
Optimization of Area under a Delay Constraint in Multiple
Constant Multiplications

LEVENT AKSOY
Istanbul Technical University

Istanbul, TURKEY
aksoyl@itu.edu.tr

ECE OLCAY GUNES
Istanbul Technical University

Istanbul, TURKEY
ece.gunes@itu.edu.tr

PAULO FLORES
INESC-ID/IST

Lisbon, PORTUGAL
pff@inesc-id.pt

Abstract: The Multiple Constant Multiplications (MCM), i.e., the multiplication of a variable by a set of constants,
has been a central operation and performance bottleneck in many digital signal processing applications such as,
image and video processing, digital television, and wireless communications. Since the design of multiplications
is expensive in terms of area, delay, and power consumption in hardware, the area-delay optimization of the MCM
operation has often been accomplished by using the shift-adds architecture. However, most of the previously
proposed algorithms have focused on the optimization of area ignoring the crucial tradeoff between area and delay
of the computation. In this paper, we introduce an approximate algorithm that can find near optimal area solutions
under the user specified delay constraint. It is shown by the experimental results that the proposed algorithm finds
better area-delay solutions than the previously proposed efficient algorithms.

Key–Words: Multiple constant multiplications, area and delay optimization, high-level synthesis, digital FIR filters.

1 Introduction
In several computationally intensive operations, such
as Finite Impulse Response (FIR) filters and fast
Fourier transforms, the same input is multiplied by
a set of coefficients, an operation known as Multi-
ple Constant Multiplications (MCM). These opera-
tions are typical in Digital Signal Processing (DSP)
applications and hardwired dedicated architectures are
the best option for maximum performance and mini-
mum power consumption. However, the design com-
plexity of these applications is dominated by a large
number of constant multiplications leading to exces-
sive area, delay, and power consumption even if im-
plemented in a full custom integrated circuit. Since
the values of the constants are known beforehand, the
constant multiplications can be designed using addi-
tion/subtraction and shifting operations in the shift-
adds architecture [12]. When the same input is to be
multiplied by a set of constant coefficients, signifi-
cant reductions in hardware can also be obtained by
sharing the partial products of the input among the set
of multiplications. Since shifts are free in terms of
hardware, the MCM problem is defined as finding the
minimum number of addition/subtraction operations
to implement the constant multiplications. The MCM
problem has been proven to be NP-complete in [5].

As a small example, suppose the multiplication
of multiple constants 11 and 13 by the variable x.
Observe from Figure 1(a) that the multiplierless im-
plementation without partial product sharing requires
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Figure 1: The shift-add implementations of constant
multiplications 11x and 13x: (a) without partial prod-
uct sharing; (b) with partial product sharing.

four operations. However, the sharing of partial prod-
uct 9x in both multiplications reduces the number of
required operations to 3 as given in Figure 1(b).

In the last two decades, many efficient algorithms
have been proposed for the optimization of the num-
ber of operations in MCM. These methods can be cat-
egorized in two classes: the Common Subexpression
Elimination (CSE) and the graph-based algorithms.
The CSE algorithms basically find common non-zero
digit patterns on the representations of the constants.
The exact CSE algorithms that formalize the MCM
problem as a 0-1 Integer Linear Programming (ILP)
problem and find the minimum number of operations
solution of the MCM problem by maximizing the par-
tial product sharing have been proposed in [1, 10]. On
the other hand, the graph-based algorithms are not re-
stricted to a particular number representation and syn-
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thesize the constants iteratively by building a graph.
The exact graph-based algorithm that searches all pos-
sible partial products in a breadth-first manner has
been proposed in [3]. It is shown in [3] that the graph-
based algorithm finds superior solutions than the exact
CSE algorithm [1], since it considers more possible
implementations of a constant. The prominent graph-
based heuristics have been introduced in [2, 8, 13].

