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Abstract 
Deformations in interconnect due to process variations can 
lead to significant performance degradation in deep sub- 
micron circuits. Timing analyzers attempt to capture the ef- 
fects of variation on delay with simplfied models. The tim- 
ing verification of RC or RLC networks requires the sub- 
stitution of such simplified models with spatial stochastic 
processes that capture the random nature of process vari- 
ations. The present work proposes a new and viable method 
to compute the stochastic response of interconnects. The 
technique models the stochastic response in an infinite di- 
mensional Hilbert space in terms of orthogonal polynomial 
expansions. A finite representation is obtained by using the 
Galerkin approach of minimizing the Hilbert space norm of 
the residual emr:  The key advance of the proposed method 
is that itpmvides afunctional representation of the response 
of the system in terms of the random variables that repre- 
sent the process variations. The proposed algorithm has 
been implemented in a procedure called OPERA. Results 
f "  OPERA simulations on commercial design test cases 
match well with thosef" the classical Monte Carlo SPICE 
simulations and from perturbation methods. Additionally 
OPERA shows good computational eficiency: speedup fac- 
tor of 60 has been observed over Monte Carlo SPICE simu- 
lations. 

Introduction 
The performance of integrated circuits (ICs) is increasingly 

less predictable as device dimensions shrink below the sub- 
100 nanometer scale. The modeling accuracy problem stems 
from poor control of the physical device and interconnect 
characteristics during the manufacturing process. Uncer- 
tainties due to variations in the manufacturing process are 
reflected in variations in the circuit parameters. Examples 
of manufacturing variations are the variations in materials, 
variations in geometry (to=  le^, W) and doping profiles 
of MOSFETs, material and geometric variations of the in- 
terconnects etc. The many sources of variations in the IC 
fabrication process lead to a hierarchy of random and sys- 
tematic effects on circuit performance [16]. 

A common way of accounting for process variations is 
to use a linear model to represent a circuit parameter. For 
instance, a parameter p would be expressed as p = f i p  + + E.+. where pp is a (nominal) mean value, e l .P  and qP 
are random variables with mean zero and variances 01 ,~  and 
o ~ , ~ .  These represent the inter-die and intra-die variations, 
respectively. Designers interested in performance analysis 
and optimization typically use only a single value of up. 

The performance of devices and interconnects depends on 
several parameters (&E, W, to,, V,, etc.) that are spatially 
correlated across a chip and have systematic variations he- 
tween othenvise identical dies [2]. Although the importance 
of accounting for correlations has been repeatedly empha- 
sized, in practice the variational components of different pa- 
rameters have been modeled mostly as independent random 
variables. Assuming independence ofparameters leads to the 
analysis of extremely unlikely or even physically impossible 
circuits [17]. When correlation data or models are avail- 
able, it is possible to generate values of multiple parameters 
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by Monte Carlo sampling from theirjoint distribution func- 
tions [4,3]. Joint distributions are usually not available and 
sample sizes need to be very large for modem VLSl designs. 
Perturbation techniques [E, 9, 1 5 ,  231 are an alternative but 
they are generally applicable to small variations (about the 
nominal values) and expansions beyond the first or second 
order may be computationally not feasible. 

In the nanometer regime, there is a need for accurate mod- 
els of interconnect that account for the uncertainty resulting 
from process variations [22]. For this reason, interconnect 
variational analysis based on model order reduction has been 
a very active topic of research over the past several years. 
Lin et. al. [I51 studied the effect of interconnect parame- 
ter variations on three projection-based model order reduc- 
tion techniques: Krylov subspace analysis methods [20,18], 
PACT [I21 andPRlMA[lE]. Theworkcombinesmatrixper- 
turbation theory and the model order reduction methods. The 
authors of [9] proposed a balanced truncation (BTR) method 
for analysis of interconnects that accommodates variations. 
It offers a weighted error bound. The methods in [9] and [ 151 
directly approximate the projection matrices as perturbed ma- 
trices from the nominal ones. The reduced system is unable 
to preserve stability. As a result, subsequent analysis with 
nonlinear devices can cause instability [14]. In [23], a BTR- 
like method using linear fractional transforms is described. It 
models variations but preserves stability and passivity. The 
new models have computable error bounds and unlike the 
existing variational analysis methods, impose no constraints 
on the internal structure of the state-space model. 

