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Abstract

Deformations in interconnect due to process variations can
lead to significant performance degradation in deep sub-
micron circuits. Timing analyzers attempt to capture the ef-
Jfects of variation on delay with simplified models. The tim-
ing verification of RC or RLC networks requires the sub-
stitution of such simplified models with spatial stochastic
processes that capture the random nature of process vari-
ations. The present work proposes a new and viable method
to compute the stochastic response of interconnects. The
technique models the stochastic response in an infinite di-
mensional Hilbert space in terms of orthogonal polynomial
expansions. A finite representation is oblained by using the
Gelerkin approach of minimizing the Hilbert space norm of
the residual error. The key advance of the proposed method
is that it provides a functional representation of the response
of the system in terms of the random variables that repre-
sent the process variations. The proposed algorithm has
been implemented in-a procedure called OPERA. Resulis
from OPERA simulations on commercial design test cases
match well with those from the classical Monte Carlo SPICE
sinmulations and from perturbation methods. Additionally
OPERA shows good computational efficiency. speedup fac-
;or of 60 has been observed over Monte Carlo SPICE simu-
ations.

Introduction

The performance of integrated circuits (ICs) is increasingly
less predictable as device dimensions shrink below the sub-
100 nanometer scale. The modeling accuracy problem stems
from poor control of the physical device and interconnect
characteristics during the manufacturing process. Uncer-
tainties due to variations in the manufacturing process are
reflected in variations in the circuit parameters, Examples
of manufacturing variations are the variations in materials,
variations in geometry (for Loy, W) and doping profiles
of MOSFETs, material and geometric variations of the in-
terconnects etc. The many scurces of variations in the IC
fabrication process lead to a hierarchy of random and sys-
tematic effects on circuit performance [16].

A common way of accounting for process variations is
to use a linear model to represent a circuit parameter. For
instance, a parameter p would be expressed as p = p, +
€1,p + €2 p, Where p1p, is a (nominal) mean value, €; p and €2
are random variables with mean zero and variances o, , and
o2,p. These represent the inter-die and intra-die variations,
respectively. Designers interested in performance analysis
and optimization typically use only a single value of o,

The performance of devices and interconnects depends on
several parameters (Lagp, W, tor, Vi, etc.) that are spatially
correlated across a chip and have systernatic variations be-
tween otherwise identical dies [2]. Although the importance
of accounting for correlations has been repeatedly empha-
sized, in practice the variational components of different pa-
rameters have been modeled mostly as independent random
variables. Assuming independence of parameters leads to the
analysis of extremely unlikely or even physically impossible
circuits [17]. When correlation data or models are avail-
able, it is possible to generate values of multiple parameters
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by Monte Carlo sampling from their join? distribution func-
tions [4, 3]. Joint distributions are usually not available and
sample sizes need to be very large for modern VLSI designs.
Perturbation techniques [8, 9, 15, 23] are an alternative but
they are generally applicable to small variations (about the
nominal values) and expansions beyond the first or second
order may be computationally not feasible.

In the nanometer regime, there is a need for accurate mod-
els of interconnect that account for the uncertainty resulting
from process variations [22]. For this reason, interconnect
variational analysis based on model order reduction has been
a very active topic of research over the past several years.
Liu et. al. [15] studied the effect of interconnect parame-
ter variations on three projection-based model order reduc-
tion techniques: Krylov subspace analysis methods [20, 18],
PACT [12] and PRIMA [18]. The work combines matrix per-
turbation theory and the model order reduction methods. The
authors of [9] proposed a balanced truncation (BTR) method
for analysis of interconnects that accommodates variations.
It offers a weighted error bound. The methods in [9] and [15]
directly approximate the projection matrices as perturbed ma-
trices from the nominal ones. The reduced system is unable
to preserve stability. As a result, subsequent analysis with
nenlinear devices can cause instability [14]. In {23], a BTR-
like method using linear fractional transforms is described. It
maodels variations but preserves stability and passivity. The
new models have computable error bounds and unlike the
existing variational analysis methods, impose no constraints
on the internal structure of the state-space model.

