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ABSTRACT
Bit-parallel realization of the multiplication of a variable by a set
of constants using only addition, subtraction, and shift operations
has been explored extensively over the years as large number of
constant multiplications dominate the complexity of many digital
signal processing systems. On the other hand, digit-serial architec-
tures offer alternative low-complexity designs since digit-serial op-
erators occupy less area and are independent of the data wordlength.
This paper introduces an approximate algorithm that targets the op-
timization of gate-level area in digit-serial constant multiplications
under the shift-adds architecture. Experimental results indicate that
our approximate algorithm gives better solutions than the previ-
ously proposed algorithms in terms of area at gate-level and yields
alternative low-complexity designs relatively to the bit-parallel de-
sign. It is also observed on digit-serial filter designs that the use
of shift-adds architecture yields area reduction up to 43.6% with
respect to designs that use generic digit-serial constant multipliers.

Categories and Subject Descriptors
B.2.0 [Arithmetic and Logic Structures]: General; B.5.2 [Register-
Transfer-Level Implementation]: Design Aids

General Terms
Algorithms, Design

Keywords
Multiple constant multiplications (MCM), digit-serial arithmetic,
gate-level area optimization, finite impulse response filters

1. INTRODUCTION
Multiplication of a variable by a set of constants, generally known

as Multiple Constant Multiplications (MCM), is essential in many
Digital Signal Processing (DSP) applications such as, digital Finite
Impulse Response (FIR) filters (illustrated in Figure 1), Fast Fourier
Transforms (FFT), and Discrete Cosine Transforms (DCT). How-
ever, the implementation of a multiplication operation in hardware
is considered to be expensive as it occupies significant area and
has large delay. Since the constants in multiplications are deter-
mined beforehand by the DSP algorithms, the full-flexibility of a
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Figure 1: Transposed form of a digital FIR filter design.
multiplier is not necessary and the constant multiplications can be
replaced by addition/subtraction and shift operations [12].

For the implementation of constant multiplications using addi-
tion/subtraction and shift operations, a straightforward method, gen-
erally known as the digit-based recoding [7], initially defines the
constants in multiplications in binary representation. Then, for
each 1 in the binary representation of the constant, according to its
bit position, it shifts the variable and adds up the shifted variables to
obtain the result. As a simple example, consider the constant mul-
tiplications 29x and 43x using the digit-based recoding method [7].
The decompositions of 29x and 43x in binary are listed as follows:

29x = (11101)binx = x� 4+ x� 3+ x� 2+ x

43x = (101011)binx = x� 5+ x� 3+ x� 1+ x

and require 6 addition operations as illustrated in Figure 2(a).
However, the implementation of constant multiplications in a

shift-adds architecture enables the sharing of common partial prod-
ucts among the constant multiplications, that significantly reduces
the area and power dissipation of the MCM design. Hence, the
MCM problem is defined as finding the minimum number of ad-
dition/subtraction operations that implement the constant multipli-
cations, since shifts can be realized using only wires in hardware.
Note that the MCM problem is an NP-complete problem [4].

The algorithms designed for the MCM problem can be catego-
rized in two classes as Common Subexpression Elimination (CSE)
methods and graph-based (GB) techniques. While the maximiza-
tion of the partial product sharing is common in these algorithms,
they differ in the search space that they explore. The CSE algo-
rithms [1, 13] initially define the constants under a particular num-
ber representation namely, binary, Canonical Signed Digit (CSD),
or Minimal Signed Digit (MSD), and then, find the “best" subex-
pression, generally the most common, among the constant multi-
plications. The GB algorithms [2, 6, 14] are not restricted to any
particular number representation and consider a large number of
alternative implementations of a constant multiplication, yielding
better solutions than the CSE algorithms as shown in [2, 14].

Returning to our example in Figure 2, the exact CSE algorithm [1]
gives a solution with 4 operations by finding the most common par-
tial products 3x = (11)binx and 5x = (101)binx when constants are
defined under binary, (Figure 2(b)). The exact GB algorithm [2]
finds the minimum number of operations solution with 3 opera-

61



Figure 2: Shift-adds implementations of 29x and 43x: (a) with-
out partial product sharing [7]; with partial product sharing:
(b) the algorithm of [1]; (c) the algorithm of [2].
tions by sharing the common partial product 7x in both multiplica-
tions, (Figure 2(c)). Observe that the partial product 7x = (111)binx
cannot be extracted from the binary representations of both multi-
plications 29x and 43x in the exact CSE algorithm [1].

