
Proc. of the IEEE Int. Conference on Electronics, Circuits and Systems (ICECS), pg 748-751, December 2006.

ASSUMEs: Heuristic Algorithms for Optimization of Area
and Delay in Digital Filter Synthesis

Levent Aksoy
Istanbul Technical Univ.

Istanbul, Turkey

Eduardo Costa
Univ. Catolica de Pelotas

Pelotas, Brazil

Paulo Flores
INESC-ID/IST

Lisbon, Portugal

Jose Monteiro
INESC-ID/IST

Lisbon, Portugal

Abstract—In this work two heuristic algorithms are presented
for the problems of optimization of area and optimization of
area under a delay constraint in digital filter synthesis. The
heuristics search for a solution on a combinational network
that represents a covering problem using a greedy method for
partial term selection. The methods start from the outputs
towards the inputs for each coefficient. This top-down
approach considers a much larger solution space than existing
bottom-up heuristic algorithms. We present results on a wide
range of instances and compare them with exact and
prominent heuristic algorithms. The results demonstrate that
the solutions obtained by the proposed heuristics are extremely
close to the exact solutions and are significantly better than the
existing heuristic algorithms.

I. INTRODUCTION
Finite impulse response (FIR) digital filters are widely used in

digital signal processing by virtue of stability and easy
implementation. The problem of designing FIR filters has received
a significant amount of attention during the last decade, as the filters
require a large number of multiplications, leading to excessive area,
delay, and power consumption even if implemented in a full custom
integrated circuit. Previous works [1]-[7] have focused on the
design of filters with minimum area by replacing the multiplication
operations with constant coefficients by addition, subtraction, and
shifting operations. Since shifts are free in terms of hardware, the
design problem can be defined as the minimization of the number of
addition/subtraction operations to implement the coefficient
multiplications. In fact, this is known, more generally, as the
Multiple Constant Multiplications (MCM) problem and has
applications on a wide range of problems, e.g., [1] and [2]. In this
paper, we focus on FIR filter implementations.

To further reduce the complexity of the design, the coefficients
can be expressed in canonical sign digit (CSD) or represented in
minimal sign digit (MSD). The CSD representation is a signed digit
system with the digit set {-1,0,1}. The CSD representation is unique
and has two main properties: i) the number of non-zero digits is
minimal, ii) two non-zero digits are not adjacent. This
representation is widely used in multiplier-less implementations
because it reduces the number of non-zero digits by 33% on average
compared with the binary representation. The MSD representation
is obtained by dropping the second property of the CSD
representation. Thus, a constant can have several MSD
representations, but all with a minimum number of non-zero digits.
For example, the value 6 is represented using 4 digits in CSD as

10(-1)0 but both 10(-1)0 and 0110 are valid representations in
MSD. In MCM, it is more efficient to use MSD representation that
has the same number of non-zero digits as CSD but provides
multiple alternative representations for a constant coefficient [3].

Recent works [8]-[11] deal with the problem of optimization of
area and delay simultaneously. The problem can be described as the
minimization of the number of operations such that a user-specified
delay is not exceeded. As the delay is dependent on several
implementation issues, such as circuit technology and routing, in
this paper, we define the delay as the number of adder-steps, which
denotes the maximal number of adders/subtracters in series to
produce any multiplication as given in [8]. Since the definition of
adder-steps is identical to the definition of levels in combinational
circuits, we use both definitions interchangeably in this paper.

The algorithms introduced in this paper optimize area and delay
in the design of digital filters. The heuristics search for a solution on
the combinational network generated by the exact algorithm of [4],
representing the covering problem to be solved. Instead of solving
the minimum cover problem as done in [4] and [10], a greedy
method is used to synthesize each coefficient by considering not-yet
synthesized coefficients. Hence, the solutions of the filter instances
that are hard to be found by the exact algorithms are obtained
easily. Besides, since the proposed heuristic algorithms consider
more possible implementations of a coefficient, they search a
solution in a larger space than the other existing heuristic algorithms
that find common subexpressions, e.g., [1], [2], and [9].

The paper is organized as follows. In Section II, the related
work is presented. Afterwards, the proposed heuristic algorithms
are introduced. Experimental results are given in Section IV.
Finally, the paper concludes with Section V.

