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Power Estimation Methods 
for Sequential Logic Circuits 
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Alvin M. Despain, Member, ZEEE, and Bill Lin 

Abstruct- Recently developed methods for power estimation 
have primarily focused on combinational logic. We present a 
framework for the efficient and accurate estimation of average 
power dissipation in sequential circuits. 

Switching activity is the primary cause of power dissipation 
in CMOS circuits. Accurate switching activity estimation for 
sequential circuits is considerably more difficult than that for 
combinational circuits, because the probability of the circuit 
being in each of its possible states has to be calculated. The 
Chapman-Kolmogorov equations can be used to compute the 
exact state probabilities in steady state. However, this method 
requires the solution of a linear system of equations of size 
where N is the number of flip-flops in the machine. 

We describe a comprehensive framework for exact and ap- 
proximate switching activity estimation in a sequential circuit. 
The basic computation step is the solution of a nonlinear system 
of equations which is derived directly from a logic realization of 
the sequential machine. Increasing the number of variables or the 
number of equations in the system results in increased accuracy. 
For a wide variety of examples, we show that the approximation 
scheme is within 1-3% of the exact method, but is orders of 
magnitude faster for large circuits. Previous sequential switching 
activity estimation methods can have significantly greater inac- 
curacies. 

I. INTRODUCTION 
OR MANY consumer electronic applications low average F power dissipation is desirable and for certain special 

applications low power dissipation is of critical importance. 
For applications such as personal communication systems and 
hand-held mobile telephones, low-power dissipation may be 
the tightest constraint in the design. More generally, with 
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the increasing scale of integration, we believe that power 
dissipation will assume greater importance, especially in multi- 
chip modules where heat dissipation is one of the biggest 
problems. 

Power dissipation of a circuit, like its area or speed, may 
be significantly improved by changing the circuit architecture 
or the base technology [3]. However, once these architectural 
or technological improvements have been made, it is the 
switching of the logic that will ultimately determine the power 
dissipation. 

Methods for the power estimation of logic-level combi- 
national circuits based on switching activity estimation have 
been presented previously (e.g., [2], [4], [7], [9], [lo], [13]). 
Power and switching activity estimation for sequential circuits 
is significantly more difficult, because the probability of the 
circuit being in any of its possible states has to be computed. 
Given a circuit with N flip-flops, there are 2N possible states. 
These state probabilities are, in general, not uniform. As an 
example, consider the sequential circuit of Fig. 1 and the 
example State Transition Graph of Fig. 2. Assuming that the 
circuit was in state R at time 0, and that at each clock cycle 
random inputs are applied, at time M (i.e., steady state) the 
probabilities of the circuit being in state R, A, B, C are 
i, $, i, and i, respectively. These state probabilities have to 
be taken into account during switching activity estimation of 
the combinational logic part of the machine. Power dissipation 
and switching activity of CMOS combinational logic are 
modeled by randomly applied vector pairs. In the case of 
sequential circuits, the vector pair (211, 212) applied to the 
combinational logic is composed of a primary input part and a 
present state part (see Fig. l), namely (ilQs1, i2Q.52). Given 
il@sl, the next state s2 is uniquely determined given the 
functionality of the combinational logic. For example, if il 
happens to be 0 and the machine of Fig. 2 is in state R, the 
machine will move to state B. This correlation between the 
applied vector pairs has to be taken into account in order to 
obtain accurate estimates of the switching activity in sequential 
circuits. 

A first attempt at estimating switching activity in logic- 
level sequential circuits was presented in [4]. This method can 
accurately model the correlation between the applied vector 
pairs, but assumes that the state probabilities are all uniform. 
Extensions of this method can produce accurate estimates for 
acyclic sequential circuits such as pipelines, but not for more 
general cyclic circuits [SI. 
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Section 111, we describe an exact switching activity estimation 
method for sequential circuits. In Section lV, we first provide 
the basis for the approximation schemes we have developed 
and formulate the problem of estimating switching activity 
as that of solving a nonlinear system of equations. We de- 
scribe a scheme based on the notion of a k-unrolled network 
that can be used to improve the accuracy of estimation in 
Section V. We describe a different method to improve the 
accuracy based on the notion of a m-expanded network in 
Section VI. In Section VI1 we describe methods to solve the 
nonlinear system of equations, namely, the Picard-Peano and 
the Newton-Raphson methods. In Section VIII, we show that 
purely combinational logic estimation methods can provide 
inaccurate estimates, whereas the developed approximation 
methods produce accurate estimates while being applicable 
to large circuits. 

lfl 
Fig. 2. Example state transition graph. 

In this paper, we present results obtained by using the 
Chapman-Kolmogorov equations for discrete-time Markov 
Chains [12] to compute the exact state probabilities of the 
machine. The Chapman-Kolmogorov method requires the 
solution of a linear system of equations of size 2 N ,  where N 
is the number of flip-flops in the machine. Thus, this method 
is limited to circuits with relatively small number of flip-flops, 
since it requires the explicit consideration of each state in the 
circuit. 

We next describe an approximate method for switching 
activity estimation in sequential circuits. The basic computa- 
tion step is the solution of a nonlinear system of equations 
which is derived directly from the logic realization of the 
next state logic of the machine under consideration. Increasing 
the number of variables or the number of equations in the 
system results in increased accuracy. For a wide variety of 
examples, we show that the approximation scheme is within 
1-3% of the exact method, but is orders of magnitude faster for 
large circuits. Previous sequential switching activity estimation 
methods can have significantly greater inaccuracies. 

The rest of this paper is organized as follows. In Section 
I1 we briefly review the physical model for power estimation 
and summarize the combinational estimation method of [4]. In 

11. PRELIMINARIES 

A. A Power Dissipation Model 

Under a simplified model of the energy dissipation in CMOS 
circuits, the energy dissipation of a CMOS circuit is directly 
related to the switching activity. 