However, all these algorithms assume that the input data x is
processed in parallel and hence, shifts do not represent any cost in
parallel processing since they are implemented with wires. On the
other hand, in digit-serial arithmetic, the data words are divided into
digit sets, consisting of d bits, that are processed one at a time [8].
In this case, although the addition/subtraction operations are real-
ized using low-complexity digit-serial operations, the implementa-
tion of shifts requires D flip-flops. Hence, the optimization algo-
rithms should consider the sharing of shifts as well as the sharing
of addition/subtraction operations while implementing digit-serial
constant multiplications under the shift-adds architecture.

Hence, in this paper, we introduce a GB algorithm that focuses
on the optimization of gate-level area in the digit-serial MCM de-
sign. The experimental results on randomly generated constants
and FIR filter instances indicate that our GB algorithm yields digit-
serial MCM designs using less area when compared to those ob-
tained by the previously proposed algorithms. It is also shown that
the digit-serial realization of an FIR filter yields alternative low-
complexity filter designs in addition to its bit-parallel realization
and the design of the digit-serial FIR filter under the shift-adds ar-
chitecture yields significant savings in area when compared to those
implemented using generic digit-serial constant multipliers [9].

The rest of the paper proceeds as follows. Section 2 gives the
background concepts. The approximate GB algorithm is described
in Section 3. Experimental results are presented in Section 4 and
finally, Section 5 concludes the paper.

2. BACKGROUND
In this section, we present the main concepts on digit-serial arith-

metic, introduce the problem definitions, and give an overview on
previously proposed algorithms.

2.1 Digit-Serial Arithmetic
In digit-serial arithmetic, data words are divided into digits, with

a digit size of d bits, which are processed in one clock cycle. The
special cases of the digit-serial computation, called bit-serial and
bit-parallel processing, occur when the digit size d is equal to 1 and
input data wordlength, respectively. The digit-serial computation
plays an important role when the bit-serial implementations cannot
meet delay requirements and the bit-parallel designs require exces-
sive hardware. Thus, an optimal tradeoff between area and delay
can be obtained by changing the digit size parameter (d).

The fundamental digit-serial operations were introduced in [8].
The digit-serial addition, subtraction, and left shift operations are
depicted in Figure 3 when d is equal to 3. Notice from Figure 3(a)
that in a digit-serial addition operation, in general, the number of

Figure 3: The digit-serial operations when d is 3: (a) addition
operation; (b) subtraction operation; (c) left shift by 2 times;
(d) left shift by 4 times.

Figure 4: Bit-serial realization of shift-adds implementation of
29x and 43x given in Figure 2(c).
required full adders (FAs) is equal to d and the number of necessary
D flip-flops is always 1. The subtraction operation (Figure 3(b)) is
implemented using 2’s complement, requiring the initialization of
the D flip-flop with 1 and additional d inverter gates with respect
to the digit-serial addition operation. In a left shift operation (Fig-
ure 3(c)-(d)), the number of required D flip-flops is equal to the
amount of shift. The input-output correspondence and the number
of flip-flops cascaded serially for each input in a digit-serial left
shift operation are given in Eqn. (1) and (2) respectively, where i
ranges from 0 to d−1 and ls denotes the amount of left shift.

ai⇒ c(i + ls) mod d (1)

#FFai =
{
bls/dc if i < d− (ls mod d)
dls/de otherwise (2)

As an example on digit-serial realization of constant multipli-
cations under the shift-adds architecture, Figure 4 illustrates the
bit-serial implementation of 29x and 43x obtained by the exact GB
algorithm [2] given in Figure 2(c). The network includes 2 bit-
serial additions, 1 bit-serial subtraction, and 5 D flip-flops for all
the left shift operations. Observe from Figure 4 that at each clock
cycle, one bit of the input data x is applied to the network input and
one bit of the constant multiplication output is computed. Note that
the digit-serial design of the MCM operation occupies significantly
less area when compared to its bit-parallel design and the area of
the design is not dependent on the bit-width of the input data. How-
ever, the latency of the MCM computation is increased due to the
serial processing. Suppose that x is a 16-bit input value. To ob-
tain the actual output of 29x and 43x in the bit-serial network of
Figure 4, 21 and 22 clock cycles are required respectively1. Thus,
necessary bits must be appended to the input data x, i.e., 0s, if x
is an unsigned input or sign bits, otherwise. Moreover, in the case
of the conversion of the outputs obtained in digit-serial to the bit-
parallel format, storage elements and control logic are required.