II. RELATED WORK
In this section, initially, we describe the exact and heuristic

algorithms previously proposed for the problems of optimization of
area and optimization of area under a delay constraint. Then, we
present the main differences between our heuristic algorithms and
the other algorithms.

A. Exact Algorithms
An exact algorithm for the maximal sharing of the partial terms

for more than one coefficient is given in [4]. This algorithm can
handle binary, CSD, and MSD representations of the coefficients.
In this algorithm, the filter design problem is defined as a binate
covering problem a special case of 0-1 integer linear programming

1-4244-0395-2/06/$20.00 ©2006 IEEE. 748

Figure 1. Implementations of the coefficient 15 in binary.

(ILP) problem where every constraint is interpreted as a
propositional clause. In the preprocessing phase of the algorithm,
after the coefficients of the filter are made positive and odd, all
possible partial terms that may be used to generate the set of
coefficients are found. The partial terms are obtained with
addition/subtraction of non-zero digit combinations to the
coefficients. As an example, consider 15 (1111, in binary) as a
coefficient to be synthesized. The possible partial terms that
implement 15 are given in Fig. 1. Observe that since the shifts are
free in terms of hardware, the implementation of (8+7) is the same
as the implementation of (1+14). So, (1+14) is not listed, as the
duplications of implementations, e.g., (9+6) is equal to (6+9), are
not listed in this figure. After the partial terms for the coefficient 15,
i.e., 3, 5, 7, 9, 11, and 13, are obtained, the partial terms and
operations that implement these partial terms are also found in this
way. Note that when coefficients are represented in CSD or MSD,
both subtraction and addition are performed to find partial terms.

Then, a combinational network that only includes AND and OR
gates is constructed by the algorithm of [4]. In this network, an
AND gate represents an addition/subtraction operation and an OR
gate combines the possible ways of implementation of a partial
term. The primary inputs of the network represent the filter input or
its shifted versions. The primary outputs of the network are the OR
gate outputs that generate the coefficients of the filter. The number
of inputs for each AND gate is two: these are either primary inputs
or OR gate outputs (partial terms). The inputs of an OR gate are the
outputs of AND gates associated with the partial term. The
combinational network generated by the algorithm for the
coefficient 15 in binary is given in Fig. 2. Observe that the network
is a representation of a covering problem.

After the combinational network is generated, additional
hardware (with optimization variables) is added to the network and
the variables that represent the filter coefficients are assigned to 1.
Then, all the conjunctive normal form (CNF) formulas for each gate
output are obtained. Each clause in the CNF formula is defined as a
constraint by expressing each clause as a linear inequality. Finally,
an objective function to be minimized is constructed. The objective
function is a linear combination of the optimization variables that
are associated with the partial terms in the network. A generic SAT-
based 0-1 ILP solver is used to obtain the exact solution.

In [10], an exact algorithm for the minimization of area under a
delay constraint problem is proposed where the network is
generated as in [4] and it is modified in order to handle the delay
constraints. In this algorithm, the AND gates (operations) on each
path that exceeds the minimum delay of the network are expressed
in a constraint forcing that all these operations must not be found
together in the solution. With the additional constraints, the network
is given to the 0-1 ILP solver to obtain a minimum area solution.

B. Heuristic Algorithms
There have been a number of proposed techniques on the

optimization of area of the FIR digital filters. These works are based
on finding common digit patterns in the coefficients. These methods
range from graph based coefficient synthesis techniques [5], [6] and

Figure 2. The network generated for the coefficient 15 in binary.

exhaustive enumeration of all possible digit patterns [7] to
incorporation of two-term common subexpressions [1].

Despite the large number of techniques proposed for
optimization of area, there are not many methods that also consider
the delay of the design, which is essential for high-speed systems.
In [9] and [11], while minimizing area, delay is also considered in
the selection criterion of the partial terms. In [8], initially, the
number of addition/subtraction operations is reduced and then, a set
of transformations in an iterative loop is used to reduce the delay.

C. Proposed Heuristic Algorithms
The heuristic algorithms proposed in this paper use the

combinational network generated by the exact algorithm presented
in [4]. These algorithms synthesize each coefficient one at a time by
selecting an operation among the set of possible operations. The
selection is done in a greedy manner by considering not-yet
synthesized coefficients. Since these algorithms do not attempt to
solve the minimum cover problem presented by the network
exactly, they may find an optimal solution (i.e., local minimum)
rather than the minimum (i.e., global minimum). However, they can
handle larger problems in a reasonable time.