In particular the three simplifying assumptions are: 
The only capacitance is at the output node of a CMOS 
gate (this capacitance includes the sourcedrain capaci- 
tance of the gate itself and the input capacitances of the 
fanout gates). 
Current is flowing either from Voo to the output capacitor 
or from the output capacitor to ground (that is, there is 
no short-circuit current). 
Any change in a logic-gate output voltage is a change 
from V,, to ground or vice-versa (that is, there are no 
stable intermediate voltage levels). 

These assumptions are reasonably justified for well- 
designed CMOS gates [ 5 ]  and when combined, imply that 
the energy dissipated by a CMOS logic gate each time its 
output changes is roughly equal to the change in energy 
stored in the output capacitance seen by the gate. If the gate 
is part of a synchronous digital system controlled by a global 
clock, it follows that the average power dissipated by the gate 
is given by: 

where Pavs denotes the average power, Cload is the load 
capacitance, v , d  is the supply voltage, Tcyc is the global 
clock period, and E(transitions) is the expected value of the 
number of gate output transitions per global clock cycle [9], 
or equivalently the average number of gate output transitions 
per clock cycle. All of the parameters in (1) can be deter- 
mined from technology or circuit layout information except 
E(transitions), which depends on the logic function being 
performed and the statistical properties of the primary inputs. 
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Fig. 3. Taking correlation into account. 

Equation (1) is used by the power estimation techniques 
such as [4], [9] to relate switching activity to power dissipa- 
tion. 

B. Combinational Circuits 

Average power can be estimated for combinational circuits 
by computing the average switching activity at every gate in 
the circuit. 

It is assumed that we are given transition probabilities at 
each of the primary inputs to the circuit. That is, for every 
primary input the probability of the primary input staying at 
0 (0 + 0), staying at 1 (1 + l), making a 0 + 1 transition and 
making a 1 + 0 transition are given. Given these probabilities, 
the average switching activity at each gate in the circuit can 
be calculated. 

A symbolic simulation method that performs this compu- 
tation was given in [4]. Under the chosen gate delay model, 
the method first constructs a Boolean function representing the 
logical value at any gate output at each time point 2 t based on 
the primary input variables IO applied at time 0 and I t  applied 
at time t. For instance, one may compute the functions fi (t+ 1) 
and f i ( t  + 2 )  for a particular gate gi. The Boolean conditions 
at the inputs that correspond to a 0 + 1 transition on gi 
between times t + 1 and t + 2 are represented by the function 
f i ( t  + 1) . f i ( t  + 2 ) .  The probability of a 0 + 1 transition 
occurring between time t + 1 and t + 2 given the transition 
probabilities at the primary inputs is the probability of the 
Boolean function fi(t + 1) . f i ( t  + 2 )  evaluating to a 1. (This 
probability can be evaluated exactly using Binary Decision 
Diagrams 111 or approximately using Monte Carlo simulation.) 
For each gate, probabilities of transitions occurring at any 
time point can be evaluated efficiently, and these probabilities 
are summed over all the time points to obtain the average 
switching activity (at each gate). 

Under the zero delay, unit delay, or a general delay model 
(where delays are obtained from library cells), the symbolic 

simulation method takes into account the correlation due 
to reconvergence of input signals and accurately measures 
switching activity. 

The same computation can be performed more efficiently, 
although not exactly, using probabilistic simulation techniques 
such as [lo] and [13] or Monte-Carlo simulation [2 ] .  In the 
remainder of this paper, whenever we need to perform the 
above computation, we will refer to the symbolic simula- 
tion equations (which provide the exact solution). It should 
however be made clear that any other solution technique 
(probabilistic simulation, Monte-Carlo simulation, etc.) can be 
used instead. 

111. RIE EXACT METHOD 

A. Modeling Correlation 

To model the correlation between the two vectors in a 
randomly applied vector pair, we have to augment the com- 
binational estimation method described in Section 11-B. This 
augmentation is summarized in Fig. 3. 

In Fig. 3, we have a block corresponding to the symbolic 
simulation equations for the combinational logic of the general 
sequential circuit shown in Fig. 1. The symbolic simulation 
equations have two sets of inputs, namely ( I 0 , l t )  for the 
primary inputs and (PS ,  N S )  for the present state lines. 
However, given IO and PS,  N S  is uniquely determined by 
the functionality of the combinational logic. This is modeled 
by prepending the next state logic to the symbolic simulation 
equations. 

The configuration of Fig. 3 implies that the gate output 
switching activity can be determined given the vector pair 
(IO, I t )  for the primary inputs, but only PS for the state lines. 
Therefore, to compute gate output transition probabilities, we 
require the transition probabilities for the primary input lines, 
and the static probabilities for the present state lines. This 
configuration was originally proposed in [4]. 
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B. State Probability Computation 
The static probabilities for the present state lines marked 

PS in Fig. 3 are spatially correlated. We therefore require 
knowledge of present state probabilities as opposed to present 
state line (PS)  probabilities in order to exactly calculate 
the switching activity in the sequential machine. The state 
probabilities are dependent on the connectivity of the State 
Transition Graph (STG) of the circuit. 