Note that while the sharing of addition/subtraction operations re-
duces the complexity of the digit-serial MCM design (since each
addition and subtraction operation requires a digit-serial operation),

1In general, in the design of a digit-serial constant multiplication cx under
shift-adds architecture, the number of clock cycles required to obtain the
computation is d(dlog2ce+ N)/de, where N is the bit-width of the input
data and d is less than N.
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the sharing of shift operations for a constant multiplication reduces
the number of D flip-flops, and consequently, the design area. Ob-
serve from Figure 4 that two D flip-flops cascaded serially to gen-
erate the left shift of 7x by two can also generate the left shift of 7x
by one without adding any hardware cost.

2.2 Problem Definitions
For the multiplierless realization of the constant multiplications,

the fundamental operation, called A-operation in [14], is an opera-
tion with two integer inputs and one integer output that performs a
single addition or a subtraction, and an arbitrary number of shifts.
It is defined as follows:

w = A(u,v) = |2l1 u+(−1)s2l2 v|2−r (3)

where s ∈ {0,1} is the sign, which determines if an addition or a
subtraction operation is to be performed, l1, l2 ≥ 0 are integers de-
noting left shifts of the operands, and r ≥ 0 is an integer indicating
a right shift of the result.

In the MCM problem, it is supposed that the input data is pro-
cessed in parallel and hence, the shifting operation has no cost in
hardware. It is also assumed that the sign of the constant can be ad-
justed at some part of the design and the complexity of an adder and
a subtracter is equal in hardware. Thus, only positive and odd con-
stants are considered in the MCM problem. Observe from Eqn. (3)
that in the implementation of an odd constant considering any two
odd constants at the inputs, one of the left shifts, l1 or l2, is zero and
r is zero, or both l1 and l2 are zero and r is greater than zero. Also,
it is necessary to constrain the left shifts, l1 and l2, otherwise there
exist infinite ways of implementing a constant. In the algorithm
of [2], the number of shifts is allowed to be at most bw +1, where
bw is the maximum bit-width of the constants to be implemented.
Thus, the MCM problem [14] can be defined as follows:

DEFINITION 1. THE MCM PROBLEM. Given the target set com-
posed of positive and odd unrepeated target constants to be im-
plemented, T = {t1, . . . , tn} ⊂ N, find the smallest ready set, R =
{r0,r1, . . . ,rm}, with T ⊂ R, such that r0 = 1 and for all rk with
1 ≤ k ≤ m, there exist ri,r j with 0 ≤ i, j < k and an A-operation
rk = A(ri,r j).

As described in Section 2.1, the digit-serial MCM operation in-
cludes digit-serial addition and subtraction operations and D flip-
flops for the left shift operations, each having different implemen-
tation cost at gate-level. Hence, the optimization of area problem
in the digit-serial MCM operation can be defined as follows:

DEFINITION 2. THE OPTIMIZATION OF AREA PROBLEM IN
DIGIT-SERIAL MCM OPERATION. Given the digit size d and the
target set T = {t1, . . . , tn}⊂N, find the ready set R = {r0,r1, . . . ,rm}
such that under the same conditions on the ready set given in Def-
inition 1, the set of A-operations yields a digit-serial MCM design
using optimal area at gate-level.

In an A-operation that realizes a constant multiplication under
the digit-serial architecture, its right shift is always assumed to be 0
in [10, 11], since the complexity of the control logic is significantly
increased to realize the MCM operation in this case.

