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Abstract—In this work two heuristic algorithms are presented 
for the problems of optimization of area and optimization of 
area under a delay constraint in digital filter synthesis. The 
heuristics search for a solution on a combinational network 
that represents a covering problem using a greedy method for 
partial term selection. The methods start from the outputs 
towards the inputs for each coefficient. This top-down 
approach considers a much larger solution space than existing 
bottom-up heuristic algorithms. We present results on a wide 
range of instances and compare them with exact and 
prominent heuristic algorithms. The results demonstrate that 
the solutions obtained by the proposed heuristics are extremely 
close to the exact solutions and are significantly better than the 
existing heuristic algorithms. 

I. INTRODUCTION  
Finite impulse response (FIR) digital filters are widely used in 

digital signal processing by virtue of stability and easy 
implementation. The problem of designing FIR filters has received 
a significant amount of attention during the last decade, as the filters 
require a large number of multiplications, leading to excessive area, 
delay, and power consumption even if implemented in a full custom 
integrated circuit. Previous works [1]-[7] have focused on the 
design of filters with minimum area by replacing the multiplication 
operations with constant coefficients by addition, subtraction, and 
shifting operations. Since shifts are free in terms of hardware, the 
design problem can be defined as the minimization of the number of 
addition/subtraction operations to implement the coefficient 
multiplications. In fact, this is known, more generally, as the 
Multiple Constant Multiplications (MCM) problem and has 
applications on a wide range of problems, e.g., [1] and [2]. In this 
paper, we focus on FIR filter implementations. 

To further reduce the complexity of the design, the coefficients 
can be expressed in canonical sign digit (CSD) or represented in 
minimal sign digit (MSD). The CSD representation is a signed digit 
system with the digit set {-1,0,1}. The CSD representation is unique 
and has two main properties: i) the number of non-zero digits is 
minimal, ii) two non-zero digits are not adjacent. This 
representation is widely used in multiplier-less implementations 
because it reduces the number of non-zero digits by 33% on average 
compared with the binary representation. The MSD representation 
is obtained by dropping the second property of the CSD 
representation. Thus, a constant can have several MSD 
representations, but all with a minimum number of non-zero digits. 
For example, the value 6 is represented using 4 digits in CSD as 

10(-1)0 but both 10(-1)0 and 0110 are valid representations in 
MSD. In MCM, it is more efficient to use MSD representation that 
has the same number of non-zero digits as CSD but provides 
multiple alternative representations for a constant coefficient [3]. 

Recent works [8]-[11] deal with the problem of optimization of 
area and delay simultaneously. The problem can be described as the 
minimization of the number of operations such that a user-specified 
delay is not exceeded. As the delay is dependent on several 
implementation issues, such as circuit technology and routing, in 
this paper, we define the delay as the number of adder-steps, which 
denotes the maximal number of adders/subtracters in series to 
produce any multiplication as given in [8]. Since the definition of 
adder-steps is identical to the definition of levels in combinational 
circuits, we use both definitions interchangeably in this paper. 

The algorithms introduced in this paper optimize area and delay 
in the design of digital filters. The heuristics search for a solution on 
the combinational network generated by the exact algorithm of [4], 
representing the covering problem to be solved. Instead of solving 
the minimum cover problem as done in [4] and [10], a greedy 
method is used to synthesize each coefficient by considering not-yet 
synthesized coefficients. Hence, the solutions of the filter instances 
that are hard to be found by the exact algorithms are obtained 
easily. Besides, since the proposed heuristic algorithms consider 
more possible implementations of a coefficient, they search a 
solution in a larger space than the other existing heuristic algorithms 
that find common subexpressions, e.g., [1], [2], and [9]. 

The paper is organized as follows. In Section II, the related 
work is presented. Afterwards, the proposed heuristic algorithms 
are introduced. Experimental results are given in Section IV. 
Finally, the paper concludes with Section V. 