Contributions of this work 
This paper presents a new approach for the performance 

analysis of interconnect networks in the presence of process 
variations. The approach treats the electrical parameters in 
the system of differential equations for RCRLC networks as 
continuous parameter (spatial) stochastic processes, where 
the source of randomness is due to variations in the parame- 
ters. As a result, the system response is a stochastic process 
which we show can be represented as a infinite series of or- 
thogonal polynomials in a Hilbert space ofrandom variables. 
The series is truncated by projecting it onto a finite dimen- 
sional space, while minimizing the error. This provides a 
functional or analytic representation of the stochastic pro- 
cess that includes the random parameters. With this, there 
is no need to repeatedly solve the system with values of the 
parameters as would be required in a Monte Carlo approach. 
Rather, the functional representation can be directly evalu- 
ated. Moments and probability density functions of quan- 
tities of interest may easily be computed from the resulting 
analytical from. Much higher order expansions are possible 
when compared to perturbation techniques. The procedure 
improves the computational efficiency of the Monte Carlo 
approach by an order of magnitude. The proposed tech- 
nique has been implemented in a prototype software named 
OPERA (Orthogonal Polynomial Expansion for Response 
Analysis) which can also carry out a SPICE Monte Carlo 
analysis. 

Problem Definition 
Consider an interconnect that is represented as a RC net- 
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work'. In the s-domain, it is described by the MNA equations 
as G + sC)z(s) = f ( s ) ,  where f ( s )  is the known input, 
M ( s )  = (G + sC) is the coefficient matrix and x ( s )  is the 
response to be determined. The circuit parameters G and 
C depend on the interconnect geometry, such as the metal 
height (H), metal width (W), ILD thickness (T), etc. In 
the presence of process variations, these geometric charac- 
teristics of the interconnect, and consequently, its electrical 
characteristics, must be modeled as random variables. 

Suppose that there are r geometric characteristics of inter- 
est. Let R denote the sample space of experimental or manu- 
facturingoutcomes. Forw t fl,let((w) = { t i ( w ) .  . . .&(U)}  
be a random variable that represents the value of the r geo- 
metric characteristics. The space ofall such random variables 
is denoted by 0 : Cl -f R'. Without loss of generality, we 
assume that random variables in (have zero mean. In the 
presence of process variations, the MNA equations take the 
form 

M(s,S jw))  .(S><(.)) = f ( s , f ( 4 )  (1) 

where M ( s ,  a w ) )  = G(((w)) + sC(((w)) 
In Equation (l), the coefficient matrix M(s , ( (w) )  is a 

random process, representing the fact that the uncertainty 
or randomness in the system is in the system parameters. 
Because of this, the response z(s, ( ( U ) )  is also a random 
process. f ( s ,  ( ( U ) )  includes the deterministic input as well 
as the random parameters. The domain of the index variable 
s is the complex domain. For fixed s, x(s,<(w)) is a ran- 
dom variable. That is for each manufacturing outcome w, 
and the corresponding value of the observed parameter t (w) ,  
z(s, <(U)) would be the response of the system for that spe- 
cific manufacturing outcome. For a fixed Rw),  z(s, c ( ~ ) )  is 
a deterministic function of s. Next, we present our method 
to compute the stochastic response x(s , ( (w))  

Approach 

Overview 
We assume that the stochastic response x ( s ,  d w ) )  is a sec- 

ond order process. This means that all the random variables 
have finite variance. This is certainly valid for all stochas- 
tic models of real systems. The approach presented in this 
paper is based on expanding a stochastic process as an infi- 
nite series of orthogonal polynomials involving an arbitrary 
number of random variables. For reasons that will be made 
clear shortlv, these uolvnomials are known as Dolvnomial ~. . .  . I  

chaos [6] .  Specifically, the stochastic response x ( s ,  f ( w ) )  
will be represented as 

i=0 

where {ai(s)} are deterministic coefficient functions, <(U) 

are orthonormal random variables and *(<(w)) are a col- 
lection of multi-dimensional orthogonal polynomials in the 
random variables f (w) .  The equality in Equation (2) repre- 
sents convergence in the norm. As will be explained shortly, 
the { Q r }  constitute a orthononnal basis of a infinite dimen- 
sional Hilbert space, and there is a considerable choice in the 
selection of that basis. However, as long as the process is 
second order, convergence is guaranteed by any one of those 
orthonormal bases 151. 

'The proposed methad and resulls are for gmeral RLC mtwxks. 

Orthogonal Expansions 
In this section we explain how the representation of a ran- 

dom process given in Equation (2) is obtained. For simplicity, 
we will henceforth no longer explicitly show the dependence 
of [ (and other random variables) on w. For each 8 ,  M(s,5) 
is a functional. That is, M(s,5) maps each function <E 0 
to a point in complex domain. Hence for each s, the response 
z(s, 5) is a point in the space U. The space U is an infinite 
dimensional function space. It is for this reason that the 
expansion has meaning in a Hilbert space. Once such a rep- 
resentation is obtained, we find the best finite approximation 
to the infinite series expansion of the process. The best is in 
terms of the underlying norm defined in the Hilbert space. 
In this section we,provide only a few essential definitions 
and main results. Details of this theory are may be found 
in [6 ,26] .  