The proposed heuristics consider much more possible
implementations of a coefficient than the heuristic algorithms that
find pairs of the most common non-zero digits [2] or the two-term
common subexpressions [1], [9]. Also, our heuristic algorithm
designed for the optimization of area under a delay constraint
problem is implemented in a top-down approach (from primary
outputs to primary inputs) where it has more possibilities to
synthesize a partial term while controlling the delay than the
heuristic algorithm that uses a bottom-up approach [9].

III. HEURISTIC ALGORITHMS FOR DIGITAL FILTER SYNTHESIS
In this section, we describe the proposed heuristics briefly.

Initially, we present the heuristic called ASSUME-A designed for
optimization of area and then, the heuristic called ASSUME-D
designed for optimization of area under a delay constraint.

A. Area Optimization: ASSUME-A Algorithm
After the network is generated as described in [4], the min-

adder and max-level values of each operation and partial term are
found by traversing from primary inputs to primary outputs in the
preprocessing phase. The min-adder is the minimum number of
operations that are required to implement an operation or a partial
term. The min-adder value of a partial term (OR gate) is determined
by finding the minimum of the min-adder values of operations
(AND gates) that implement the partial term. The min-adder value
of an operation (AND gate) is the sum of the min-adder values of

749

its inputs plus 1, if the inputs are different; otherwise it is the min-
adder value of an input plus 1. Note that the min-adder value of a
primary input is 0. The max-level is the maximum number of
operations in series that implement an operation or a partial term.
As an example, the min-adder and max-level value of the partial
term 15 in the network of Fig. 2 is 2 and 3 respectively.

ASSUME-A has two main parts: minimum and optimal as the
heuristic algorithm of [5]. The algorithm is as follows:

1. Store the pre-processed coefficients of the filter (primary
outputs of the network, all made positive and odd) in a set
called Aset and label them as unimplemented.

2. The minimal part: For each element labeled as
unimplemented in Aset, if the element is implemented in the
network with an operation whose inputs are primary inputs
or in Aset then, synthesize the element with the operation
and label it as implemented.

3. If there is an element left labeled as unimplemented in
Aset, go to Step 4 otherwise return the solution.

4. The optimal part: Take an unimplemented element from
Aset, Aset(i), that has the lowest max-level value.

5. For each operation, O(j), that implements Aset(i), set its
cost value, C(j), to its min-adder value as determined in the
preprocessing phase and

For each unimplemented element in Aset, Aset(k) ki ≠ ,
a. Determine Cbefore(k) by finding the min-adder

value of Aset(k) when the min-adder values of the
elements in Aset are assigned to 0. (Cbefore(k) is the
cost of implementation of Aset(k) at this phase of
the algorithm, since all elements in Aset will be
implemented at the end of the algorithm.)

b. Determine Cafter(k) in the same way as done in a)
but also, assume that the inputs of O(j) are in Aset.
(Cafter(k) is the cost of implementation of Aset(k),
if Aset(i) is synthesized with O(j) at this phase of
the algorithm.)

c. Update the cost value, C(j), as C(j) = C(j) -
(Cbefore(k) - Cafter(k)).

6. After the cost value of each operation, C(j), is obtained,
select the operation to synthesize Aset(i) that has the
minimum cost. If there are operations that have the same
minimum cost, select the operation that has the smallest min-
adder value among these operations. Label Aset(i) as
implemented.

7. Add the inputs of the selected operation to Aset that do not
exist in Aset, label them as unimplemented, and go to Step 2.

Note that in the first iteration, the elements of Aset are the
coefficients of the filter, and in later iterations, Aset includes the
partial terms. Also, observe that if the algorithm returns a solution
in the first iteration, the solution found is a minimum area solution.

B. Area Optimization under a Delay Constraint: ASSUME-D
Algorithm
ASSUME-D can find a solution with either the minimum delay

of the network or a user-specified delay constraint. In this paper, we
describe the heuristic algorithm as it deals with the minimum delay
of the network. After the network is obtained as described in [4], the
min-adder, min-level, and max-level values of each operation and
partial term are found in the preprocessing phase of the algorithm.
The min-level is the minimum number of operations in series that
implement an operation or a partial term. As an example, the min-
level value of the partial term 15 in the network of Fig. 2 is 2. The

minimum delay of the network, min_delay, is the maximum of the
min-level values of the primary outputs.