For each state s;,  1 5 i 5 K in the STG, we associate a 
variable prob(si)  corresponding to the steady-state probability 
of the machine being in state si at t = ca. For each edge 
e in the STG, we have e .Current  signifying the state that 
the edge fans out from, e . N e z t  signifying the state that the 
edge fans out to, and e . I n p u t  signifying the input combination 
corresponding to the edge. Given static probabilities for the 
primary inputs to the machine, we can compute prob(Input), 
the probability of the combination I n p u t  occurring.' We can 
compute prob(e . Input )  using: 

prob(e . Input )  = prob(e .Current )  x prob(1nput )  

For each state s; we can write an equation: 

prob(si) = c prob( e . l n p u t )  

Given K states, we obtain K equations out of which any one 
equation can be derived from the remaining K - 1 equations. 
We have a final equation: 

V e such t h a t  e.Next = sx 

K 

prob(s;) = 1. 
i=l 

This linear set of K equations can be solved to obtain the 
different prob( s;) 's. 

This system of equations is known as the Chap- 
man-Kolmogorov equations for a discrete-time 
discrete-transition Markov process. Indeed, if the Markov 
process satisfies the conditions that it has a finite number of 
states, its essential states form a single-chain and it contains 
no periodic-states, then the above system of equations will 
have a unique solution [12]. 

For example, for the State Transition Graph of Fig. 2 we 
will obtain the following equations assuming a probability of 
0.5 for the primary input being a 1. 

prob(R) = 0.5 x prob(A) 
prob(A)  = 0.5 x prob(R)  

+ 0.5 x prob(B) 
+ 0.5 x prob(C) 

prob(B) = 0.5 x prob(R) 
+ 0.5 x prob(A).  

The final equation is: 

prob(R) + prob(A) + prob(B) + prob(C) = 1. 

Solving this linear system of equations results in the state 
probabilities, prob(R) = k, prob(A) = i, prob(B) = i, 
and prob(C) = $. 

Static probabilities can be computed from specified transition probabilities. 

C. Power Estimation Given Exact State Probabilities 
We now describe a power estimation method that uti- 

lizes the exact state probabilities obtained using the Chap- 
man-Kolmogorov method. As described in Section 11-B, the 
symbolic equations express the exact switching conditions for 
each gate in the circuit under the unit or general delay models. 
Prepending the next state logic block as illustrated in Fig. 3 
accounts for the correlation between the present and next 
states. Finally, computing the exact state probabilities models 
the steady-state behavior of the circuit. 

As described in Section 11-B, power estimation of a given 
combinational logic circuit can be carried out by creating a set 
of symbolic functions such that summing the signal probabil- 
ities of the functions corresponds to the average switching 
activity in the original combinational circuit. Some of the 
inputs to the created symbolic functions are the present state 
lines of the circuit and the others are primary input lines. Each 
binary combination of the present state lines is a state in the 
circuit and we have a number corresponding to the state prob- 
ability for each state after solving the Chapman-Kolmogorov 
equations. 

The signal probability calculation procedure has to appro- 
priately weight these combinations according to the given 
probabilities. Suppose n is a disjoint cover of the function 
f, i.e., 

f =  v Cm (2) 
m E  Disjoint-Cover(n) 

where the Cm's are cubes of the disjoint cover. Each C, is 
a function of the present state lines and primary inputs. We 
partition the inputs to C, into two groups: the symbolic state 
support SS, which includes all states si that have set the 
appropriate state bits, and the primary input support I ,  which 
includes the P I  inputs of C,. Hence C, = SSmI,. The 
signal probability of n is thus given by: 

prob(n) = c prob(Cm). ( 3 )  
m E  Disjoint-Cover(n) 

Since the primary inputs are independent of the state that the 
machine is currently in and states of the FSM are distinct, we 
can write 

From (3) and (4), we have: 

prob(lm) prob(si). 

(5 )  
s,E ss, 

prob(n) = c 
m E  Disjoint-Cover(n) 

As an example, consider the following disjoint cover of a 
function whose signal probability is to be computed. 

f = zl A ps l  V zl A p s l A  ps2.  
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Assume that the probability of i l  being a 1 is 0.5, and state 
probabilities are prob(00) = $, prob(0l) = i, prob(l0) = 
and prob(l1) = 2. (The first bit corresponds to ps l  and the 
second to ps2.) The probability of the first cube is 

prob(i1 A p s i )  =prob( i l )  x [prob(lO) fp rob( l l ) ]  
=0.5 x ( 2  + 2) 
-1 
- 4 '  

Similarly the probability of the second cube is: 

Finally we have: 

Note that (5) requires explicit enumeration of the states and 
is very costly. In [14], a method which employs a partially 
implicit enumeration of states using OBDDs is described. 
The estimation method still has average-case exponential 
complexity-the probability of each state (respectively, groups 
of states) is computed, and the number of states (respectively, 
such groups) can be exponential in the number of flip-flops 
in the circuit. However, for the circuits that this method 
is applicable to, the estimates provided by the method can 
serve as a basis for comparison among different approximation 
schemes. 

Iv. BASIS OF APPROXIMATION STRATEGIES 

Consider a machine with two flip-flops whose states are 
00, 01, 10, and 11 have state probabilities prob(00) = 
i, prob(0l) = i, prob(l0) = and prob(l1) = a. We can 
calculate the present state line probabilities as shown below, 
where p s l  and ps2 are the first and second present state lines. 

prob(ps1 = 0) =prob(00) +prob(Ol) 

prob(ps1 = 1) =prob( lO)  fprob(l1)  

prob(ps2 = 0) =prob(00) + prob(l0) 

prob(ps2 = 1) =prob(Ol) +prob(l l )  

- L + L - L  

- L + 1 - 1  

- - l + l - L  

- L + 1 - L  

- 6  3 - 2  

- 4  4 - 2  

- 6  4 - 1 2  

- 3  4 - 1 2 .  

Note that because psl and psp are correlated, prob(ps1 = 
0) x prob(ps2 = 0) = & is not equal to prob(00) = 6.  