II. RELATED WORK 
In this section, initially, we describe the exact and heuristic 

algorithms previously proposed for the problems of optimization of 
area and optimization of area under a delay constraint. Then, we 
present the main differences between our heuristic algorithms and 
the other algorithms. 

A. Exact Algorithms 
An exact algorithm for the maximal sharing of the partial terms 

for more than one coefficient is given in [4]. This algorithm can 
handle binary, CSD, and MSD representations of the coefficients. 
In this algorithm, the filter design problem is defined as a binate 
covering  problem a special case of  0-1 integer linear programming  
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Figure 1.  Implementations of the coefficient 15 in binary. 

(ILP) problem where every constraint is interpreted as a 
propositional clause. In the preprocessing phase of the algorithm, 
after the coefficients of the filter are made positive and odd, all 
possible partial terms that may be used to generate the set of 
coefficients are found. The partial terms are obtained with 
addition/subtraction of non-zero digit combinations to the 
coefficients. As an example, consider 15 (1111, in binary) as a 
coefficient to be synthesized. The possible partial terms that 
implement 15 are given in Fig. 1. Observe that since the shifts are 
free in terms of hardware, the implementation of (8+7) is the same 
as the implementation of (1+14). So, (1+14) is not listed, as the 
duplications of implementations, e.g., (9+6) is equal to (6+9), are 
not listed in this figure. After the partial terms for the coefficient 15, 
i.e., 3, 5, 7, 9, 11, and 13, are obtained, the partial terms and 
operations that implement these partial terms are also found in this 
way. Note that when coefficients are represented in CSD or MSD, 
both subtraction and addition are performed to find partial terms.  

Then, a combinational network that only includes AND and OR 
gates is constructed by the algorithm of [4]. In this network, an 
AND gate represents an addition/subtraction operation and an OR 
gate combines the possible ways of implementation of a partial 
term. The primary inputs of the network represent the filter input or 
its shifted versions. The primary outputs of the network are the OR 
gate outputs that generate the coefficients of the filter. The number 
of inputs for each AND gate is two: these are either primary inputs 
or OR gate outputs (partial terms). The inputs of an OR gate are the 
outputs of AND gates associated with the partial term. The 
combinational network generated by the algorithm for the 
coefficient 15 in binary is given in Fig. 2. Observe that the network 
is a representation of a covering problem. 

After the combinational network is generated, additional 
hardware (with optimization variables) is added to the network and 
the variables that represent the filter coefficients are assigned to 1. 
Then, all the conjunctive normal form (CNF) formulas for each gate 
output are obtained. Each clause in the CNF formula is defined as a 
constraint by expressing each clause as a linear inequality. Finally, 
an objective function to be minimized is constructed. The objective 
function is a linear combination of the optimization variables that 
are associated with the partial terms in the network. A generic SAT-
based 0-1 ILP solver is used to obtain the exact solution. 

In [10], an exact algorithm for the minimization of area under a 
delay constraint problem is proposed where the network is 
generated as in [4] and it is modified in order to handle the delay 
constraints. In this algorithm, the AND gates (operations) on each 
path that exceeds the minimum delay of the network are expressed 
in a constraint forcing that all these operations must not be found 
together in the solution. With the additional constraints, the network 
is given to the 0-1 ILP solver to obtain a minimum area solution. 

B. Heuristic Algorithms 
There have been a number of proposed techniques on the 

optimization of area of the FIR digital filters. These works are based 
on finding common digit patterns in the coefficients. These methods 
range from graph based coefficient synthesis techniques [5], [6] and  

 

Figure 2.  The network generated for the coefficient 15 in binary. 

exhaustive enumeration of all possible digit patterns [7] to 
incorporation of two-term common subexpressions [1]. 