However, in many designs, particularly in DSP
systems, performance is an important and crucial pa-
rameter. Hence, circuit area is generally expandable
in order to achieve a given performance target. Al-
though the delay is dependent on several implemen-
tation issues, such as circuit technology, placement,
and routing, the delay in MCM is generally consid-
ered as the number of adder-steps, which denotes the
maximal number of adders/subtracters in series to pro-
duce any constant multiplication [11]. Also, as shown
in [7], the number of adder-steps in MCM has signif-
icant impacts on the power consumption. Despite the
large number of techniques proposed for the optimiza-
tion of area, there are only a few methods [1, 6, 7, 11]
that also consider the delay of the design. However,
these algorithms are not equipped with the recently
proposed efficient graph-based heuristics [2, 13].

In this work, we introduce an approximate graph-
based algorithm designed for the optimization of the
number of operations under a delay constraint that is
able to compensate the decrease in delay with the in-
crease in area efficiently. To do this, we resort to the
graph-based heuristic of [2] designed for the MCM
problem that finds better solutions than the prominent
graph-based heuristics of [8, 13]. To deal with the de-
lay constraint, in the selection of operations that im-
plement the constant multiplications, we take into ac-
count the delay introduced by each operation. The ap-
proximate algorithm is applied on randomly generated
and FIR filter instances, and it is observed that our al-
gorithm finds better solutions in terms of both area and
delay than the previously proposed algorithms.

The rest of the paper is organized as follows: Sec-
tion 2 gives the background concepts and the problem
definitions. The proposed approximate graph-based
algorithm is introduced in Section 3 and experimen-
tal results are given in Section 4. Finally, Section 5
concludes the paper.

2 Background
In this section, initially, we introduce the basic no-
tations in the graph-based algorithms and the MCM
problem. Then, we present the MCM problem under
a delay constraint. Finally, we give an overview of the
previously proposed graph-based algorithms.
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Figure 2: Representation of A-operation in a graph.

2.1 The MCM Problem

In the graph-based algorithms, the main operation,
called A-operation in [13], is an operation with two
integer inputs and one integer output that performs a
single addition or a subtraction, and an arbitrary num-
ber of shifts. It is defined as follows:

w = A(u,v) = |(u¿ l1)+(−1)s(v¿ l2)| À r (1)

= |2l1u+(−1)s2l2v|2−r

where l1, l2 ≥ 0 are integers denoting left shifts, r ≥ 0
is an integer indicating the right shift, and s ∈ {0,1}
is the sign that denotes the addition/subtraction opera-
tion to be performed. The operation that implements a
constant can be represented in a graph where vertices
are labeled with the constants and edges are labeled
with the sign and shifts as given in Figure 2.

In the MCM problem, the complexity of an adder
and a subtracter is assumed to be equal in hardware.
It is also assumed that the sign of the constant can
be adjusted at some part of the design and the shifting
operation has no cost, since shifts can be implemented
with only wires in hardware. Thus, in the MCM prob-
lem, only positive and odd constants are considered.
Observe from Eqn. (1) that in the implementation of
an odd constant considering odd constants at the in-
puts, one of the left shifts, l1 or l2, is zero and r is
zero, or l1 and l2 are zero and r is greater than zero.
In finding an operation to implement a constant, it is
necessary to constrain the left shifts l1 and l2 other-
wise, a constant can be implemented in infinite ways.
As shown in [8], it is sufficient to limit the shifts by
the maximum bit-width of the constants to be imple-
mented, i.e., bw, and allowing larger shifts than bw
does not improve the solutions obtained with the for-
mer limits. In the algorithms of [2, 3, 13], the number
of shifts is allowed to be at most bw+1.

Thus, the MCM problem can be defined as;

Definition 1 THE MCM PROBLEM. Given the tar-
get set including the positive and odd unrepeated tar-
get constants, T = {t1, . . . , tm} ⊂ N, find the smallest
ready set R = {r0,r1, . . . ,rn} with T ⊂ R such that
r0 = 1 and for all rk with 1 ≤ k ≤ m, there exist ri,r j
with 0≤ i, j < k and an operation rk = A(ri,r j).