We carried out the following experiment on 52 sequential 
circuit benchmark examples for which the exact state proba- 
bilities could be calculated. These benchmarks included finite 

state machine controllers, datapaths2 as well as pipelines. First, 
the power dissipation of the circuit was calculated using the 
exact state probabilities as described in Section 111-C. Next, 
given the exact state probabilities, the line probabilities were 
determined as described in the previous paragraph. Using 
the topology of Fig. 3 and the computed present state line 
probabilities for the PS lines, approximate power dissipations 
were calculated for each circuit. The average err03 in the 
power dissipation measures obtained using the line probabil- 
ity approximation over all the circuits was only 2.8%. The 
maximum error for any one example was 7.3%. Assuming 
uniform line probabilities of 0.5 as in [4] results in significant 
errors of over 40% for some examples. 

The above experiment leads us to conclude that if accurate 
line probabilities can be determined then using line probabil- 
ities rather than state probabilities is a viable altemative. We 
only have to determine N numbers for a N flip-flop machine, 
one for each present state line, rather than 2 N  numbers, one 
for each possible state. 

A. Computing Present State Line Probabilities 

In our approximation framework we directly determine 
line probabilities without recourse to State Transition Graph 
extraction. The approximation framework is based on solving a 
nonlinear system of equations to compute the state line proba- 
bilities. This system of equations is given by the combinational 
logic implementing the next state function of the sequential 
circuit. 

Consider the set of functions below corresponding to the 
next state lines. 

nSN = f N ( i l ,  i 2 , " . ,  i M ,  psi, ps21'", P S N )  

We can write: 

prob(ns1) =prob[f1(i1,  2 2 , . . . ,  i M ,  PSl, PS2r"., P N ) ]  

prob(ns2) =prob[f2( i l ,  i 2 , . . . ,  i M ,  psi, pSZr"', P S N ) ]  
... 

prob(nsN) =prob[ fN( i l ,  i2 , '" j  i M ,  pslr p s 2 1 " . ,  P S N ) ]  

where prob(ns;)  corresponds to the probability that nsi is a 1, 

to the probability that f ; ( i l ,  i 2 , .  . . , Z M ,  p s l ,  ps2 , .  . . , p s ~ )  
is a 1, which is of course dependent on the prob(psj)  and the 
prob( i k ) .  

We are interested in the steady state probabilities of the 
present and next state lines implying that: 

andprob[f;(il, 2 2 ,  ' " ,  i ~ ,  p s i ,  pS2, ..., psN) ]  corresponds 

prob(ps;) = prob(nsi)  = p ;  1 5 i 5 N .  

A similar relationship was used in the Chapman-Kolmogorov 
(cf. Section 111). 

We were restricted to 8-bit datapaths since the state probability computa- 

3This error is caused by ignoring the correlation between the present state 
tion requires explicitly enumerating the states of the machine. 

lines. 
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The set of equations given the values of prob(ik) becomes: 

where the gi's are nonlinear functions of the p i ' s .  We will 
denote the above equations as Y(P) = 0 or as P = G(P) .  
In general the Boolean function f; can be written as a list 
of minterms over the i k  and psj  and the corresponding gi 
function can be easily derived. For example, given 

and prob(i1) = 0.5, we have 

We can solve the equation set Y ( P )  = 0 or find a fixed point 
of P = G ( P )  to obtain the present state line probabilities. We 
describe the use of the Picard-Peano method to obtain a fixed 
point of P = G(P) ,  and the use of the Newton-Raphson 
method to solve Y ( P )  = 0 in Section VII. The uniqueness 
or the existence of the solution is not guaranteed for an 
arbitrary system of nonlinear equations. However, since in our 
application we have a correspondence between the nonlinear 
system of equations and the State Transition Graph of the 
sequential circuit, there will exist at least one solution to the 
nonlinear system. Further, convergence is guaranteed under 
mild assumptions for our application. 

B. Inaccuracy in Formulation 
The above formulation does not capture the correlation be- 

tween the state line probabilities. Let us consider the example 
State Transition Graph of Fig. 2. The equations for the next 
state logic are: 

Assuming the probability of input i being a 1 is 0.5 we obtain 
the nonlinear equations (after simplification): 

n1 = 0.5 - 0 . 5 ~ ~  - 0 . 5 ~ ~  

n~ = P I  + 0.5(1 - p1) (1 - pz ) .  

Setting nl = pl  and nz = p2 and solving the above equations 
gives us pl  = 0.191 and pz = 0.424. However, if we obtain 
the exact line probabilities using the exact state probabilities 
as shown in the first paragraph of Section IV, we find that 
these approximate line probabilities are in error. 

11 
I 

(a) 

(li*dprowiLilyf-) 

NSk-' 
10 - ...... I k d  PS"' 

k = a user delined limil 

(b) 

Fig. 4. k-unrolling of the next state logic. 

k-unrolled nclwork ougutc I c ., ............ : .......................... I I 

................................... I 
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I 

Transition 
probabilities t- symbolic 

EqU&lU 

simulption 

............................................... 

k-unrolled / network % 
(b) 

Fig. 5. 
rolling. 

Calculation of signal and transition probabilities by network un- 

The above example is small (4 states) and contrived, and 
significant errors may be obtained for such examples. The state 
line probabilities obtained using the approximation method of 
this section are on average close to the exact line probabilities, 
and they typically result in switching activity estimates that 
are close to the exact method for most real-life examples (cf. 
Section VIII). Nevertheless, it is worthwhile to explore ways 
to increasing the accuracy. We describe two such mechanisms 
in Section V and Section VI. 

v. IMPROVING ACCURACY USING k UNROLLED NETWORKS 

A. State Line Probability Computation 

In the formulation of Section IV, the nonlinear equations 
correspond to a single stage of next state logic. Consider 
the unrolled network of Fig. 4(a). The next state logic has 
been unrolled IC times. As illustrated in Fig. 4(b), we can 
construct a set of nonlinear equations corresponding to this 
Ic-unrolled network, which will partially take into account the 
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101 > 

IO, m Next State 
c Logic 
m .......... 1.. ps2 

psn A NSII - .... J 

Fig. 6.  An m-Expanded network with m = 2. 

correlation between the state lines, when computing the state 
line probabilities. 