2.3 Related Work
For the MCM problem, the exact CSE algorithm of [1] initially

defines the target constants under a number representation and finds
all possible implementations of constant multiplications that can
be extracted from the representations of the constants. Then, the
MCM problem is formalized as a 0-1 Integer Linear Programming
(ILP) problem with constraints to be satisfied and a cost function to
be minimized. Finally, the minimum number of operations solution

is obtained using a generic 0-1 ILP solver. The exact GB algorithms
that search the minimum number of operations solution in breadth-
first and depth-first manners were introduced in [2]. An efficient
GB heuristic algorithm, called RAG-n, that includes two parts, op-
timal and heuristic, was introduced in [6]. In the optimal part, each
target constant that can be implemented with a single operation are
synthesized. If there exist unimplemented elements left in the target
set, the algorithm switches to the heuristic part. In this iterative part
of the algorithm, RAG-n initially chooses a single unimplemented
target constant with the smallest single coefficient cost evaluated
by the algorithm of [5] and then, synthesizes it with a single opera-
tion including one(two) intermediate constant(s) that has(have) the
smallest value among the possible constants. However, since the in-
termediate constants are selected for the implementation of a single
target constant in each iteration, the intermediate constants chosen
in previous iterations may not be shared for the implementation of
not-yet synthesized target constants in later iterations, thus yielding
a local minimum solution. The GB heuristic of [14], called Hcub,
includes the same optimal part of RAG-n, but uses a better heuristic
that considers the impact of each possible intermediate constant on
the not-yet synthesized target constants.

For the optimization of area problem in digit-serial MCM oper-
ation, the exact CSE algorithm of [3] formalizes this problem as
a 0-1 ILP problem taking into account the gate-level implementa-
tion cost of digit-serial operations and D flip-flops for the shifts.
Also, two GB algorithms, called RSAG-n and RASG-n, that tar-
get the reduction on the number of addition/subtraction operations
and the amount of shifts were introduced in [10, 11] respectively.
Both algorithms are based on the RAG-n algorithm designed for
the MCM problem. However, in each iteration, while the RSAG-n
algorithm chooses the intermediate constant(s) that require the min-
imum number of shifts, the RASG-n algorithm selects the interme-
diate constant(s) with the minimum cost value as done in RAG-n
but, if there are more than one possible intermediate constant, it
favors the one that requires the minimum number of shifts.

3. THE APPROXIMATE ALGORITHM
As done in algorithms designed for the MCM problem given in

Definition 1, in our approximate algorithm, called MINAS-DS, we
find the fewest number of intermediate constants such that all the
target and intermediate constants are synthesized using a single op-
eration. However, while selecting an intermediate constant for the
implementation of the not-yet synthesized target constants in each
iteration, we favor the one that can be synthesized using the least
hardware and enables to implement the not-yet synthesized target
constants in a smaller area with the available constants. After the
set of target and intermediate constants that realizes the MCM op-
eration is found, each constant is synthesized using an A-operation
that yields the minimum area in the digit-serial MCM design. In
MINAS-DS, the area of the digit-serial MCM operation is deter-
mined as the total implementation cost of each digit-serial addition,
subtraction, and shift operation, as described in Section 2.1.

In the preprocessing phase of the MINAS-DS algorithm, the target
constants to be implemented are made positive and odd, are added
to the target set, T , without repetition, and the maximum bit-width
of the target constants, bw, is determined. The main part of the
MINAS-DS algorithm is given in Algorithm 1.

In MINAS-DS, the ready set, R = {1}, is formed initially and
then, the target constants that can be implemented with the ele-
ments of the ready set using a single operation are found and moved
to the ready set iteratively using the Synthesize function. If there ex-
ist unimplemented constants in the target set then, in each iteration
of its heuristic part (line 3), an intermediate constant is added to the
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Algorithm 1 The MINAS-DS algorithm.

MINAS-DS(T)
1: R←{1}
2: (R, T ) = Synthesize(R, T )
3: while T 6= /0 do
4: for j = 1 to 2bw+1−1 step 2 do
5: if j /∈ R and j /∈ T then
6: impcost j = ComputeCost({ j}, R)
7: if impcost j 6= 0 then
8: A← R∪{ j}
9: impcostT = ComputeTCost(T , A)

10: iccost j = impcost j + impcostT
11: Find the intermediate constant, ic, with the minimum iccost j cost

among all possible constants, j
12: R← R∪{ic}
13: (R, T ) = Synthesize(R, T )
14: D = SynthesizeMinArea(R)
15: return D

Synthesize(R, T)
1: repeat
2: isadded = 0
3: for each tk ∈ T do
4: if tk can be implemented using a single A-operation whose inputs

are the elements of R then
5: isadded = 1
6: R← R∪{tk}
7: T ← T \{tk}
8: until isadded = 0
9: return (R, T )