Hence, the number of operations required to im-
plement the MCM is |R|−1 [13].
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Figure 3: Implementations of the target set {3,13,219,221}: (a) with the minimum number of operations; (b) with
the minimum number of adder-steps.

2.2 The MCM Problem under a Delay Con-
straint

A single constant represented with n non-zero digits
can be implemented in a tree of operations with the
minimum latency, i.e., dlog2 ne adder-steps, or in a
chain of operations with the maximum latency, i.e.,
n− 1 adder-steps. Obviously, the maximum of the
minimum number of adder-steps of each constant in
an MCM problem defines the minimum delay of the
computation. Hence, for a target set, T = {t1, . . . , tm},
the minimum delay in MCM [11] is determined as;

min delay = max
ti
{dlog2S(ti)e} (2)

where S(ti) is the number of non-zero digits in the
Canonical Signed Digit (CSD) representation of the
target constant ti. Note that the CSD representation
of a constant includes minimum number of non-zero
digits [4].

The minimization of the number of operations un-
der a delay constraint problem can be defined as;

Definition 2 THE MCM PROBLEM UNDER A DELAY
CONSTRAINT. Given a set of target constants and a
maximum number of adder-steps, find the minimum
number of addition/subtraction operations required to
implement the MCM such that the user-specified max-
imum number of adder-steps is not exceeded.

As an example, consider a set of target constants
T = {3,13,219,221}. The minimum delay of the
MCM implementation is 2 adder-steps as computed
by Eqn. (2). Figure 3(a) presents the minimum num-
ber of operations solution [3] including 4 operations
with 4 adder-steps. However, as can be observed from
Figure 3(b), the solution obtained by our approxi-
mate algorithm under the minimum delay constraint
includes 6 operations with 2 adder-steps. We note that
the solution given in Figure 3(b) is the minimum num-
ber of operations solution under the minimum delay
constraint guaranteed by the graph-based heuristic [2].

As can be observed from Figure 3, the solution
under the minimum delay constraint includes number
of operations equal to, or generally, greater than that
of the minimum number of operations solution.

2.3 Related Work

In the graph-based heuristic of [11], three methods
that reduce the number of adder-steps are applied
in BHM [8] and RAG-n [8] algorithms designed for
the MCM problem, leading to two algorithms called
SLBHM and SLRAGn respectively. The graph-based
heuristic of [7], called C1, initially, finds a solution us-
ing BHM or RAG-n including generally more number
of operations but, with a small number of adder-steps
and then, reduces the number of operations without
increasing the delay in an iterative loop. The heuristic
of [6] controls the increase in delay by choosing an
operation that yields the least total number of adder-
steps during the synthesis of a constant in each itera-
tion. However, note that the algorithms of [6, 7] can-
not find a solution under a specific delay constraint.

3 The Approximate Algorithm
In the approximate graph-based algorithm, called
ADA, the target constants are implemented includ-
ing fewest number of intermediate constants into the
ready set such that at the end of the algorithm, for each
target and intermediate constant in the ready set, there
is an A-operation as given in Eqn. (1) where the inputs
are the elements of the ready set. In each iteration of
the algorithm, an intermediate constant that can syn-
thesize the greatest number of target constants without
violating the delay constraint is selected.

In the preprocessing phase of the approximate
graph-based algorithm, the target constants are made
positive and odd, added to the target set, T , without
repetition, and the maximum bit-width of the target
constants, bw, is determined. The pseudo-code of the
ADA algorithm is given in Algorithm 1.



Algorithm 1 The ADA algorithm. The algorithm
takes the target set, T , including target constants to
be implemented and the delay constraint, dc, not to
be exceeded, and returns the ready set, R, including 1,
target, and intermediate constants.