The exact present state line probabilities can be obtained 
by unrolling the next state logic 0;) times (Fig. 4(a)). This is 
however impractical. We thus approximate the signal proba- 
bilities by unrolling the next state logic k times where k is a 
user defined parameter. 

The equations corresponding to k = 2 will be: 

ns: =f&, . ' .  , ih, p s i , .  . . , p s h )  

. . , nsO,) = f l ( i i , .  . . , iz, 
= f  1b1 . I , . . .  , iz, fl(Z:,-, iL,Ps:,-.,psg), 

. . . , fj&, . . . , ZL, ps:, . . . , psO,)] 

ns:, = f&, . . . , ih, f l ( i 7 , .  . . , iL, ps:, . . . , p s g ) ,  
. . . , fj&, . . . , ZL, ps:, . . . , p s k ) ] .  

. . .  

The number of equations is the same. The number of primary 
input variables has increased, but the probabilities for these 
variables are known. 

Fig. 5(a) shows the method used to calculate signal proba- 
bility of the intemal nodes of the FSM using the k-unrolled 
network with signal probability feedback. 

B. Switching Activity Computation 

The topology of Fig. 3 was proposed as a means of taking 
into account the correlation between the applied input vector 
pair when computing the transition probabilities. This method 
takes one cycle of correlation into account. 

It is possible to take multiple cycles of correlation into 
account by prepending the symbolic simulation equations with 
the k-unrolled network. This is illustrated in Fig. 5(b). Instead 
of connecting the next state logic network to the symbolic 
simulation equations, we unroll the next state logic network k 
times and connect the next state lines of the kth stage of the 
unrolled network, the next state lines of the ( I C  - 1)th stage, 
and the primary input of the ( k  - 1)th stage to the symbolic 
simulation equations. 

VI. IMPROVING ACCURACY USING m-EXPANDED NETWORKS 

A. State Line Probability Computation 

We describe a different method to improve the accuracy of 
the basic approximation strategy outlined in Section IV. This 
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method models the correlation between m-tuples of present 
state lines. The method is pictorially illustrated in Fig. 6 for 
m = 2 .  

The number of equations in the case of m = 2 is 3N/2.  
We have: 

n ~ i , i + ~ [ l l ]  =nsi  A nsi+l = fi A fi+l 

nsi, i+l[l~] = nsi  A 7~si+l= fi A fi+l 
ns;,;+l[Ol] =-A nsi+1 = fi A fi+l. 

We have to solve for prob(nsi, i+l[l l]) ,  prob(nsi, i+ l [ lO] ) ,  
and prob(nsi, i+l [Ol ] )  [rather than prob(nsi) and prob(ns;+l) 
as in the case of m = 1). We use: 

- 

prob(psi A PSi+l) =prob(nsi,i+1[111) 
Prob(psi A =prob(nsi,i+1[101) 
proqpsi  A PSi+l) =prob(nsz, i+l[Oll) 

in the evaluation of the prob(fi)'s. 
The signal probability evaluation methods of Section VII-C 

can be easily augmented to use the above probabilities. In the 
case of the OBDD-based method placing each psi and psi+l 
pair adjacent in the chosen ordering allows signal probability 
computation by a linear-time traversal. 

The number of equations for m = 3 is 7N/3 .  When m = N ,  
the number of equations will become 2 N  and the method will 
degenerate to the Chapman-Kolmogorov method. 

The choice of the m-tuples of present and next state lines 
is made by grouping next state lines that have the maximal 
amount of shared logic into each m-tuple. Note that the 
accuracy of line probability estimation will depend on the 
choice of the m-tuples. 

B. Switching Activity Computation 

To estimate switching activity given m-tuple present state 
line probabilities, the topology of Fig. 3 is used as before. The 
difference is that for m = 2 the prob(psi A psi+l), prob(psi A 
psi+l) and prob(ps;A psi+l) values are used to calculate the 
switching activities. 

VII. SOLVING THE NONLINEAR SYSTEM OF EQUATIONS 

We describe two methods to solve the nonlinear system of 
equations obtained using k-unrolled or m-expanded networks. 
We will assume that the nonlinear system can be represented 
as P = G( P )  or as Y ( P )  = 0 as described in Section IV. 
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A. Picard-Peano Method 

the P = G ( P )  system. This system is reproduced below. 
The Picard-Peano method is used to find a fixed point of 

P l  =91(p1, PZ,"', P N )  

Pz  =92(Pl, P Z , " ' ,  P N )  

P N  = g N ( P l ,  PZ,"', P N ) .  

... 

We can start with an initial guess P o ,  and iteratively 
compute P k S 1  = G ( P k )  until convergence is reached. Con- 
vergence is deemed to be achieved if Pk+' - P k  is sufficiently 
small. The above iteration is known as the Picard-Peano 
iteration for finding a fixed-point of a system of nonlinear 
equations. 

We are only given the Boolean functions 
fi( i1,  iz,..., i ~ , p s 1 ,  p a , . . . ,  psN).  There exist 
several methods to compute gi (p1 ,  p z ,  . . . , p ~ )  = 
prob[fi(i l ,  iz,..., i ~ , p s l , p s z , . . . , p s N ) ]  for given 
p j  = prob(psj)'s and prob(ik)'s. We describe these methods 
in Section VII-C. 

