Algorithm

Although CASTOR ensures the minimum number of oper-
ations, it can only be applied to MCD instances with a small
number of divisors and a small n value. Thus, we propose
a local search algorithm, called POLLUX, to handle a large
number of divisors and n values using little computational
resources. POLLUX does not consider all possible 3-tuples of
divisors as CASTOR, but the promising ones which have the
minimum ⌈log2S(a)⌉+ sign(b) value. This comes from an
observation that the 3-tuples with higher values were rarely
found to be in the solution of CASTOR. Note that ⌈log2S(a)⌉
is the lower bound on the number of adders/subtractors re-
quired for a single constant multiplication ax [19]. POLLUX
also uses the heuristic method [16] rather than the exact
method [17] used in CASTOR to find a multiplierless design
of an MCM instance. Its pseudo-code is given in Fig. 5. In
POLLUX, bs and bc have the same meanings as mentioned in
CASTOR. Also, noi and noa denote the number of iterations
and assignments, respectively and sol is a set with a size of
|D| and includes a 3-tuple for each divisor in D.

Using the Determine3Tuples function, POLLUX first de-
termines the promising 3-tuples for each divisor in D as
described earlier and sorts them as done in the Configure
function of CASTOR. Second, it finds a solution to the MCD
instance using the first 3-tuple of each divisor, computes the
cost in terms of the number of adders/subtractors as described
in CASTOR except using the MCM algorithm of [16], and as-
signs them to bs and bc, respectively in its FindUpperBound
function. Then, it enters into an infinite loop. After sol is
assigned to the best solution found so far bs, the 3-tuple
of each divisor in sol is replaced by all possible 3-tuples
of the divisor sequentially. The ComputeLB function finds
the lower bound on sol as described in CASTOR and if this
lower bound is smaller than the best cost value found so far
bc, the DetermineCost function finds the cost of sol in terms
of the number of adders/subtractors as described in CASTOR
except using the MCM algorithm of [16]. If this cost value
is smaller than bc, bs and bc are updated as sol and cost,
respectively. The terminating conditions of its infinite loop
are: (i) the number of iterations noi is equal to |D|; and
(ii) the number of 3-tuple assignments noa is greater than∏|D|

i=1 |Tn(i)|, which is the maximum number of assignments
to be made in an exhaustive search method.

Returning to our example in Section III-A, POLLUX con-
siders 5 and 7 3-tuples for the divisors 31 and 39, respec-
tively. It finds a solution with a total of 4 operations using
the FindUpperBound function when 3-tuples (33, 4, 10) and
(5, 63, 8) are assigned to the divisors 31 and 39, respectively.
Observe that this is the same as the first solution obtained
by CASTOR illustrated in Fig. 4a. Its final solution includes
3 operations, where 3-tuples (133, 0, 12) and (5, 63, 8) are
assigned to the divisors 31 and 39, respectively, as shown in
Fig. 4c. These 3-tuples need the realizations of 5x and 133x
which were found as x ≪ 2+x and x ≪ 7+5x, respectively.
On this example, POLLUX obtains a solution with the same
number of operations as CASTOR.

POLLUX(D,n, Ln)
1: bs = { }, bc = ∞
2: [Tn] = Determine3Tuples(Ln, D)
3: [bs, bc] = FindUpperBound(Tn, D)
4: noi = 0, noa = 0
5: while 1 do
6: noi = noi+ 1
7: for i = 1 to |D| do
8: for j = 1 to |Tn(i)| do
9: noa = noa+ 1

10: sol = bs, sol(i) = Tn(i, j)
11: lb = ComputeLB(sol)
12: if lb < bc then
13: cost = DetermineCost(sol)
14: if cost < bc then
15: bs = sol, bc = cost
16: if Terminating conditions are met then
17: return bs

Fig. 5. Local search algorithm.