ComputeCost({c}, C)
1: costc = 0
2: for all operations c = |2l1 u+(−1)s2l2 v|2−r , where u,v ∈C do
3: Determine the cost of each operation under the digit-serial architec-

ture, compute the minimum implementation cost of constant c, and
assign it to costc

4: return costc

ComputeTCost(B, C)
1: costB = 0
2: repeat
3: isadded = 0
4: for each bk ∈ B do
5: costbk = ComputeCost({bk}, C)
6: if costbk 6= 0 then
7: isadded = 1
8: C←C∪{bk}
9: B← B\{bk}

10: costB = costB + costbk
11: until isadded = 0
12: for each bk ∈ B do
13: costB = costB +maxcost(bk)
14: return costB

SynthesizeMinArea(R)
1: Find all possible implementations of target and intermediate constants

using the GenerateImp(R) function
2: Formalize the problem as a 0-1 ILP problem
3: Find D as a set of A-operations that yields minimum area under the

digit-serial architecture
4: return D

GenerateImp(R)
1: A←{1}, R← R\{1}
2: repeat
3: for each rk ∈ R do
4: (B, C) = Synthesize(A, {rk})
5: if C = /0 then
6: Find all operations, rk = |2l1 u+(−1)s2l2 v|2−r , where u,v ∈ A

and determine their implementation costs under the digit-serial
architecture

7: A← A∪{rk}
8: R← R\{rk}
9: until R = /0

ready set until there is no element left in the target set. The MINAS-
DS algorithm considers the positive and odd constants that are not
included in the current ready and target sets (lines 4-5) and that can
be implemented with the elements of the current ready set using
a single operation (lines 6-7) as possible intermediate constants.
On line 6, the ComputeCost function searches all A-operations that
compute the constant with the elements of the current ready set. If
the implementations of the constant are found then, it determines
the cost of each operation under the digit-serial architecture as de-
scribed in Section 2.1 and returns its minimum implementation cost
among possible operations. Otherwise, it returns 0 value indicating
that the constant cannot be synthesized using an operation with the
elements of the current ready set. After the possible intermediate
constant is found, it is included into the working ready set, A, and
its implications on the current target set are found by the Com-
puteTCost function. In this function, similar to the ComputeCost,
the minimum implementation costs of the target constants under the
digit-serial architecture that can be synthesized with the elements
of the working ready set A are determined. For each target constant,
tk, that cannot be implemented with the elements of A, its cost value
is determined as its maximum implementation cost, maxcost(tk),
computed as if it requires a digit-serial addition operation with digit
size d and dlog2tke D flip-flops for the left shifts. Then, the cost of
the intermediate constant is determined as its minimum implemen-
tation cost plus the implementation costs of the not-yet synthesized
target constants. After the cost value of each possible intermediate
constant is found, the one with the minimum cost is added to the
current ready set and its implications on the current target set are
found using the Synthesize function.

When there are no elements left in the target set, the Synthe-
sizeMinArea function is applied on the final ready set to find the set
of A-operations that yields a solution with the smallest area. Be-
cause, in each iteration of MINAS-DS, the cost of an intermediate
constant is determined by an operation whose inputs are available
in the current ready set. However, the recently added intermediate
constants may yield better realizations of previously added con-
stants. Hence, we formalize this problem as a 0-1 ILP problem,
similar to the formalization described in [3], where the sharing of
addition, subtraction, and shift operations is maximized consider-
ing their implementation costs. Note that the possible implementa-
tions of the constants are found by the GenerateImp function.

4. EXPERIMENTAL RESULTS
This section presents the high-level results of the MINAS-DS al-

gorithm on FIR filter and randomly generated instances and the
comparison of its results with those obtained by the previously pro-
posed algorithms designed for the MCM problem [1, 2, 6] and the
optimization of area problem in digit-serial MCM operation [3].
Also, the gate-level results on the multiplier blocks of digital FIR
filters designed using the solutions of MINAS-DS are given and
compared with those of designs obtained by the algorithms of [1,
2, 3, 6]. Finally, we introduce the gate-level results of digit-serial
FIR filters whose multiplier blocks are designed using digit-serial
constant multipliers [9] and using digit-serial addition, subtraction,
and shift operations determined by the solution of MINAS-DS. Note
that the gate-level results on the digit-serial multiplier block of an
FIR filter or on the whole digit-serial FIR filter itself also include
the storage elements and control logic that are necessary to convert
the digit-serial computation results to parallel.