Contributions of this work

This paper presents a new approach for the performance
analysis of interconnect networks in the presence of process
variations. The approach treats the electrical parameters in
the system of differential equations for RC/RLC networks as
continucus parameter (spatial) stochastic processes, where
the source of randomness is due to variations in the parame-
ters. As a result, the system response is a stochastic process
which we show can be represented as a infinite series of or-
thogonal pelynomials in a Hilbert space of random variables.
The series is truncated by projecting it onto a finite dimen-
sional space, while minimizing the error. This provides a
functicnal or analytic representation of the stochastic pro-
cess that includes the random parameters. With this, there
is no need to repeatedly solve the system with values of the
parameters as would be required in a Monte Carlo appreoach.
Rather, the functional representation can be directly evalu-
ated. Moments and probability density functions of quan-
tities of interest may easily be computed from the resulting
analytical from. Much higher order expansions are possible
when compared to perturbation techniques. The procedure
improves the computational efficiency of the Monte Carlo
approach by an order of magnitude. The proposed tech-
nique has been implemented in a prototype software named
OPERA (Orthogonal Polynomial Expansion for Response
Analysis) which can also carry out a SPICE Monte Carlo
analysis.

Problem Definition
Consider an interconnect that is represented as a RC net-
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work!. In the s-domain, it is described by the MNA equations
as (G + sC)z(s) = f(s), where f(s) is the known input,
M(s} = (G + sCY) is the coefficient matrix and z(s] is the
response to be determined. The circuit parameters 7 and
C depend on the interconnect geometry, such as the metal
height (F), metal width (W), ILD thickness (1), etc. In
the presence of process variations, these geometric charac-
teristics of the interconnect, and consequently, its electrical
characteristics, must be modeled as random variables.
Suppose that there are » geometric characteristics of inter-
est. Let £ denote the sample space of experimental or manu-
Jacturing outcomes. Forw € §1,let(w) = {£1(w), ... &{wW)}
be a random variable that represents the value of the r geo-
metric characteristics. The space of all such random variables
is denoted by © : £t — R". Without loss of generality, we

assume that random variables in £ have zero mean, In the
presence of process variations, the MNA equations take the
form

-

M(s,§(w)) z(s,€lw)) = F{s,E(w)) (0
)

where M (s, f-.(w)) = G({(w)) + SC(E(“)

In Equation (1), the coefficient matrix M(s,&{w)) is a
random process, representing the fact that the uncertainty
or randomness in the system is in the system parameters.

Because of this, the response (s, £(w)) is also a random

process. f(s, £(w)) includes the deterministic input as welt
as the random parameters. The domain of the index variable

s is the complex domain. For fixed s, x(s, £(w)) is a ran-
dom variable. That is for each manufacturing outcome w,
and the corresponding value of the observed parameter £{w),

{5, £{w)) would be the response of the system for that spe-

cific manufacturing outcome. For a fixed £{w), z{s, £(w)) is
a deterministic function of 8. Next, we present our method

to compute the stochastic response (s, £{w)).

Approach

Overview

We assume that the stochastic response z(s, £(w)} is a sec-
ond order process. This means that all the random variables
have finite variance. This is certainly valid for all stochas-
tic models of real systems. The approach presented in this
paper is based on expanding a stochastic process as an infi-
nite series of orthogonal polynomials involving an arbitrary
number of random variables. For reasons that will be made
clear shortly, these polynomials are known as polfyremial
chaos [6]. Specifically, the stochastic response z(s, £{w))
will be represented as

z(s,€w)) = Z ai(s) i(E(w)) @

where {a;(s)} are deterministic coefficient functions, &(w)

are orthonormal random variables and ‘Il(f(w)) are a col-
lection of multi-dimensional orthogona! polynomtals in the

random variables £(w). The equality in Equation {2) repre-
sents convergence in the norm, As will be explained shortly,
the {¥;.} constitute a orthonormal basis of a infinite dimen-
sional Hilbert space, and there is a considerable choice in the
selection of that basis. However, as long as the process is
second order, convergence is guaranteed by any one of those
orthonormal bases [5].