Despite the large number of techniques proposed for 
optimization of area, there are not many methods that also consider 
the delay of the design, which is essential for high-speed systems. 
In [9] and [11], while minimizing area, delay is also considered in 
the selection criterion of the partial terms. In [8], initially, the 
number of addition/subtraction operations is reduced and then, a set 
of transformations in an iterative loop is used to reduce the delay. 

C. Proposed Heuristic Algorithms 
The heuristic algorithms proposed in this paper use the 

combinational network generated by the exact algorithm presented 
in [4]. These algorithms synthesize each coefficient one at a time by 
selecting an operation among the set of possible operations. The 
selection is done in a greedy manner by considering not-yet 
synthesized coefficients. Since these algorithms do not attempt to 
solve the minimum cover problem presented by the network 
exactly, they may find an optimal solution (i.e., local minimum) 
rather than the minimum (i.e., global minimum). However, they can 
handle larger problems in a reasonable time. 

The proposed heuristics consider much more possible 
implementations of a coefficient than the heuristic algorithms that 
find pairs of the most common non-zero digits [2] or the two-term 
common subexpressions [1], [9]. Also, our heuristic algorithm 
designed for the optimization of area under a delay constraint 
problem is implemented in a top-down approach (from primary 
outputs to primary inputs) where it has more possibilities to 
synthesize a partial term while controlling the delay than the 
heuristic algorithm that uses a bottom-up approach [9]. 

III. HEURISTIC ALGORITHMS FOR DIGITAL FILTER SYNTHESIS 
In this section, we describe the proposed heuristics briefly. 

Initially, we present the heuristic called ASSUME-A designed for 
optimization of area and then, the heuristic called ASSUME-D 
designed for optimization of area under a delay constraint. 

A. Area Optimization: ASSUME-A Algorithm 
After the network is generated as described in [4], the min-

adder and max-level values of each operation and partial term are 
found by traversing from primary inputs to primary outputs in the 
preprocessing phase. The min-adder is the minimum number of 
operations that are required to implement an operation or a partial 
term. The min-adder value of a partial term (OR gate) is determined 
by finding the minimum of the min-adder values of operations 
(AND gates) that implement the partial term. The min-adder value 
of an operation (AND gate) is the sum of the min-adder values of 
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its inputs plus 1, if the inputs are different; otherwise it is the min-
adder value of an input plus 1. Note that the min-adder value of a 
primary input is 0. The max-level is the maximum number of 
operations in series that implement an operation or a partial term. 
As an example, the min-adder and max-level value of the partial 
term 15 in the network of Fig. 2 is 2 and 3 respectively. 

ASSUME-A has two main parts: minimum and optimal as the 
heuristic algorithm of [5]. The algorithm is as follows: 

1. Store the pre-processed coefficients of the filter (primary 
outputs of the network, all made positive and odd) in a set 
called Aset and label them as unimplemented.  

2. The minimal part: For each element labeled as 
unimplemented in Aset, if the element is implemented in the 
network with an operation whose inputs are primary inputs 
or in Aset then, synthesize the element with the operation 
and label it as implemented. 

3. If there is an element left labeled as unimplemented in 
Aset, go to Step 4 otherwise return the solution. 

4. The optimal part: Take an unimplemented element from 
Aset, Aset(i), that has the lowest max-level value.  

5. For each operation, O(j), that implements Aset(i), set its 
cost value, C(j), to its min-adder value as determined in the 
preprocessing phase and 

For each unimplemented element in Aset, Aset(k) ki ≠ ,  
a. Determine Cbefore(k) by finding the min-adder 

value of Aset(k) when the min-adder values of the 
elements in Aset are assigned to 0. (Cbefore(k) is the 
cost of implementation of Aset(k) at this phase of 
the algorithm, since all elements in Aset will be 
implemented at the end of the algorithm.)  

b. Determine Cafter(k) in the same way as done in a) 
but also, assume that the inputs of O(j) are in Aset. 
(Cafter(k) is the cost of implementation of Aset(k), 
if Aset(i) is synthesized with O(j) at this phase of 
the algorithm.) 

c. Update the cost value, C(j), as C(j) = C(j) - 
(Cbefore(k) - Cafter(k)).  