ApproximateSearchUdc(T, dc)
1: R←{1}
2: (R, T ) = Synthesize(dc, R, T )
3: if T = /0 then
4: return R
5: else
6: while 1 do
7: for j = 1 to 2bw+1−1 step 2 do
8: if dlog2S( j)e< dc then
9: if j /∈ R and j /∈ T then

10: (A, B) = Synthesize(dc, R, { j})
11: if B = /0 then
12: (A, B) = Synthesize(dc, A, T )
13: if B = /0 then
14: A = RemoveRedundant(A, dc)
15: return A
16: else
17: cost j = EvaluateCost(B)
18: Find the intermediate constant, ic, with the min-

imum cost among all possible intermediate con-
stants, j.

19: R← R∪{ic}
20: (R, T ) = Synthesize(dc, R, T )

Synthesize(dc, R, T)
1: repeat
2: isadded = 0
3: for k = 1 to |T | do
4: if tk can be synthesized with the elements of R

without violating dc then
5: isadded = 1
6: R← R∪{tk}
7: T ← T \{tk}
8: until isadded = 0
9: return (R, T )

EvaluateCost(T)
1: cost = 0
2: for k = 1 to |T | do
3: cost = cost + SingleConstantCost(tk)
4: return cost

RemoveRedundant(R, dc)
1: for k = 1 to |R| do
2: if rk is an intermediate constant then
3: R← R\{rk}
4: (R, T ) = Synthesize(dc, {1}, R)
5: if T 6= /0 then
6: R← R∪{rk}
7: return R

In the main function of ADA, Approximate-
SearchUdc, initially, the ready set including only 1 is
formed and then, using the Synthesize function, all the
target constants that can be implemented with the el-
ements of the ready set are found iteratively without
exceeding the delay constraint, i.e., dc. If all the tar-
get constants are synthesized at this phase of the algo-
rithm, then the found solution is the minimum num-
ber of operations solution under the delay constraint.
Otherwise, in each iteration of the infinite loop, i.e.,
the line 6 of the algorithm, an intermediate constant is
added to the ready set until there is no element left
in the target set. The ADA algorithm, as given on
lines 7-11 of its main function, considers the positive
and odd constants, whose minimum delay implemen-
tations are less than dc, that are not included in the
current ready and target sets and can be implemented
with the elements of the current ready set, as possi-
ble intermediate constants. Note that the ready and
target sets denoted by A and B represent the working
ready and target sets respectively. Then, with the in-
clusion of the possible intermediate constant into the
working ready set its implications on the current target
set are found by the Synthesize function. If there ex-
ist unimplemented target constants in the working tar-
get set, the cost of unimplemented target constants is
found in terms of their single minimum implementa-
tion costs [9] stored in a look-up table and is assigned
to the cost value of the intermediate constant using the
EvaluateCost function as given on line 17. After the
cost value of each intermediate constant is found, the
one with the minimum cost is chosen to be added to
the current ready set and the target constants that can
be implemented with the elements of the ready set are
found. The infinite loop is interrupted whenever there
is no element left in the working target set thus, the
solution is obtained with the working ready set. How-
ever, note that by adding an intermediate constant to
the ready set in each iteration, the previously added
intermediate constants can be redundant due to the re-
cently added constant. Hence, the RemoveRedundant
function is applied on the final ready set to remove the
redundant intermediate constants. After the ready set
is obtained, each element in the ready set, except 1, is
synthesized with a single operation whose inputs are
the elements of the ready set.

As a small example, again consider the target set,
T = {3,13,219,221}, when the delay constraint, dc,
is 2. After the ready set including only 1 is formed,
initially, the target constant 3 and then, 13 are re-
moved from the target set to the ready set, since each
of them can be implemented using a single operation
with the elements of the current ready set without vi-
olating dc. Thus, the current target set includes two
unimplemented constants, i.e., 219 and 221, and in-
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Figure 4: Implementation of the target set
{3,13,219,221} with 3 adder-steps.

termediate constants are required. In the first iteration
of the algorithm, the intermediate constant 7 that can
be synthesized as 7 = 1¿ 3−1 is chosen and added
to the ready set. Then, the target constant 221 is syn-
thesized with the elements of the current ready set and
added to the ready set. In the second iteration of the
algorithm, the intermediate constant 5 is selected and
the last target constant 219 is synthesized. The solu-
tion of the ADA algorithm including 6 operations with
2 adder-steps is given in Figure 3(b). Figure 4 presents
the solution of the ADA algorithm when dc is 3. The
solution of the algorithm when dc is 4, is given in Fig-
ure 3(a) where the target constants are synthesized in
the optimal part of the algorithm. Observe that the
amount of decrease in delay is equal to the amount of
increase in area on this example.