1The proposed method and results are for general RLC networks,
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Orthogonal Expansions

In this section we explain how the representation of a ran-
dom process given in Equation (2) is obtained. For simplicity,
we will henceforth no longer explicitly show the dependence
of £ (and other random variables) on w. For each s, M(s,£}

is a functional. That is, M (s, £) maps each function { € ©
to a point in complex domain. Hence foreach s, the response
(s, €) is a point in the space ©. The space © is an infinite
dimensional function space. It is for this reason that the
expansion has meaning in a Hilbert space. Once such a rep-
resentation is obtained, we find the best finite approximation
to the infinite series expansion of the process. The best is in
terms of the underlying norm defined in the Hilbert space.
In this section we.provide only a few essential definitions
and main results. Details of this theory are may be found
in |6, 26].

Hilbert spaces provide a means for defining a inner product
on a space of random variables (¢.g. ©). This leads to a norm
and a metric, which in turn can be used to define convergence
when representing,a random variable as an infinite series.
Convergence is in the mean square sense.

Definition 1 Let M be a vecfor space over some field F with
an inner product < -,- > defined. The normin H is ||f|| =

V< T > andthe metricis d(f,g) = | f —g|. His called
a Hilbert space if it is complete as a metric space.

Completeness means that if ali terms of a sequence beyond
a given point get arbitrarily close to each other (i.e. if it is
a Cauchy sequence) then the sequence will converge. This
allows determining convergence without knowing the limit.

Definition 2 (Orthogonal) Two elements, x and y of an in-
ner product space are said to be orthogonal if (z,yy = 0. if
in addition, \|z)| = \ly|| = 1, they are orthonormal.
Definition 3 (Orthonormal Basis) 4n orthonormal sequence
{¢1k}:f’:], in a Hilbert space is called an orthonormal basis
if the only element outside the basis that is orthogonal to
every element in the basis is the zera element. That is, an
orthonormal basis is a maximal subser of elements that are
mutually orthogonal.

Lemma 1 Let (¢ Yo, be an orthonormal basis of a Hilberi

space. Then the infinite series Y, , (. $i) Px converges in
normio x [26].

The space © is an infinite dimensional Hilbert space. The
abave lemma states that in order to obtain a convergent infi-
nite series representation of a element in ©, we need to find
an orthonormal basis. One such basis is the set of Hermile
polynomials. In € the inner product of any two elements is
the expectation of their product, i.e., their correlation, Let P
be a probability measure on 2. Then the inner product on ©
is defined as |

(B.&)-v@E.8) - [8ér  ©

Definition 4 (Hermite Polynomial) Let £,,8»,. .., beain-
Jfinite collection of variables. The Hermite polynomial of or-
der p is defined as

W m(qpedfE O
Ho({i1, iz, -+, ip}) = (—1)Pe? N R

e

4

[

where £ = [£;, &, .8 ]

Note: In Hy({i1,42, -, ip}), any choice of p variables from
{£1,£3,. .. ,00} isallowed, including repetitions. 1fthere are
r variables (r dimensional), then there will be

{p +r — 1)}/p}{r —1)! Hermite polynomials of degree p.
As an example, consider two variables: £ = {£;,£). The
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Hermite polynomials shown below are of order 0, 1, 2, and
3, and are easily derived using Equation (4).

order 0: Hy({}) =1,
order 1:  Hy(1) =&, H1(2) = &
order2: Hy(l,1) = Ei =1, Ho(1,2) = &iéo,
Hy(2,2) = &5 -1 (%)
order3:  Hy(1,1,1) = £3 — 3¢y,
H3(2,1,1) = £16; — €,
H3 2: 27 1) = 51522 - £1’

Let £1,£2, ... denote a infinite set of zero mean, orthonor-
mal Gaussian random variables. The (infinite) set of Hermite
polynomials {of all orders) over the set of variables &, &5, . . .,
constitute an orthonormal basis for ©. This means that any
second order stochastic process z(s, £) can be expanded as an
infinite series of Hermite polynomials over an infinite collec-
tion of zero mean, orthonormal Gaussian random variables.
The expansion of stochastic response of the interconnect net-
work can be expressed as [6]

-

z(s,¢)

co(s) Ho+ . ci,(8) H(&i,)

i =1

Z Z ciliZ(s) Hﬁ(&ixigiz) (6)

1=l1ip=1

_|._

131 ip

z E Z Cixin‘is(s) H3(£i1r€izs'£ia)

i)=liz=11i3=1

+

Note that Equation (2) is merely a relabeling of the coeffi-
cients in Equation (6). To see this, we evaluate Equation (6)

for £ = {£1,&,} for up to order rhree using the polynomials
.already computed in Equation (5).

z(s,£1,62) = co(s) + c1(s)61 + ca{8)6a
+eu (s)(EF — 1) + cas(sH&r6a) + caa(s) (€2 - 1)
+ein1(8)(E) — 361) + can1 (5)(€362 — &a)
+eo21 (8)(61€5 — &) + e2z2(s) (€3 — 362) 6

The one-to-one correspondence between the terms in Equa-
tion (2) and Equation {7) is clear.