6. After the cost value of each operation, C(j), is obtained, 
select the operation to synthesize Aset(i) that has the 
minimum cost. If there are operations that have the same 
minimum cost, select the operation that has the smallest min-
adder value among these operations. Label Aset(i) as 
implemented. 

7. Add the inputs of the selected operation to Aset that do not 
exist in Aset, label them as unimplemented, and go to Step 2. 

Note that in the first iteration, the elements of Aset are the 
coefficients of the filter, and in later iterations, Aset includes the 
partial terms. Also, observe that if the algorithm returns a solution 
in the first iteration, the solution found is a minimum area solution. 

B. Area Optimization under a Delay Constraint: ASSUME-D 
Algorithm 
ASSUME-D can find a solution with either the minimum delay 

of the network or a user-specified delay constraint. In this paper, we 
describe the heuristic algorithm as it deals with the minimum delay 
of the network. After the network is obtained as described in [4], the 
min-adder, min-level, and max-level values of each operation and 
partial term are found in the preprocessing phase of the algorithm. 
The min-level is the minimum number of operations in series that 
implement an operation or a partial term. As an example, the min-
level value of the partial term 15 in the network of Fig. 2 is 2. The 

minimum delay of the network, min_delay, is the maximum of the 
min-level values of the primary outputs. 

ASSUME-D synthesizes the coefficients of the filter one at a 
time in a top-down approach while controlling the delay. The 
algorithm is as follows: 

1. Store the pre-processed coefficients of the filter (primary 
outputs of the network, all made positive and odd) in a set 
called Dset and label them as unimplemented. Assign the 
delay limit value of each element in Dset to min_delay. 

2. Take an element labeled as unimplemented from Dset, 
Dset(i), that has the highest max-level value. Store the 
operations that implement Dset(i) and whose min-level 
values do not exceed the delay_limit(i) in an empty set 
called Oset. 

3. If Dset(i) can be implemented with an operation in Oset 
whose inputs are primary inputs or in Dset then, synthesize 
Dset(i) with the operation and label it as implemented. 
Assign the delay limit of each input of the operation, 
delay_limit(j), to delay_limit(i)-1, if delay_limit(j) is greater than 
delay_limit (i)-1. 

4. Otherwise, choose an operation from Oset to synthesize 
Dset(i) as done in ASSUME-A (Step 5-6) and label it as 
implemented. If the input(s) of the operation is not in Dset 
then, add this element to Dset, label it as unimplemented, 
and assign its delay limit value to delay_limit(i)-1. If the 
input(s) of the operation is in Dset then, assign the delay 
limit of the input, delay_limit(j), to delay_limit(i)-1, if 
delay_limit(j) is greater than delay_limit(i)-1. 

5. If there is an element left labeled as unimplemented in 
Dset, go to Step 2 otherwise, return the solution. 

IV. EXPERIMENTAL RESULTS 
In this section, we present the results of the proposed heuristic 

algorithms and compare them with the exact and heuristic 
algorithms. The experiments are categorized in two sets according 
to difficulty levels for the exact algorithms to compute a solution. 

As the first experiment set, randomly generated instances 
between the number of 10 and 70 coefficients defined in 10 bit- 
width were used. There are 30 instances for each number of 
coefficients and the coefficients are expressed in MSD. We 
compared the results of proposed heuristic algorithms with the exact 
algorithms [10] in terms of the average additional operations. The 
results are given in Fig. 3. 

 

Figure 3.  Results on randomly generated coefficients in 10 bit-width. 