IV. EXPERIMENTAL RESULTS

This section presents the results of the algorithm of [11],
CASTOR, and POLLUX and of the gate-level designs of MCD
operations realized under the multiply-add and shift-adds
architectures. CASTOR and POLLUX were written in MATLAB
and run on a PC with Intel Xeon at 2.33GHz and 10GB
memory under a CPU time limit of 1200 seconds. The
MCD operations were described in VHDL and synthesized
using the Synopsys Design Compiler with the UMCLogic
180nm Generic II library. Their functionality was verified
on 10,000 randomly generated input signals in simulation,
from which the switching activity information, that was used
by the synthesis tool to compute the power dissipation, was
obtained.

For the comparison of CASTOR and POLLUX, we used
randomly generated instances whose number of constants
ranges in between 2 and 16 in steps of 2. Each group in-
cludes 30 instances and constants were generated in between
[1, 26−1]. In this experiment, n was taken as 6. Table I
presents the results of algorithms in terms of average number
of adders/subtractors (oper) and run time in seconds (cpu).

Observe from Table I that as the number of divisors
increases, the difference on oper between POLLUX and
CASTOR tends to increase, reaching up to 1 on MCD
instances with 12 constants. However, in this case, the CPU
time of CASTOR increases, reaching to the CPU time limit for
all MCD instances with 16 constants which prevents CASTOR
to guarantee the minimum solution. Thus, the difference on
oper between POLLUX and CASTOR decreases as the number
of divisors increases from 12 to 16. On the other hand,
POLLUX uses little computational resources while finding the
solutions of these MCD instances.

To compare the results of the state-of-art algorithm of [11]
with POLLUX and to evaluate the performance of POLLUX,
we generated 8-, 10-, and 12-bit constants randomly. The
number of constants ranges in between 10 and 100 in steps of
10 and each group includes 30 instances. In this experiment,
n was taken as 12. Fig. 6a presents the difference between
the average number of adders/subtractors obtained by the
algorithm of [11] and those found by POLLUX. To generate

TABLE I
SUMMARY OF AVERAGE RESULTS OF ALGORITHMS ON 6-BIT RANDOMLY GENERATED CONSTANTS.

#divisors 2 4 6 8 10 12 14 16
Algorithm oper cpu oper cpu oper cpu oper cpu oper cpu oper cpu oper cpu oper cpu
CASTOR 2.8 10.0 4.3 90.4 5.5 155.1 6.9 370.5 8.1 555.4 9.1 820.5 10.9 1166.4 11.9 1200.1
POLLUX 2.9 0.1 4.6 0.4 5.9 0.3 7.2 0.3 8.9 0.1 10.1 0.1 11.5 0.1 12.3 0.1

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Number of divisors

A
ve

ra
ge

 n
um

be
r

of
 o

pe
ra

tio
ns

 o
ve

rh
ea

d

8−bit constants
10−bit constants
12−bit constants

(a)

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

Number of divisors

A
ve

ra
ge

 C
P

U
 ti

m
e

(s
)

8−bit constants
10−bit constants
12−bit constants

(b)

Fig. 6. (a) Difference between the average number of operations obtained
by the algorithm of [11] and those found by POLLUX; (b) average CPU
time of POLLUX.

more competitive results of the algorithm of [11] with respect
to POLLUX, for each divisor in the MCD instance, among
its possible 3-tuples, we selected a 3-tuple with a minimum
⌈log2S(a)⌉+sign(b) value and we used the MCM algorithm
of [16], which is also used in POLLUX, to realize the
constant multiplications in these 3-tuples under the shift-adds
architecture. Furthermore, Fig. 6b presents the average CPU
time of POLLUX. We note that the solutions of the algorithm
of [11] were obtained in less than a second on average.

Observe from Fig. 6a that as the number of divisors
increases, the difference between the average number of
operations obtained by the algorithm of [11] and those found
by POLLUX increases, reaching up to 11.6 on instances
including 100 12-bit divisors. This is simply because while
POLLUX considers many possible 3-tuples for a divisor, the
algorithm of [11] considers only one 3-tuple for a divisor.
Also, this difference tends to increase as the bitwidth of
divisors increases. This is due to the fact that the number
of adders/subtractors in the MCM design increases as the
bitwidth of constants increases [17]. In turn, for all randomly
generated instances under different bitwidth of constants, the
CPU time of POLLUX tends to increase, as the number of

divisors increases till it is 40. For 10- and 12-bit constants,
its CPU time tends to decrease as the number of divisors
increases from 50 and 40 to 100, respectively. This is mainly
because larger divisors close to 2n− 1 include 3-tuples with
small a values which help POLLUX to find a solution with
the smallest number of operations in an earlier iteration.