Theorem 7.1: [61 If G is contractive, i.e., lag; /apj l  < 1, 
for all i, j ,  then the Picard-Peano iteration method converges 
at least linearly to a unique solution P*. 

Theorem 7.2: If each next state line is a nontrivial logic 
function of at least two present state lines, then g; is contractive 
on the domain (0, 1). 

Proof: Choose any p j .  In order to perform the evaluation 
of a g i / a p j  we cofactor f ;  with respect to p s j .  

f i  Psj A f i p s j  V psj A fiE 

f i p s j  and f i -  are the cofactors of f with respect to p s j ,  and 
are Boolean functions independent of p s j .  We can write: 

si = P j  . P r O b ( f i p s j )  + (1 - P j )  . prob(f;=).  

Differentiating with respect to p j  gives: 

Since we are considering the domain (0, l), which is not 
inclusive of 0 and 1, and the mi 's  are nontrivial Boolean 
functions of at least two present state lines for every i, this 
partial differential is strictly less than one, because we are 
guaranteed that prob( f i p s , )  > 0 and prob( fiK) > 0.  

From Theorems 7.1 and 7.2, we can see that the iterated 
signal probability calculation is guaranteed to converge to 
a solution, provided some mild assumptions are made with 
respect to the functionality of the next state logic. 

B. Newton-Raphson Method 

The Newton-Raphson method can be used to solve a 
nonlinear system of equations given an initial guess at the 
solution. The advantage of the Newton-Raphson method is the 
quadratic rate of convergence. However, each iteration is more 
computationally expensive than the Picard-Peano method. 

Given Y ( P )  = 0 and a column matrix corresponding to an 
initial guess Po,  we can write the kth Newton iteration as the 
linear system solve shown below. 

J ( P k )  x P"' = J ( P k )  x P k  - Y ( P k )  (8) 

where J is the N x N Jacobian matrix of the system of 
equations. Each entry in J corresponds to a a y i l a p j  evaluated 
at P k .  The Pk+l correspond to the variables in the linearized 
system and after solving the system Pk+' is used as the next 
guess. Convergence is deemed to be achieved if each entry in 
Y ( P )  is sufficiently small. 

We use the methods of Section VII-C to evaluate: 

for given p j  = prob(psj)'s and prob(ik)'s. The Y ( P k )  of (8) 
can easily be evaluated using the pk values and using (6) .  

We need to also evaluate J ( P  ). As mentioned earlier, 
each entry of J corresponds to ayi/apj evaluated at P k .  If 
i # j ,  then dy;/apj equals - a g i / a p j ,  and a y ; / a p ;  equals 

In order to perform the evaluation of a g ; / a p j  we use the 

2 

1 - a g i / a p ; .  

method in the proof of Theorem 7.2. 

agz - = p r o b ( f z p s , )  - prob(f2x). 
8 P j  

We can evaluate prob(fi,,,) and prob(f;=) for a given P k  
using the methods of Section VII-C. 

As an example consider: 

which is exactly what we would have obtained had we 
differentiated (7) with respect to p l .  

Theorem 7.3: [ l  11 The Newton iterates: 

are well-defined and converge to a solution P* of Y ( P )  = 0 
if the following conditions are satisfied: 

1) Y is F-differentiable. 
2) IIJ(A) - J(B)(I 5 y l ( A  - B I ) ,  V A ,  B E DO where 

3 )  There exists Po E DO such that IIJ(Po)-'ll 5 ,f?, 7) 2 

Condition 1 of the theorem is satisfied in our application 
because the y; functions are continuous and differentiable. 
We need to prove that the parameter y is finite to show that 
Condition 2 is satisfied. 

DO is the domain 0 5 p;  5 1 ,  V i .  

IIJ(Po)-'Y(Po)II and Q = ,Byq 5 $. 
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Theorem 7.4: If Y is given by (6), then y 5 2. 
Proof: In order to show that: 

IIJ(A) - J(B)II I - BIJ,VA, B E Do 

is satisfied for y = 2, we will show that the derivative of each 
entry of J is less than or equal to 2. 

Recall that J is a matrix with each entry corresponding 
to ay;/apj. Using the equations provided in the proof of 
Theorem 7.2 we can write: 

a f j . 

Differentiating with respect to pk we have: 

Given that the probabilities are between 0 and I ,  we have: 

Condition 3 in Theorem 7.3 is a constraint on the initial 
guess for the Newton iteration, and this initial guess can be 
picked appropriately, provided y is finite. Essentially, we have 
to choose Po such that IIY(Po)II is small. 

B. Signal Probability Evaluation 

In the nonlinear equation solver, regardless of whether we 
are using the Picard-Peano method or the Newton-Raphson 
method, we have to repeatedly evaluate the signal probability 
of a Boolean function given input probabilities, i.e., com- 
pute prob[fi(il, i 2 , . . . ,  i ~ ,  psl, p s z , " . ,  p s ~ ) ]  given the 
prob( ik ) ' s  and the prob(psj)'s. 

There exist several methods to evaluate signal probability. 
An exact method corresponds to using Ordered Binary Deci- 
sion Diagrams (OBDD's) [I]. If an OBDD can be created for 
fi, then prob(f i )  can be evaluated in linear time in the size of 
the OBDD for fi. OBDD's can be cofactored in linear time, 
allowing for the efficient evaluation of the Jacobian entries. 

An alternative is to use Monte Carlo simulation. Approxi- 
mate signal probabilities can be computed using random logic 
simulation on the multilevel network corresponding to fi.  