750



TABLE I.  EXPERIMENTAL RESULTS ON FILTER INSTANCES 

adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step
1 18 3 19 3 16 3 16 3 16 3 16 3 16 3 18 3 16 3 16 3 16 3 16 3
2 25 3 25 3 23 3 23 3 23 4 22 4 22 4 26 3 23 3 23 3 22 3 22 3
3 35 3 35 3 36 3 35 3 35 3 34 3 34 3 36 3 35 3 35 3 34 3 34 3
4 57 3 55 4 50 4 49 4 51 4 48 5 47 4 57 3 50 3 49 3 48 3 47 3
5 37 3 37 4 35 4 35 4 34 4 34 4 33 4 37 3 35 3 35 3 35 3 33 3
6 58 4 55 4 52 4 51 4 50 4 49 4 49 4 58 3 52 3 52 3 49 3 50 3
7 74 4 71 4 67 4 66 4 70 4 63 4 time time 72 3 71 3 68 3 65 3 time time
8 101 4 96 4 90 4 87 4 91 4 85 4 time time 95 3 93 3 91 3 86 3 time time

Total 405 27 393 29 369 29 362 29 209 22 203 23 201 22 399 24 375 24 369 24 204 18 202 18

Exact [10] [3] ASSUME-A
MSD

[9] ASSUME-D Exact [10] ASSUME-D Exact [10]

Minimum Area Solutions Minimum Area under a Delay Constraint Solutions

Filter CSDCSD MSD
[1] [2] Exact [10]ASSUME-A

 

In this experiment, we observe that the difference of average 
number of operations between heuristic and exact algorithms is less 
than one operation, even close to half. This can be interpreted as if 
for half the instances we find a solution with one single extra adder 
and for the other half we actually find the minimum solution! 

As the second experiment set, we used the filter instances 
presented in [3]. The experimental results are given in Table I. In 
this table, the first two sets of columns under CSD and MSD show 
the solutions for the problem of optimization of area and the last 
two sets of columns under CSD and MSD show the solutions for 
the problem of optimization of area under a delay constraint. The 
results are obtained on CSD and MSD representation of the 
coefficients, since these representations present different networks 
and solutions. The proposed heuristics are compared with exact [10] 
and heuristic [1]-[3], [9] algorithms. The results of the heuristics 
presented in [2] and [3] are taken from [3] and the results of the 
heuristics introduced in [1] and [9] are provided by the coauthor of 
these papers, Anup Hosangadi. In this table, adder denotes the 
number of operations and step denotes the maximum of number of 
operations in series needed to synthesize a filter. The results given 
in italic on the exact algorithms’ column indicate that an optimal 
solution rather than the minimum is obtained in two hours and time 
indicates that no solution is found in two hours. The results given in 
the Total row for the MSD column are the sums of the numbers 
between Filter 1 and 6. 

In this experiment, we observe that ASSUME-A and 
ASSUME-D find the same or better solutions than the other 
heuristics (except Filter 3 in CSD for ASSUME-A). Note that since 
the proposed algorithms are heuristics, ASSUME-D can find better 
solutions (e.g., Filter 3 in CSD) than ASSUME-A, even if 
ASSUME-D looks for a solution in a restricted search space. 
Besides, ASSUME-D can find a better solution than the optimal 
found by the exact algorithm (i.e., Filter 6 in MSD). We note that 
the average execution times of the implementations of ASSUME-A 
and ASSUME-D on MATLAB for the Filter 7 and 8 in MSD are 
257 and 1413 seconds respectively, whereas the exact algorithms 
could not conclude in two hours. 

V. CONCLUSIONS 
In this paper, we introduced two heuristic algorithms designed 

for the optimization of area and optimization of area under a delay 
constraint. The heuristics search a solution on the network as 
generated in the exact algorithm and use a greedy method in 
choosing the operations to synthesize the coefficients. We 

compared our heuristics with exact and prominent heuristic 
algorithms proposed in this research area. It is shown that the 
proposed heuristics can find exact solutions, or close, on filter 
instances where an exact algorithm cannot conclude and find better 
solutions on overall instances than the existing heuristics. 
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