To design a digit-serial MCM operation at gate-level, we imple-
mented a design tool called SAFIR that takes as inputs, the bit-width
of the input data N, the digit size parameter d, and the set of ad-
dition/subtraction operations found by a high-level algorithm and
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Table 1: Summary of results of the algorithms on randomly generated 12-bit constants when d is 1.
number Optimization of the number of operations Optimization of area in bit-serial MCM design

of Exact CSE - MSD [1] RAG-n [6] Exact GB [2] Exact CSE - MSD [3] MINAS-DS
constants (n) oper shift Icost oper shift Icost oper shift Icost oper shift Icost oper shift Icost

10 15.5 28.6 3735.6 15.1 32.5 3872.5 12.8 25.0 3161.3 17.1 15.7 3280.7 13.1 18.9 2875.8
20 26.5 42.5 6044.5 22.2 36.5 5111.4 21.4 33.2 4834.7 29.2 19.7 5239.6 21.5 26.5 4493.4
30 36.7 53.3 8091.3 30.1 39.8 6432.9 30.1 39.3 6406.5 39.9 23.1 6975.4 30.1 28.8 5847.3
40 46.0 60.6 9827.4 39.4 47.9 8195.1 39.4 47.9 8191.5 50.2 24.9 8548.1 39.4 28.5 7140.9
50 55.9 68.7 11672.5 49.0 54.4 9922.0 49.0 53.2 9860.5 59.8 27.6 10072.3 49.0 26.5 8411.8
60 65.4 77.0 13482.9 59.0 59.7 11652.5 59.0 58.7 11597.5 69.8 29.3 11595.3 59.0 23.9 9693.1
70 75.1 83.3 15238.3 68.2 62.6 13143.5 68.2 61.8 13102.9 79.5 31.0 13086.2 68.2 23.1 10980.6
80 83.2 89.5 16716.1 77.7 74.1 15111.4 77.7 74.5 15125.5 87.6 31.3 14275.5 77.7 20.7 12202.1
90 92.7 99.9 18646.9 86.8 74.7 16466.7 86.8 73.8 16414.0 97.2 32.0 15690.6 86.8 20.9 13504.9
100 101.7 104.7 20204.0 96.5 84.0 18343.9 96.5 86.0 18442.3 106.4 32.4 17034.1 96.5 19.8 14827.8

generates the VHDL code of the digit-serial MCM operation auto-
matically. The SAFIR tool has capabilities to describe a digit-serial
MCM operation using generic digit-serial constant multipliers [9]
in VHDL and to design digit-serial FIR filters. In SAFIR, we use the
Synopsys Design Compiler with the UMCLogic 0.18µm Generic
II library to synthesize digit-serial MCM and FIR filter circuits.

As the first experiment set, we used sets of instances that include
the number of constants (n) ranging from 10 and 100 where each
set includes 30 instances and the constants are 12-bit randomly gen-
erated integers. Table 1 presents the high-level results of the algo-
rithms [1, 2, 3, 6] and MINAS-DS. In the exact CSE algorithms [1,
3], the constants were defined under MSD and in the exact CSE
algorithm [3] and MINAS-DS, d was taken as 1. In this table, oper
and shift stand for the average number of operations and shifts re-
spectively and Icost denotes the average implementation cost of the
MCM operation obtained by the algorithms under the bit-serial ar-
chitecture. The implementation cost of an FA, a D flip-flop, and
an inverter was taken as 90, 52, and 6 respectively, as the area (in
µm2) of these components in the design library and N was 16.

Observe from Table 1 that although the exact CSE and GB algo-
rithms [1, 2] find an MCM design with fewer number of operations
than the exact CSE algorithm [3] and MINAS-DS respectively, their
solutions yield bit-serial MCM designs that occupy larger area than
those obtained by these algorithms. Because the algorithms de-
signed for the MCM problem [1, 2, 6] do not consider the sharing
of shifts that require D flip-flops in the digit-serial arithmetic. Note
that while the average number of operations on solutions found by
the exact GB algorithm [2] and MINAS-DS is the same on instances
where n is larger than 20, the ratio of average number of shift op-
erations on solutions obtained by the exact GB algorithm [2] and
MINAS-DS reaches up to 4.34 when n is 100.