ASSUME-D synthesizes the coefficients of the filter one at a
time in a top-down approach while controlling the delay. The
algorithm is as follows:

1. Store the pre-processed coefficients of the filter (primary
outputs of the network, all made positive and odd) in a set
called Dset and label them as unimplemented. Assign the
delay limit value of each element in Dset to min_delay.

2. Take an element labeled as unimplemented from Dset,
Dset(i), that has the highest max-level value. Store the
operations that implement Dset(i) and whose min-level
values do not exceed the delay_limit(i) in an empty set
called Oset.

3. If Dset(i) can be implemented with an operation in Oset
whose inputs are primary inputs or in Dset then, synthesize
Dset(i) with the operation and label it as implemented.
Assign the delay limit of each input of the operation,
delay_limit(j), to delay_limit(i)-1, if delay_limit(j) is greater than
delay_limit (i)-1.

4. Otherwise, choose an operation from Oset to synthesize
Dset(i) as done in ASSUME-A (Step 5-6) and label it as
implemented. If the input(s) of the operation is not in Dset
then, add this element to Dset, label it as unimplemented,
and assign its delay limit value to delay_limit(i)-1. If the
input(s) of the operation is in Dset then, assign the delay
limit of the input, delay_limit(j), to delay_limit(i)-1, if
delay_limit(j) is greater than delay_limit(i)-1.

5. If there is an element left labeled as unimplemented in
Dset, go to Step 2 otherwise, return the solution.

IV. EXPERIMENTAL RESULTS
In this section, we present the results of the proposed heuristic

algorithms and compare them with the exact and heuristic
algorithms. The experiments are categorized in two sets according
to difficulty levels for the exact algorithms to compute a solution.

As the first experiment set, randomly generated instances
between the number of 10 and 70 coefficients defined in 10 bit-
width were used. There are 30 instances for each number of
coefficients and the coefficients are expressed in MSD. We
compared the results of proposed heuristic algorithms with the exact
algorithms [10] in terms of the average additional operations. The
results are given in Fig. 3.

Figure 3. Results on randomly generated coefficients in 10 bit-width.

750

TABLE I. EXPERIMENTAL RESULTS ON FILTER INSTANCES

adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step adder step
1 18 3 19 3 16 3 16 3 16 3 16 3 16 3 18 3 16 3 16 3 16 3 16 3
2 25 3 25 3 23 3 23 3 23 4 22 4 22 4 26 3 23 3 23 3 22 3 22 3
3 35 3 35 3 36 3 35 3 35 3 34 3 34 3 36 3 35 3 35 3 34 3 34 3
4 57 3 55 4 50 4 49 4 51 4 48 5 47 4 57 3 50 3 49 3 48 3 47 3
5 37 3 37 4 35 4 35 4 34 4 34 4 33 4 37 3 35 3 35 3 35 3 33 3
6 58 4 55 4 52 4 51 4 50 4 49 4 49 4 58 3 52 3 52 3 49 3 50 3
7 74 4 71 4 67 4 66 4 70 4 63 4 time time 72 3 71 3 68 3 65 3 time time
8 101 4 96 4 90 4 87 4 91 4 85 4 time time 95 3 93 3 91 3 86 3 time time

Total 405 27 393 29 369 29 362 29 209 22 203 23 201 22 399 24 375 24 369 24 204 18 202 18

Exact [10] [3] ASSUME-A
MSD

[9] ASSUME-D Exact [10] ASSUME-D Exact [10]

Minimum Area Solutions Minimum Area under a Delay Constraint Solutions

Filter CSDCSD MSD
[1] [2] Exact [10]ASSUME-A

In this experiment, we observe that the difference of average
number of operations between heuristic and exact algorithms is less
than one operation, even close to half. This can be interpreted as if
for half the instances we find a solution with one single extra adder
and for the other half we actually find the minimum solution!