The expansion in Equation {(6) was first proved by Wiener [25]
for a Brownian Motion process, and was known as Homoge-
neous Chaos. The result from [5] implies that the expansion
is valid for any second erder stochastic process, and it is now
referred to as polynomial chaos.

The fact that {£;}22, are Gaussian is not a restriction. The
original random variables £ representing the interconnect
variations can be Gaussian or non-Gaussian. The expansion
using Hermite polynomials is still correct. If the parameter
variations happen to be Gaussian, then the convergence will
be expenentially fast [27].

The inner product on @ given by Equaticn (3) is an expec-
tation, and hence involves the probability measure P. Let
dP(E) = w(@d&. Then from Equation (3), we see that the
inner product varies with the choice of the density or weight

function w(£). In the case that the interconnect variations
represented by £ are Gaussian, then the optimal choice (w.r.t
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to speed of convergence) for w(£) is the Gaussian density
function. This will result in the Hermite polynomials being
the orthonormal basis for the space ©. Other common dis-
tributions lead to different orthogonal polynomials. Table 1
from [27] shows the best choice for the orthonormal basis for
several probability densities. Several of the continuous den-
sities might be alternative choices for interconnect parameter
variations.

Variable Distributionn | Polynomial Class

Continuous Gaussian Hermite

Log-normal Hermite

Garmnma Laguerre
Beta Jacobi

Uniform Legendre

Discrete Poisson Charlier

Binomial Krawtchouk

Negative Binomial Meixner

Hypergeometric Hahn

Table 1. Relationship between the distribution of random
variables and the choice of orthogonal polynomials

Finite Approximation

The unknowns in the expansion of the stochastic response
shown in Equation {2} are the deterministic coefficient func-
tions ex;(s). The number of random variables in the expan-
sion are finite. However, the polynomials are of ali orders.
We need to truncate the expansion after including only a fi-
nite number of terms, The criterion will be to minimize the
error, and in doing so, we find the coefficients o;(s).

The method to determine the coefficients is based on the
well known principle of orthogonality, Suppose that we are
dealing with two finite dimensional inner product spaces V of
dimension n, and a subspace W of dimensionm, m < n, and
we wish to find the best approximation of a vector v € V
by a vector w € W, Best is in the sense of minimizing
the norm of the error, i.e. || v — w ||. The principle of
orthogonality states that the best choice for w is the one that
is orthogonal to the error v — w, i.e. determine the w such
that (v — w,w) = 0.

The extension of the principle of orthogonality for map-
ping a vector In a infinite dimensional inmer product space
to a finite dimensional subspace is known as the Galerkin
method [6). Let r be the dimensionality of the random vari-

able E_: i.., the number of random parameters of the system.

Let Z,(s, E) denote the truncated version of the response z,
using only the first p order polynomials. That is

N .

Zp(5,6) = Y au(s)¥:(E) ®)
i=0

where N = Z (1-_1+k)Ck (9)
k=0

Let 2, denote the error due to the truncation. It is simply
the difference between right hand side of Equation (1) and
the left hand side with &, replacing =. That is,

Zp(s,f_) = M(S,E)i:p(s,é) - f(s,6) (10

The orthogonality condition (inner product of the error and
the truncated series must be zero) results in p equations that
have to be solved for the coefficients. These equations are

(2,,(5,5),%(5)) =0, j=0,1,...,N (D)
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An Example

We iltustrate our approach with the aid of an example cal-
culation on the circuit shown in Figure 1. The metal in-
terconnect can be modeled as a second order RC circuit
consisting of two RC sections. The input excitation is a con-
stant voltage source V,,. The metal interconnect is subject
to geometric process variations. Without loss of generality,
we assume that the only variations of significance are in the
width W and in thickness T" of each section and that they
have a Gaussian distribution, These are modeled as zero-
mean normalized Gaussian random variables (£,,,, &, for
RC section 1 and §,,,,, &, for RC section 2). Thus for the
two RC sections, we have