As the second experiment set, we used the FIR filter instances2

given in Table 2 where filter coefficients were computed with the
remez algorithm in MATLAB. In this table, pass and stop are nor-
malized frequencies that define the passband and stopband respec-
tively, #tap is the number of coefficients, and width is the bit-width
of the filter coefficients.

The high-level results of algorithms on FIR filter instances are
given in Table 3. Again, it is assumed that the multiplier blocks of
the FIR filters are to be designed under the bit-serial architecture,
i.e., d is 1. Observe from Table 3 that while MINAS-DS finds MCM
designs with the same number of operations as the exact GB algo-
rithm [2], it gives solutions including less number of shifts that con-
sequently lead to bit-serial MCM designs with less hardware cost
when compared to the solutions of [1, 2, 6]. Also, MINAS-DS ob-
tains better MCM designs than the exact CSE algorithm [3], since
it considers more possible implementations of a constant yielding
better solutions in terms of the number of operations.

The gate-level results of the bit-serial MCM designs obtained by
the algorithms are given in Table 4, where area, delay, and power

2The FIR filter instances are available at http://algos.inesc-id.pt/multicon.

Table 2: Filter specifications.
Filter pass stop #tap width

1 0.10 0.15 200 16
2 0.10 0.15 240 16
3 0.10 0.25 180 16
4 0.10 0.25 200 16
5 0.10 0.20 240 16
6 0.10 0.20 300 16
7 0.15 0.25 200 16
8 0.15 0.25 240 16
9 0.20 0.25 240 16
10 0.20 0.25 300 16

denote respectively the area in µm2, the delay of the longest path in
ns, and the total dynamic power dissipation in nW . During the tech-
nology mapping phase of the synthesis tool, the bit-serial MCM op-
erations were synthesized under the minimum area design strategy
without a constraint on the clock frequency.

Observe from Table 4 that the MINAS-DS algorithm, whose ob-
jective is to optimize the gate-level area of a digit-serial MCM oper-
ation, leads to significant improvements on area when the bit-serial
MCM designs are implemented at gate-level.

Table 5 presents the gate-level results of digit-serial designs of
Filter 4. This FIR filter was chosen among others to be designed
since its multiplier block requires the largest number of addition
and subtraction operations as shown in Table 3. In SAFIR, Filter
4 was designed under two architectures denoted as shift-adds and
cons. mult. in Table 5. When d is 1, 2, 4, and 8, the multiplier
block of the FIR filter (illustrated in Figure 1) is designed using
digit-serial addition, subtraction, and shift operations determined
by the solution of MINAS-DS under the shift-adds architecture and it
is implemented using digit-serial constant multipliers [9] under the
cons. mult. architecture. When d is 16, i.e., for bit-parallel process-
ing, the multiplier block is designed using addition and subtraction
operations obtained by the solution of the exact GB algorithm [2]
under the shift-adds architecture and it is described in VHDL as
constant multiplications under the cons. mult. architecture. Note
that the hardware except the multiplier block, that is required to
compute the filter output (additions and registers as illustrated in
Figure 1), is the same for both architectures under the same d. Dur-
ing the technology mapping, the FIR filters were synthesized under
two design strategies, i.e., the minimum area (MA) and the mini-
mum area under the maximum clock frequency (MCF) constraint.
In the former, there was no constraint on the clock frequency and
in the latter, we found the maximum clock frequency that can be
applied to the FIR filter iteratively in a binary search manner.

Observe from Table 5 that as the digit size is decreased, the area
of the FIR filter is also decreased under both design architectures.
However, the maximum clock frequency that can be applied to the
FIR filter decreases, as the digit size increases. Also, observe that
the area reduction obtained under the shift-adds architecture with
respect to the cons. mult. architecture reaches up to 34.1% and
43.6% with the MA and MCF design strategies respectively when
d is equal to 8.
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Table 3: Summary of results of high-level algorithms on the multiplier blocks of the FIR filters when d is 1.
Optimization of the number operations Optimization of area in bit-serial MCM design

Filter Exact CSE - CSD [1] RAG-n [6] Exact GB [2] Exact CSE - CSD [3] MINAS-DS
oper shift Icost oper shift Icost oper shift Icost oper shift Icost oper shift Icost