As the second experiment set, we used the filter instances
presented in [3]. The experimental results are given in Table I. In
this table, the first two sets of columns under CSD and MSD show
the solutions for the problem of optimization of area and the last
two sets of columns under CSD and MSD show the solutions for
the problem of optimization of area under a delay constraint. The
results are obtained on CSD and MSD representation of the
coefficients, since these representations present different networks
and solutions. The proposed heuristics are compared with exact [10]
and heuristic [1]-[3], [9] algorithms. The results of the heuristics
presented in [2] and [3] are taken from [3] and the results of the
heuristics introduced in [1] and [9] are provided by the coauthor of
these papers, Anup Hosangadi. In this table, adder denotes the
number of operations and step denotes the maximum of number of
operations in series needed to synthesize a filter. The results given
in italic on the exact algorithms’ column indicate that an optimal
solution rather than the minimum is obtained in two hours and time
indicates that no solution is found in two hours. The results given in
the Total row for the MSD column are the sums of the numbers
between Filter 1 and 6.

In this experiment, we observe that ASSUME-A and
ASSUME-D find the same or better solutions than the other
heuristics (except Filter 3 in CSD for ASSUME-A). Note that since
the proposed algorithms are heuristics, ASSUME-D can find better
solutions (e.g., Filter 3 in CSD) than ASSUME-A, even if
ASSUME-D looks for a solution in a restricted search space.
Besides, ASSUME-D can find a better solution than the optimal
found by the exact algorithm (i.e., Filter 6 in MSD). We note that
the average execution times of the implementations of ASSUME-A
and ASSUME-D on MATLAB for the Filter 7 and 8 in MSD are
257 and 1413 seconds respectively, whereas the exact algorithms
could not conclude in two hours.

V. CONCLUSIONS
In this paper, we introduced two heuristic algorithms designed

for the optimization of area and optimization of area under a delay
constraint. The heuristics search a solution on the network as
generated in the exact algorithm and use a greedy method in
choosing the operations to synthesize the coefficients. We

compared our heuristics with exact and prominent heuristic
algorithms proposed in this research area. It is shown that the
proposed heuristics can find exact solutions, or close, on filter
instances where an exact algorithm cannot conclude and find better
solutions on overall instances than the existing heuristics.

ACKNOWLEDGMENT
We thank to Anup Hosangadi for his help in providing us the

results of their algorithms on filter instances.

REFERENCES
[1] A. Hosangadi, F. Fallah, and R. Kastner, “Reducing hardware

complexity of linear DSP systems by iteratively eliminating two term
common subexpressions,” Proc. of ASP-DAC, pp. 523-528, 2005.

[2] R. I. Hartley, “Subexpression sharing in filters using canonic signed
digit multipliers,” IEEE Transactions on Circuits and Systems II, vol.
43, no. 10, pp. 677-688, 1996.

[3] I. -C. Park and H. -J. Kang, “Digital filter synthesis based on minimal
signed digit representation,” Proc. of DAC, pp. 468-473, 2001.

[4] P. Flores, J. Monteiro, and E. Costa, “An exact algorithm for the
maximal sharing of partial terms in multiple constant
multiplications,” Proc. of ICCAD, pp. 13-16, 2005.

[5] A. Dempster and M. MacLeod, “Use of minimum-adder multiplier
blocks in FIR digital filters,” IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 42, no. 9, pp.
569-577, 1995.

[6] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”
IEE Proceedings G, vol. 138, no. 3, pp. 401-412, 1991.

[7] R. Pasko, P. Schaumont, V. Derudder, S. Vernalde, and D.
Durackova, “A new algorithm for elimination of common
subexpressions,” IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, vol. 18, no. 1, pp. 58-68, 1999.

[8] H. -J. Kang and I. -C. Park, “FIR filter synthesis algorithms for
minimizing the delay and the number of adders,” IEEE Transactions
on Circuits and Systems II, vol. 48, no. 8, pp. 770-777, 2001.

[9] A. Hosangadi, F. Fallah, and R. Kastner, “Simultaneous optimization
of delay and number of operations in multiplierless implementation of
linear systems,” Proc. of IWLS, 2005.

[10] L. Aksoy, E. Costa, P. Flores, and J. Monteiro, “Optimization of area
under a delay constraint in digital filter synthesis using SAT-based
integer linear programming,” Proc. of DAC, pp. 669-674, 2006.

[11] E. Costa, P. Flores, and J. Monteiro, “Maximal sharing of partial
terms in MCM under minimal signed digit representation.,” Proc. of
ECCTD, pp. 221-224, 2005.

751