& k) Gz bot

i
P

Vi R, 5y)

Cil6r "m}'g 5w Eu’l

Figure 1. First Order RC Circuit

vy

RyEyp &)

Vi

Wi = Whean + Oy gwl (12)
Ty = Lean + 0ty Etl (13)
Wy = Whean + Ty Eavy (14)
T; = Tnean + 0, &1g (15)

In general, the random variables &, &,, Euw,. &, may
be correlated. This implies that the resistance-conductance
pairs of the RC sections are (implicit) functions of all the
random variables. We thus have & = {£,,, &,, Ew,, £z }-

In this example, we attempt (o capture the effects of the
process variations on R, {or G}, C; and Ry {or G3), Cg by
expressing them as a linear function of the geometric random
variables. This is consistent with the models developed in
much of the contemporary literature [15, 16]. However,
we emphasize that there are no limitations in choosing any
particular form of the expansion for Gy, Ga, C1, Cao interms

of £ We thus have,

GI(€) =G, +GCw, Eu, +Cr &, (16)
G2(8) =Gy + Cw, buy + Gy b 17
Ci(d) =Cwm, + Cw, &, +Cr, &y (18)
C2(8) = Cu, + Cws Euy + Ory &, (19)

where G5y, and Gy, indicate the mean value of the conduc-
tances, and Gw,, Gw,, G, and G, signify the perturba-
tions in G; and G2 due to the variations in &y, , £, and &,
&;,. Cy and C; are represented in the same way.

To make the illustration more tractable, and without loss
of generality, we will assume that the variables £, and &,,
are same for the purposes of this analysis and so are &, an
632' Thus we have éwl = fwz = El and Eh = Etz : €2'
We also assume that £; and €5 are orthonormal. This is
always possible to achieve by a linear transformation [19].
The MNA equation for our RC circuit is given by

(GE) + sC(E)) 2(s,6) = U(s) GLE) (20
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where
~ " G1(€) + G2(E) ~G2©

G(&) ( —Ga(6) G2(€) )
= Ga(.‘)‘) =+ Gb(s) El + Gc(s) 52
_{a® o

cQ = ( " od )
= C?J (8) + Cu(s) & + Ce{s) &2

.’E(S,a = (Vl(&a%(s:a) ’ U(S) = (V”’O)T

Mairices Ga, Gy, G and C,, Cy, G are 2 x 2 symbolic
matrices (they become numerical matrices for a specific set
of real values of Gy, o, C1 Ca).

We now expand. the response z(s, £) using second order
(p = 2 in Equation (8)) Hermite polynomials,

93(8, E_) = ao(é‘) + 0(](3) tfl -+ 0:2(8) 62 + Ota(S) (f]z’ - ])
+ au(s) (61€2) + as(s) (&2° — 1) @y

Note that or; () is & two component vector corresponding to

cachnode in the network, Thatis, o, (s) = (V4 :(s), Vai(s))¥

To obtain the response a:(s,éj we need to determine the
coefficients a;{s) using the Galerkin procedute described in
Section . From {10) we have the definition of the error ¥, as

Ty(s,€) = (G(E) +5CE)) a(s,§) - U Gald) )
The coefficients afs) are obtained by solving (see Equation
)]

<2p(s,§),@j(§))=o forj=0,1,...,N  (23)

The inner product <Zp(s, E), 'I',-> is defined as

(25,8, 95(8))
[ Ry (s, £, EW (e, =0 (29)

where w (f) is the standardized bivariate Gaussian probability
density function,

Thus, for each j = 0,1,--- N, Equation {23) gives us 2
equations in terms of the unkmown deterministic coefficients
represented by the vector a(s). This resulis in 12 linear
equations with 12 unknowns in o(s). Expressing the linear
system of equationsjcbtained in a matrix form we have

oo

(G +sC) als) = b 25
where
Ga Gb Gc 0 0 0
(G?'b G 0 2Gy G, g
— 0 G, Gy 2G.
G=17% 26, 0 26. 0 0 (26)
0 G, Gy 0 G, 0O
0 0 2G, 0 0 26,