For the comparison of MCD operations designed under the
multiply-add and shift-adds architectures, we used the ran-
domly generated instances including 8-bit integers, where the
number of divisors ranges in between 10 and 50 in steps of
10 and each group includes 30 instances. In this experiment,
n was taken as 12. For the multiply-add architecture, for each
divisor in an MCD instance, a 3-tuple including the minimum
⌈log2a⌉ value with the minimum b value is found and it is
described as a constant multiplication and addition with a
right shift in VHDL. For the shift-adds architecture, each
MCD instance is described in VHDL based on the solution of
POLLUX. Fig. 7 presents the average results of MCD designs
in terms of area in mm2, delay of the critical path in ns,
and dynamic power dissipation in mW .

Observe from Fig. 7a that the shift-adds architecture based
on the solution of POLLUX leads to MCD designs with signif-
icantly less area than those designed under the multiply-add
architecture. On MCD instances including 50 divisors, the
average area of MCD designs under the multiply-add ar-
chitecture is 3.3 times larger than that of MCD designs
under the shift-adds architecture. However, the MCD designs
under the multiply-add architecture has less delay than those
under the shift-adds architecture. As the number of divisors
increases, the delay value under the multiply-add architecture
increases slightly. This is because the maximum size of a
multiplier, which has a significant impact on the critical path
of the MCD design, is almost the same in MCD instances
including different number of divisors. However, the delay
increases considerably under the shift-adds architecture as
the number of divisors increases. This is because the sharing
of partial products in the shift-adds architecture increases
in this case which increases the number of adder-steps, i.e.,
the maximum number of operations in series [20]. On the
other hand, the shift-adds architecture leads to MCD designs
that consume significantly less power when compared to
the multiply-add architecture, since its designs occupy less
area. On MCD instances including 50 divisors, the average
power dissipation of MCD designs under the multiply-add
architecture is 2.3 times larger than that of MCD designs
under the shift-adds architecture.

V. CONCLUSIONS

This paper introduced the correctly rounded MCD problem
and proposed exact and approximate algorithms to find the
minimum number of adders/subtractors which realize the

10 20 30 40 50
0

10

20

30

40

50

60

70

Number of divisors

A
ve

ra
ge

 a
re

a
(m

m
2)

Multiply−add
Shift−adds

10 20 30 40 50
0

2

4

6

8

10

12

Number of divisors

A
ve

ra
ge

 d
el

ay
 (

ns
)

Multiply−add
Shift−adds

10 20 30 40 50
0

5

10

15

20

25

Number of divisors

A
ve

ra
ge

 d
yn

am
ic

 p
ow

er
 d

is
si

pa
tio

n
(m

W
)

Multiply−add
Shift−adds

(a) (b) (c)

Fig. 7. Results of MCD designs under the multiply-add and shift-adds architectures: (a) area; (b) delay; (c) power.

MCD operation. It presented the results of algorithms on
randomly generated instances and introduced the gate-level
designs of MCD operations under the multiply-add and
shift-adds architectures. It was shown that while the exact
algorithm can only be applied to MCD instances including
small number of divisors and small bitwidth of the input
variable, the approximate algorithm can be applied to a
large number of divisors, obtains better solutions than the
state-of-art algorithm, and finds a solution using little com-
putational resources. It was also observed that the shift-adds
architecture yields MCD designs that occupy less area and
consume less power than the multiply-add architecture, but
having a larger delay.

VI. ACKNOWLEDGMENT

This work was supported by national funds through FCT,
Fundação para a Ciência e a Tecnologia, under the project
PEst-OE/EEI/LA0021/2013.