Our experience has been that the signal probabilities quickly 
converge to the exact results obtained using OBDD's. In order 
to evaluate a particular Jacobian entry, the appropriate input to 
fi has to be set to 0 ( I )  and random simulation is performed 
on the remaining inputs. 

VIII. EXPERIMENTAL RESULTS 

In this section we present experimental results that illustrate 

Exact and explicit computation of state probabilities is 
possible for controller type circuits. However, it is not 
viable for data path circuits. Purely combinational logic 
estimates result in significant inaccuracies. 

the following points: 

TABLE I 
COMPAR~SON OF SEQUENTIAL POWER ESTIMATION METHODS 

Assuming uniform probabilities for the present state line 
probabilities and state probabilities as in [4] can result in 
significant inaccuracies in power estimates. 
Computing the present state line probabilities using the 
technique presented in the previous sections results in 1) 
accurate switching activity estimates for all intemal nodes 
in the network implementing the sequential machine; 
2) accurate, robust and computationally efficient power 
estimate for the sequential machine. 

In Table I, results are presented for several circuits. In the 
table, combinational corresponds to the purely combinational 
estimation method of [4] and uniform-prob corresponds to 
the sequential estimation method of [4] that assumes uniform 
state probabilities. The column line-prob corresponds to the 
technique of Section IV and using the Newton-Raphson 
method with a convergence criterion of 0.0001% to solve the 
equations. These equations correspond to IC = 0 or m = 1. 
Finally, state-prob corresponds to the exact state probability 
calculation method of Section 111. The zero delay model was 
assumed, however, any other delay model could have been 
used instead. 

The first set of circuits corresponds to finite state machine 
controllers. These circuits typically have the characteristic 
that the state probabilities are highly nonuniform. Restricting 
oneself to combinational power dissipation (combinational) 
or assuming uniform state probabilities (unifomz-prob) results 
in significant errors. However, the line probability method of 
Section IV produces highly accurate estimates when compared 
to exact state probability calculation. 
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Circuit 

Name 

cse 

413 

Combinational Uniform Prob. Line Prob. 

err err err 

0.427 0.427 0.00788 

The second set of circuits corresponds to datapath circuits, 
such as counters and accumulators. The exact state probability 
evaluation method requires huge amounts of CPU time for 
even the medium-sized circuits, and cannot be applied to the 
large circuits. For all the circuits that the exact method is viable 
for, our line-prob method produces identical estimates. The 
uniform-prob method does better for the datapath circuits-in 
the case of counters for instance, it can be shown that the 
state probabilities are all uniform, and therefore the uniform- 
prob method will produce the right estimates. Of course, this 
assumption is not always valid. 

The third set of circuits corresponds to pipelined adders 
and a pipelined multiplier. For pipelined circuits, exact power 
estimation is possible without resort to Chapman-Kolmogorov 
equation solving . The fourth set corresponds to mixed data- 
pathkontrol circuits from the ISCAS-89 benchmark set. Exact 
state probability evaluation is not possible for these circuits. 

The CPU times in the table corresponds to seconds (s) or 
(m) on a SUN SPARC-2. The CPU times correspond to times 
required for symbolic simulation to estimate combinational 
activity plus the time required for the calculation of statenine 
probabilities. For all the circuits BDD’s were used to obtain the 
line probabilities. However, Monte-Carlo simulation was used 
for combinatorial activity estimation for the large ISCAS-89 
circuits. 

In Table 11, present state line probability estimates for the 
benchmark circuits are presented. The error value provided 
in each column shows the absolute error (i.e., absolute value 
of the difference between exact and approximate values) 
of the signal probabilities averaged over all present state 
lines in the circuit. The exact values were calculated by 
the method described in Section 111. (We could not generate 
the exact values for circuits in Groups 3 and 4, as the 
size of Chapman-Kolmogorov system of equations becomes 
too large.) It is evident from these results that the error 
averaged over all benchmark circuits is well below 0.05 
(see the line-prob column entries which correspond to the 
method described in Section IV). Note that this error is due to 
ignoring correlation as exemplified in Section IV-B, and not 
due to convergence error of the Newton-Raphson method. The 
convergence criterion for line probabilities was set to 0.0001% 
to generate these results. 

We present the switching activity errors for the benchmark 
circuits in Table 111. Again, the error value provided in each 
column represents the absolute error averaged over all internal 
nodes in the circuit. It can be seen that this error is quite small. 
These two tables demonstrate that the approximate procedure 
provided in Section IV leads to very accurate estimates for 
both the present state line probabilities and for the switching 
activity values for all circuit lines. 

Next, we present results comparing the Picard-Peano and 
Newton-Raphson methods to solve the nonlinear equations 
of Section IV. These results are summarized in Table IV. 
The number of iterations required for the Picard-Peano and 
Newton-Raphson methods are given in Table IV under the 
appropriate columns, as are the CPU times per iteration and 
the total CPU time. Newton-Raphson typically takes fewer 
iterations, but each iteration requires the evaluation of the 

dk16 

df ile 

TABLE II 
ABSOLUTE ERRORS IN PRESENT STATE LINE F’ROBABILITIE~ 

AVERAGED OVER ALL PRESENT STATE LINES 

0.0782 0.0782 0.0125 

0.075 0.075 0.047 

keyb 

mod12 

0.414 0.414 0.0133 

0 0 0.03 

styr 

tbk 

accum4 

accum8 

planet 

sreg 

0.3138 0.3138 0.0357 

0.2614 0.2614 0.026 

0 0 0 

0 0 0 

accuml6 

COUnt4 

0 0 0 

0 0 0 

count7 11 0 II 0 II 0 1  

count8 

cbp32.4 

0 0 0 

s1238 

Jacobian and is more expensive than the Picard iteration. The 
results obtained by the two methods are identical, since the 
convergence criterion used was the same. 