The matrix C has the same form as & Finally b is given by
b= (Ga(l, )Vals),. Go(1,1)Va(s), Ge(1,1}Vals), 0,0, 0)"
2n

Now we can solve Equation (25) numerically to obtain the
coefficient vector ar{s), Once the vector afs) is obtained, we

have an explicit expression for the circuit response z(s, f) in
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terms of £ given by Equation (21). With this explicit expres-
sion the probability distribution of the delay from the source
node to any node w.r.t 1o the geometric random variables {
is readily determined. And some of the unique properties of
the Hermite polynomials help us calculate easily the mean,
variance, etc., of the delay distribution.

For a general RC circuit, if the dimensions of G, C' and
U{s)are k x k, k x k and k& x 1 respectively, then G, C and b
are of the order 6k x 6k, 6k » 6k and 6% x 1 respectively for
a order 2 (p = 2) expansion of the stochastic circuit response,

General Method

Our approach for obtaining the stochastic response of an
interconnect can be broadly classified into four steps:

Modeling the Interconnect system using stochastic
MNA equations: Any interconnect can be modeled as
an RC (or RLC) circuit with multiple 7 sections. An
MNA equation similar to (1} can be obtained for every
RC (or RLC) interconnect.
Expressing the Interconnect response as an infinite
series of orthonormal basis set of polynomials: The

stochastic interconnect response (x(s,£)) can be ex-
pressed as an infinite series of an orthonarmal basis set
of polynomials using an expansion simitar to that of
(6). The choice of polynomial set depends on the prob-
ability distributions of the geometric random variabies
(Table)
Minimizing the error due to projection on to a finite
subspace: The infinite series interconnect response
expansion is truncated for an order p as shown in (8). To
optimalily minimize the error due to the finite truncation
of the series, we minimize a norm of the error and each
polynomial of the orthonormal basis set defined as in
(11), (3).
Solving for the unknown coefficients of the finite se-
ries expansion: The coefficients of the finite series
interconnect response expansion (g;(s) in (8)) are de-
terministic and unknown. And the error norm mini-
mization from step 3 gives us a linear system of equa-
tions in terms of these unknown coefficients (o (s)).
We can solve these equations numerically to obtain the
stochastic interconnect response.

The computational steps of our approach described above

have been implemented in a prototype software called OPERA .

OPERA also has the additional ability to perform Monte
Carlo SPICE simulations.

Computational Cost

The key computational steps of OPER A are evaluating the
inner product in Equation (24) and solving Equation (25) for
a(s). Since the integrands in the inner product are poly-

nomials in £ and include an exponential function e%ﬁTﬁ,
integration by parts ensures easy numerical or even symbolic
integration. In fact, for any given order p of the stochastic
response expansion, the integration need only be performed
once for symbolic values of matrices G and C followed by a
substitution of the actual numerical matrices. The resulting
symbolic block matrices G, € and b consist of some constant
multiples of the sparse matrices Ga, Gb, Ge, Cay s, Ce
and V,,. In addition the matrices G and C have been ob-
served to become increasingly sparse with an increase in the
order p of the stochastic respense expansion or an increase in
the number of the uncertain parameters (random variables)
of the interconnect circuit.

The computational cost of (25) increases linearly with the
number of coefficients a(s). This depends on the order p of
the expansion and the number of random variables ». If the

order of the polynomial chaos is p, then the number of coef-
ficients a(s) will be O{r?), where r is the number of random
variables. The computational cost increases as a polynomial
w.rt to the number of uncertain parameters. To further re-
duce the computational complexity of OPERA model order
reduction techniques are used.