REFERENCES

[1] T. Dias, N. Roma, and L. Sousa, “High Performance Unified Archi-
tecture for Forward and Inverse Quantization in H.264/AVC,” in Proc.
of EUROMICRO Conference on Digital System Design: Architectures,
Methods and Tools, 2012, pp. 632–639.

[2] R. W. Doran, “Special Cases of Division,” Journal of Universal
Computer Science, vol. 1, no. 3, pp. 67–82, 1995.

[3] J.-M. Muller, A. Tisserand, B. de Dinechin, and C. Monat, “Division
by Constant for the ST100 DSP Microprocessor,” in Proc. of IEEE
Symposium on Computer Arithmetic, 2005, pp. 124–130.

[4] T. Granlund and P. Montgomery, “Division by Invariant Integers
Using Multiplication,” in Proc. of the SIGPLAN94 Conference on
Programming Language Design and Implementation, 1994, pp. 61–
72.

[5] R. Alverson, “Integer Division Using Reciprocals,” in Proc. of IEEE
Symposium on Computer Arithmetic, 1991, pp. 186–190.

[6] N. Möller and T. Granlund, “Improved Division by Invariant Integers,”
IEEE Tran. on Computers, vol. 60, no. 2, pp. 165–175, 2011.

[7] A. Robison, “N-Bit Unsigned Division via N-Bit Multiply-Add,” in
Proc. of IEEE Symposium on Computer Arithmetic, 2005, pp. 131–
139.

[8] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[9] F. de Dinechin, “Multiplication by Rational Constants,” IEEE Tran.
on Circuits and Systems II, vol. 59, no. 2, pp. 98–102, 2012.

[10] F. de Dinechin and L.-S. Didier, “Table-Based Division by Small
Integer Constants,” in Proc. of the International Symposium on Applied
Reconfigurable Computing, 2012, pp. 53–63.

[11] T. Drane, W.-C. Cheung, and G. Constantinides, “Correctly Rounded
Constant Integer Division via Multiply-Add,” in Proc. of IEEE Inter-
national Symposium on Circuits and Systems, 2012, pp. 1243–1246.

[12] R. Hartley, “Subexpression Sharing in Filters Using Canonic Signed
Digit Multipliers,” IEEE Tran. on Circuits and Systems II, vol. 43,
no. 10, pp. 677–688, 1996.

[13] I.-C. Park and H.-J. Kang, “Digital Filter Synthesis Based on Minimal
Signed Digit Representation,” in Proc. of Design Automation Confer-
ence, 2001, pp. 468–473.

[14] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Exact and Approxi-
mate Algorithms for the Optimization of Area and Delay in Multiple
Constant Multiplications,” IEEE Tran. on Computer-Aided Design of
Integrated Circuits, vol. 27, no. 6, pp. 1013–1026, 2008.

[15] A. Dempster and M. Macleod, “Use of Minimum-Adder Multiplier
Blocks in FIR Digital Filters,” IEEE Tran. on Circuits and Systems II,
vol. 42, no. 9, pp. 569–577, 1995.

[16] Y. Voronenko and M. Püschel, “Multiplierless Multiple Constant
Multiplication,” ACM Tran. on Algorithms, vol. 3, no. 2, 2007.

[17] L. Aksoy, E. Gunes, and P. Flores, “Search Algorithms for the Multiple
Constant Multiplications Problem: Exact and Approximate,” Elsevier
Journal on Microprocessors and Microsystems, vol. 34, no. 5, pp.
151–162, 2010.

[18] P. Cappello and K. Steiglitz, “Some Complexity Issues in Digital
Signal Processing,” IEEE Tran. on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037–1041, 1984.

[19] O. Gustafsson, “Lower Bounds for Constant Multiplication Problems,”
IEEE Tran. on Circuits and Systems II, vol. 54, no. 11, pp. 974–978,
2007.

[20] H.-J. Kang and I.-C. Park, “FIR Filter Synthesis Algorithms for
Minimizing the Delay and the Number of Adders,” IEEE Tran. on
Circuits and Systems II, vol. 48, no. 8, pp. 770–777, 2001.