To generate the results in Table IV, the convergence cri- 
terion allowed a maximum error of 1% in the line proba- 
bilities. In this case, the Picard-Peano method out performs 
the Newton-Raphson method for virtually all the examples. 
If the convergence criterion is tightened, e.g., to allow for a 
maximum error of .01%, the Picard-Peano method requires 
substantially more iterations than the Newton-Raphson and in 
several examples, the Newton-Raphson method outperforms 
the Picard-Peano method. However, since the error due to 
ignoring correlation (cf. Section IV-B) can be more than 1%, 
in practice it does not make sense to tighten the convergence 
criterion beyond a 1% allowed error. 

In some pathological examples, where the conditions of 
Theorem 7.1 are not satisfied, the Picard-Peano method may 
exhibit oscillatory behavior, and will not converge. In these 
cases, the strategy we adopt is to use Picard-Peano for several 
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Circuit 

Name 
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Picard-Peano Newton-Fbphson 

#iter cpu/iter total CPU #iter cpu/iter total CPU 

TABLE III 
ABSOLUTE ERRORS IN SWITCHING A C T ”  

AVERAGED OVER ALL CIRCUIT LINES 

~~ ~ 

keyb 

mod12 

Circuit Combinational Uniform Prob. Line Prob. 

err err err 

0.354 0.020 0.010 

0.363 0.067 0.009 

0.387 0.149 0.156 

accum4 0.084 

accum8 0.086 

p l a n e t l l  0.375 11 0.034 11 0.034 I 

0 0 

0 0 
count7 

count8 

1 0.2 0.2 1 1 1 

1 0.2 0.2 1 1 1 accuml6 

C O U t 4  

- II 

0.096 0 0 

0.169 0 0 

I1 
- II 

cbp32.4 

addl6 

mult8 

s953 

s 1196 

si23a 
- I  

3 0.8 2.4 4 18.5 74 

3 0.3 0.9 3 3 9 

37 2 3.25 

30 0.04 1.1 4 0.5 2 

2 1.1 2.2 2 2 4 

2 1.15 2.3 2 2.5 5 

6.5 4 9.25 

mult8 

s 1196 

count8 

mult8 

s 1196 

0.192 0 0 

iterations, and if oscillation is detected, the Newton-Raphson 
method is applied. The Newton-Raphson method does not 
require the domain to be contractive, however, the initial guess 
has to be “close” to the solution P* in a manner quantified 
by Theorem 7.3. 

In Table V, we present results that indicate the improvement 
in accuracy in power estimation when k-unrolled or m- 
expanded networks are used. Results are presented for the 
finite state machine circuits of Table I for 0 5 IC 5 2 and 
1 5 m _< 4.4 The percentage differences in power from the 
exact power estimate are given. In general, if k 4 00, the error 
will reduce to 0%, however, increasing k when IC is small is 
not guaranteed to reduce the error in total power estimates 
(e.g., consider styr). This phenomenon can be explained as 
follows. The total power estimate is obtained by summing 
power consumptions of all nodes in the circuit. The individual 
power estimates may be under- or over-estimated, yet when 

need to improve the accuracy by using larger values of k and m. 
4The initial error for dk16 and s r e g  benchmarks is 0, thus, there is no 

I 
cbp32.4 I 

TABLE IV 
COMPARISON OF PICARD-F%ANO AND NEWTON-RAPHSON 

I 
- I  

I1 I I 11 I I I I 

they are added together, the overall error may become small 
due to error cancelation. Increasing k improves the accuracy of 
power estimates for individual nodes (see Table VI), but does 
not necessarily improve the accuracy of power estimate for 
the circuit due to the unpredictability of the error cancelation 
during the summing step. The m-expansion-based method 
behaves more predictably for this set of examples, however, 
again no guarantees can be made regarding the improvement 
in accuracy (of total power estimates) on increasing m, except 
that when m is set to the number of flip-flops in the machine, 
the method produces the Chapman-Kolmogorov equations, 
and therefore the exact state probabilities are obtained. The 
Newton-Raphson method with a convergence criterion of 
0.0001% was used to obtain the line probabilities in Tables 
V and VI. 

The CPU times for power estimation are in seconds on 
a SUN SPARC-2. These times can be compared with those 
listed in Table I under the “Line Prob.” column as those times 
correspond to k = 0 and m = 1. Based on these results, we 
conclude that k = 1 and m = 2 provide a good compromise 
between accuracy and run-time. 

During the synthesis process, we often want to know the 
switching activity of individual nodes instead of a single power 
consumption figure. Table VI presents the percentage error in 
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Circuit 

Name 

TABLE V 
RESULTS OF POWER ESTIMATION BASED ON 
IC-UNROLLED AND 1~-EXPANDED NETWORKS 

Initial k-Unrolled Error m-Expanded Error 

Error k = l  k = 2  m = 2  m = 4  

err CPU err CPU err CPU err CPU 

can accurately model the correlation between the applied input 
vector pairs can be used. 

Circuit 

Name 

average % error 

k = O  k = l  k = 2  m = l  m = 2  m = 4  

TABLE VI 
PERCENTAGE ERROR IN SWITCHING ACTIVITY ESTIMATES 

AVERAGED OVER ALL NODES IN THE CIRCUIT 

individual node’s switching activity from the exact values as a 
function of k and m, averaged over all the nodes in the circuit. 
It is seen that the accuracy of switching activity estimates 
consistently increases with the value of k and m. For example, 
the error in switching activity estimates for styr decreases 
from 13% to 6.3% when k increases from 1 to 2 and from 6.6% 
to 6.0% when m increases from 2-4. A similar trend exists 
with respect to the maximum error and the root-mean-squared 
error criteria. 
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