Model Order Reduction
The model order reduction (MOR) techniques can be ap-

plied in two domains in our approach. Application of MOR

n one domain targets the order p of the stochastic response

expansion and in the other domain targets the number of

terms approximating the coefficient a;(s) in (8), (21). Both

these techniques are integrated in to OPERA .
Stochastic Hilbert space domain: The order p of the
stochastic response expansion in Equation (8) provides
the first opportunity to limit the order of the system.
However, the order of the system is primarily deter-
mined from the accuracy requirements and an order Z
or order 3 expansion seems to be adequate for practical
purposes.
Deterministic Hilbert space domain: Equation (25)
from section represents a deterministic system of linear
equations of the unknown coefficients «(s). This is
similar to the MNA equation of a generic EC (or RLC)
interconnect in the absence of process variations. And
hence all the existing MOR techniques can be applied
to this system of equations.
Model order related stability issues have been discussed
in a number of literatures and any existing stability
technique can be apyplied in our method. The resulting
system due to MOR will have almost a linear increase
in complexity with regard to the number of uncertain
parameters (random variables). Figure 2 shows the in-
crease in the computational cost (for a sample intercon-
nect) with increase in the number of uncertain param-
eters for the Monte Carlo SPICE simulations (SPMC)
technique, OPERA without MOR, and OPERA with
MOR. Cost for OPERA with MOR increases linearly
with the number of the uncertain parameters.

w--- SPMC
Number of :
uncertain ) we.- OPERA no-MOR
parameters |
) : — . OPERA -MOR
i
! 5
h s
1 f
] f’
l' ,".
t g
+ r
i P
[
R
¢ S
s ¢
P
-
l”:
Gllops

Figure 2. Computational cost increase trend

Experimental Results

OPERA has been verified for several test cases and the
results for some representative test cases of RC and RL.C
interconnects are given below. The (normalized) random
variables considered in all our test cases are width and thick-
ness variations. Our algorithm has been verified for two
cases of probability distributions of the random variables: 1}
Gaussian, 2) Lognormal.

Gaussian Distribution
Case A, RC Tree: The first test case considered is an RC
tree shown in Fig.3 ({11]). It is assumed that this RC tree
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Figure 4. Delay distribution at a node with fixed wire
thickness & changing wire width

is on Metal Layer 4 and is subject to metal wire width and
thickness variations. We compare the delays obtained from
SPICE based Monie Carlo (SPMC) simulations with 1000
sampling points with those from OPERA with an order 3
expansion. The resulis for the mean 50% delay and 90
% delay with a 3¢ maximum width variation of 20% and
thickness variation of 30% are summarized in Table 2. The
differences between the delays obtained from OPERA and
SPMC at each of the leaf nodes is about 0.1% or less.

Table 2. Comparison of SPMC and OPERA (time in ps)

Node | 5PMC | OPERA | SPMC | CPERA
50% 50% 90% 0%

2 4772 1 477.2 2021.5 | 2021.5

3 7000 | 700.0 2272.5 | 22725

4 845.0 | 845.7 24234 | 24233

3 9233 | 9234 25112 | 25113

[ 381.9 | 3820 1792.8 | 1793.1
L7 4523 | 4522 1821.0 | 1821.0

Figure 4 gives the distribution of delays at node 7 with regard
1o fixed wire thickness and changing wire width.

Case B. RLC Tree: Our approach is also applicable to
RLC circuits. As an example, we consider a 2000 micron
distributed RLC line in Fig. 5([11]), which is modeled with
20 lumped RLC sections. The results from OPERA with
order 2 and order 3 expansions are compared with the results
from SPMC in the frequency domain (Fig.6). The results
from OPERA for an order 3 expansion match very well
with those from SPMC. Thus for both RC and RLC circuits,
OPERA with order 3 expansion offers good accuracy.

Case C. H-shaped Clock Tree: As a final example for
the case of Gaussian distribution, we consider several large
H-shaped clock trees (Fig.7) taken from a 0.13 micron com-
mercial design. Table 3 shows the mean 50 % delay com-
parisons at a terminai sink nede from OPERA and a 1000
sampling point SPMC for clock trees with a varying number
of fanouts with a 3¢ maximum width variation of 30% and
thickness variation of 20 %. The time consumed by both the
algorithms in flops (fleating point operations) is listed in the
table. It can be observed that an average speed up of about

Vin

Magnitude (98}

885

Rdriver

0.0015um, 0.176 fF/um, 0.246 pH/um )—1

Figure 5. A distributed RLC line with a linear driver and
capacitance load
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Figure 6. Frequen'by response with SPMC, order 2 and
order 3OPERA |

60x is obtained by QPERA gver SPMC,

And for a H-shaped clock tree, we obtained 50 %V, delay
response at a sink node from OPERA and perturbation meth-
ods from [23, 15, 91 for different variations in the metal width
and thickness. The comparison of the mean delay responses
is shown in Table 4. For want of uptodate software versions
for the perturbation methods from [23, 15, 9], we are unable
to compare our timing complexity with those approaches.