1 83 156 20126 80 134 18556 79 130 18164 96 41 16028 79 31 12908
2 88 144 20254 83 117 18098 83 126 18554 97 49 16604 83 32 13540
3 56 118 14280 49 97 12146 47 93 11642 62 36 10814 47 34 8508
4 94 127 20252 87 124 19048 87 111 18348 101 54 17408 87 43 14668
5 66 117 15690 63 110 14870 63 115 15130 78 37 13198 63 26 10394
6 74 124 17172 71 119 16462 68 104 15220 82 44 14154 68 29 11272
7 65 105 14882 59 86 12994 59 92 13270 74 32 12364 59 24 9740
8 73 116 16626 69 92 14786 69 99 15126 76 49 13538 69 23 11048
9 80 125 18076 78 92 16088 78 92 16052 89 33 14606 78 32 12818
10 84 114 18102 81 97 16810 81 94 16654 89 30 14444 81 21 12660

Total 763 1246 175460 720 1068 159858 714 1056 158160 844 405 143158 714 295 117556

Table 4: Summary of gate-level results of the high-level algorithms on the multiplier blocks of the FIR filters when d is 1.
Optimization of the number operations Optimization of area in bit-serial MCM design

Filter Exact CSE - CSD [1] RAG-n [6] Exact GB [2] Exact CSE - CSD [3] MINAS-DS
area delay power area delay power area delay power area delay power area delay power

1 74869 4.13 152 74377 4.13 153 74344 4.13 153 73626 4.13 146 72367 5.03 148
2 77877 4.13 159 77333 4.13 161 77280 4.13 161 76782 4.13 153 75677 5.47 156
3 42720 4.12 91 41914 4.12 89 41740 4.12 91 41497 4.12 84 40642 4.12 87
4 84584 4.14 170 84186 4.14 172 83921 4.14 172 83590 4.14 164 82757 4.47 165
5 59629 4.13 121 59363 4.13 122 59432 4.13 123 58747 4.13 117 57783 4.98 118
6 63529 3.99 131 63310 3.99 131 62723 3.99 132 62486 3.99 126 61492 5.13 127
7 55521 4.13 113 54883 4.13 113 54943 4.13 114 54658 4.13 110 53756 4.41 111
8 63001 4.13 128 62549 4.13 129 62488 4.13 130 62059 4.13 125 61159 4.94 126
9 73670 4.13 148 73175 4.13 146 73145 4.13 147 72670 4.13 143 71986 5.69 145
10 75619 4.13 151 75235 4.13 151 75168 4.13 154 74369 4.13 145 73726 4.09 151

Total 671019 41.16 1364 666325 41.16 1367 665184 41.16 1377 660484 41.16 1313 651345 48.33 1334

Table 5: Gate-level results of digit-serial Filter 4 of Table 2.
Arch. DS d 1 2 4 8 16

area (mm2) 201.7 214.8 228.9 281.1 322.9
MA delay (ns) 5.45 6.16 6.94 7.70 9.90

shift- power (nW ) 503 593 694 923 1060
adds area (mm2) 220.6 222.8 233.2 291.1 490.8

MCF delay (ns) 1.78 2.21 3.04 3.89 3.88
power (mW ) 271 258 224 241 464

area (mm2) 252.0 264.8 269.7 377.9 439.0
MA delay (ns) 3.97 5.79 6.92 12.00 9.00

cons. power (nW ) 619 706 779 1023 1220
mult. area (mm2) 299.6 316.4 310.4 418.8 612.7
[9] MCF delay (ns) 1.48 1.81 2.39 3.98 5.20

power (mW ) 440 431 376 281 490

5. CONCLUSIONS
This paper introduced an approximate GB algorithm that aims

to optimize the gate-level area of a digit-serial MCM design. It
considers more possible implementations of a constant multiplica-
tion than the recently proposed exact CSE algorithm and takes into
account the gate-level implementation cost of digit-serial addition,
subtraction, and shift operations while selecting the intermediate
constants required for the constant multiplications, as opposed to
the previously proposed GB algorithms. It was observed that the
proposed algorithm obtains better solutions in terms of area than
the algorithms designed for the MCM problem and the optimiza-
tion of area problem in a digit-serial MCM operation at gate-level.
It was also shown that the realization of digit-serial FIR filters un-
der the shift-adds architectures yields significant area and power
reductions when compared to those whose multiplier blocks are
implemented using digit-serial constant multipliers.
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