4 Experimental Results
In this section, we present the results of the ADA al-
gorithm and compare with those of the graph-based
heuristics [7, 11] on randomly generated and FIR fil-
ter instances. The C1 algorithm [7] was provided by
O. Gustafsson.

As the first experiment set, we used randomly
generated instances where constants are defined un-
der 14 bit-width. The number of constants ranges be-
tween 10 and 100, and for each of them, we generated
30 instances, totally 300 instances. Figure 5 presents
the results of the graph-based heuristic [2] designed
for the MCM problem, and the C1 [7] and ADA algo-
rithms designed for the MCM problem under a delay
constraint. In the ADA algorithm, the delay constraint
is set to the minimum delay of the MCM problem
computed by Eqn. (2).

As can be easily observed from Figure 5, a re-
striction on the delay of the design yields solutions
including more number of operations with respect to
those obtained without a delay constraint. However,
we note that on the instances including 20 constants,
while the difference of average number of operations
between the graph-based heuristic [2] and the ADA al-
gorithm is 3.6, the difference of average number of
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Figure 5: Results of the graph-based algorithms on
randomly generated instances: (a) Area; (b) Delay.

adder-steps between these algorithms is 4.6, meaning
that the amount of decrease in delay is less than the
amount of increase in area. Recall that the C1 algo-
rithm [7] does not aim to find a solution under the min-
imum number of adder-steps. However, as can be ob-
served from Figure 5(a)-(b), on instances including 10
and 20 constants, the ADA algorithm finds better area-
delay solutions than the C1 algorithm. We also ran the
ADA algorithm with the delay constraint that is equal
to the adder-step of the solution obtained by the C1
algorithm on each instance. In this case, it is observed
that the difference of average number of operations
between the C1 and ADA algorithms is 1.18 on over-
all 300 instances. Note that the number of instances
that the C1 algorithm finds a better solution than the
ADA algorithm is only 1 on these 300 instances.

As the second experiment set, we used three FIR
filter instances given in [11]. The specifications of fil-
ters are presented in Table 1 where pass and stop are
normalized frequencies that define the passband and
stopband respectively, #tap is the number of coeffi-
cients, and width is the bit-width of the coefficients.



Table 1: Characteristics of the FIR filters.

Filter pass stop #tap width

1 0.10 0.15 60 14
2 0.15 0.20 60 16
3 0.10 0.12 100 18

The results of the graph-based algorithms under
different number of adder-steps are given in Table 2.
In this table, adder and step denote the number of op-
erations and the number of adder-steps respectively.
Since the SLRAGn algorithm of [11] generally ob-
tains better results than its SLBHM algorithm, the re-
sults of the SLRAGn algorithm are given in this table.

As can be easily observed from Table 2, the ADA
algorithm finds similar or better area-delay solutions
than the graph-based heuristics of [7, 11]. Note that
the reason for the large increases on number of opera-
tions when the delay constraint is decreased from 4 to
3 is simply because in the latter case, there are much
less possible intermediate constants due to the delay
constraint yielding poor sharing.

5 Conclusions
In this work, we introduced an approximate graph-
based algorithm designed for the MCM problem un-
der a delay constraint. The proposed algorithm is
based on an efficient graph-based heuristic designed
for the MCM problem. To deal with the delay con-
straint, in each iteration of the algorithm, the inter-
mediate constants that do not violate the delay con-
straint are considered. It was observed from the ex-
perimental results that the approximate algorithm bal-
ances the area and delay of the design efficiently and
obtains better area-delay solutions than the previously
proposed prominent graph-based heuristics.
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