Lognormal Distribution

Case D. RC Tree:  The second probability distribution of
the random variables we consider is a Lognormal distribu-
tion. For this distribution, we consider the case of an RC
interconnect with 7 nodes. Modeling the conductance and
the capacitance matrices in the presence of width and thick-
ness variations that are Lognormal is the primary difficulty
involved in this case.:A Lognormal variable is defined as the
exponential of a normal variable. Assuming that the varia-
tions in the normalized random variables width and thickness
are small (< e}, we recover the Gaussian case by perform-
ing a taylor series expansion of the exponential function of
the Gaussian random. variable. We truncate the exponential
series to a required degree of accuracy, order two in this
example. The rest of the procedure in obtaining the delay
response is similar to the Gaussian distribution case. Table 5

Figure 7. H-tree clack tree driven by a tapered buffer
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Table 3. Comparison of SPMC and OPERA (time in ps)

# SPMC [ OPERA [ error | SPMC OPERA | speed
fan 50% 50% T% (Gflops) | (Gflops) | up
outs | (ps) (ps)

4 137.2 137.2 0.0 24 0.06 40

16 345.1 | 3454 0.06 [ 123 0.21 60
64 12849 ] 1285.4 0.02 ] 355 0.48 7t
256 2263.3 | 22654 0.1 739 1.3 57
1024 | 43527 | 43534 0.01 148.4 2.3 60

Table 4. 50% V. delay of H shape clock tree at one sink

Md-w | Md-h | OPERA | SPMC | error | 1231 | 1131 ] 91
(%) (%) __ | {ns) (ns) (%) |[(ns) | (ns) | (ns)

-10.0 | 30.0 | 4.009 4.100 | 0025 | 4.113 | 4.102 | 4.110

20,0 200 ] 2945 2.943 | 0.06 ] 3.018 | 2.970 ) 2.963

-5.0 200 | 3.502 3.505 | 0.01 3489 [ 3.505 [ 3.521

-300 | -30.0 | 4990 4990 ] 000 | 4983 ] 4.980 | 4.9%

30.0 -10.0 | 4233 4234 | 0025 ) 4203 | 4.257 | 4233

200 -5.0 3420 3425 ] 001 3442 ) 3.454 | 3440

4.0 4.0 3447 3448 | 008 | 3447 [ 3.448 | 3.448

10.0 -6.0 3211 3209 | 0.03 3.170 | 3.169 | 3.212
-20 10 2.833 2830 [ 002 | 2.850 [ 2.890 [ 2.830
25 -5 3611 3606 | 016 | 3.585 [ 3.598 | 3.610
10 5 3.691 3.694 | 001 3.682 | 3.690 | 3.682

shows the comparison between the mean and standard devi-
ation () of 90% step delays obtained from OPERA (for an
order 3 expansion) and from SPMC simulations (1000 sam-
pling points) for each node of the RC Tree. A 3¢ maximum
width variation of 25 % and a thickness variation of 20 %
were considered.

Table 5. Comparison of SPMC and OPERA (time in ns)

Node | SPMC OFERA | SPMC | OPERA
Mean 90% | Mean 90% | o 90% | o 90%
2 17.97 17.95 1.160 1.180
3 2243 2241 1.419 1.451
3 3547 2540 1551 | 1.620
5 2747 2745 1.705 1.730
6 28.82 28.80 1.770 1.791
7 29.59 29.57 1.805 1.835
Conclusions

‘We proposed a novel scheme for analyzing the performance
of interconnects in the presence of process variations. The
variations are modeled as random variables. We showed how
the stochastic response of the interconnects can be efficiently
computed by an infinite series orthonormal polynomial ex~
pansion of the response. This provides a novel framework
for the development of sophisticated algorithms for accurate
and precise stochastic medel computations. We carried out
simulations on sample test cases and test cases from com-
mercial designs (0.13 micron technology). Comparison of
our results using OPERA against the classical Monte Carlo
based SPICE simulations demonstrates an excellent match.
In addition, our algorithm demonstrates a significant speedup
of the order of 60X over Monte Carlo SPICE simulations,
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