Hilbert spaces provide a means for defining a inner product 
on a space ofrandom variables (e.g. 0). This leads to a norm 
and a metric, which in tum can be used to define convergence 
when representing,a random variable as an infinite series. 
Convergence is in the mean square sense. 
Definition 1 Let 'M be a vectorspace oversomefield3 with 
an innerproduct < ., . > dejined. The norm in 'M is l l f l l  = m, andthemetricisd(f,g) = l l f - g l l ,  'Miscalled 
a Hilbert space i f i t  is complete as a metric space. 
Completeness means that if all terms of a sequence beyond 
a given point get arbitrarily close to each other (i.e. if it is 
a Cauchy sequence) then the sequence will converge. This 
allows determining convergence without knowing the limit. 
Definition 2 (Orthogonal) Two elements. x andy ofan in- 
nerproduct s ace are said to be orthogonal i f ( x ,  y )  = 0. 8 
in addition, 
Definition 3 (Orthonormal Basis) An orthonormal sequence 
{&}El,  in a Hilbert space is calledan orthonormal basis 
rfthe only e1ement:outside the basis that is orthogonal to 
every element in the basis is the zero element. That is, an 
orthonormal basis is a maximal subset of elements that are 
mutually orthogonal. 
Lemma 1 Let be an orthonormal basis ofa Hilberl 
space. Then Ihe injiniteseries Er=, (x, #k) & converges in 
norm to x [26]. 

The space 0 is an,infinite dimensional Hilbert space. The 
above lemma states that in order to obtain a convergent infi- 
nite series representation of a element in 0, we need to find 
an orthonormal basis. One such basis is the set of Hermite 
polynomials. In 0 the inner product of any two elements is 
the expectation of their product, i.e., their correlation. Let P 
be a probability measure on Q. Then the inner product on U 
is defined as 

= J J y J J  = 1, they are orthonormal. 

Definition 4 (Hermite Polynomial) Let ti, f z 3 .  , . , be a in- 
finite collection of variables. The Hermite polynomial of or- 
der p is defined as 

wherec= [ti, ti, ... & I t .  
Note: I n H p ( { i l , i z , . ~  .,ip}),anychoiceofpvariablesfrom 
{[I,&,. . . ,m} isallowed,includingrepetitions. Ifthereare 
T variables (T dimensional), then there will be 
( p  + T - l)!/p!(r -:l)! Hermite polynomials of degree p. 
As an example, consider two variables: .( = {cl, e>}. The 
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Hermite polynomials shown below are of order 0, I ,  2, and 
3, and are easily derived using Equation (4). 

order0: NO({}) = 1 ,  

orderl: N1(1)=E1,H1(2)=&! 

Let c l ,  E! ,  . . . denote a infinite set of zero mean, ortbonor- 
mal Gaussianrandomvariables. The (infinite) setofHermite 
polynomials(ofal1orders)overthe set ofvariablest,, € 2 , .  . ., 
constitute an orthonormal basis for 0. This means that any 
secondorderstochasticprocessz(s, canbeexpandedasan 
infinite series of Hermite polynomials over an infinite collec- 
tion of zero mean, orthonormal Gaussian random variables. 
The expansion of stochastic response of the interconnect net- 
work can be expressed as [6] 

m 

i , = 1  
m i ,  

Note that Equation (2) is merely a relaheling of the coeffi- 
cients in Equation (6). To see this, we evaluate Equation (6) 
for f = {E1,  < 2 }  for up to order three using the polynomials 
.already computed in Equation ( 5 ) .  

z(s,h,Ez) =cob)  + cl(s)El + C Z ( S ) E 2  

+cll(S)(t: - 1) +CZl(S)(ClEZ) + CZZ(S)(E22 - 1) 

+Czz1(S) (h<g  -< I )  4- Sz,(S)(c; - 3Ez) 
+ C n l ( S ) ( t ?  - 3Ei) + czll(s)(S?b - fz) 

(7) 
The one-to-one correspondence between the terms in Equa- 
tion (2) and Equation (7) is clear. 

for a Brownian Motion process, and was known as Homoge- 
neous Chaos. The result from [ 5 ]  implies that the expansion 
is valid for any second order stochastic process, and it is now 
referred to as polynomial chaos. 

are Gaussian is not a restriction. The 
original random variables f representing the interconnect 
variations can be Gaussian or non-Gaussian. The expansion 
using Hermite polynomials is still correct. If the parameter 
variations happen to be Gaussian, then the convergence will 
be exponentially fast [27]. 

The inner product on 0 given by Equation (3) is an expec- 
tation, and hence involves the probability measure P. Let 
$P(d  = w(&< Then from Equation (3), we see that the 
inner product varies with the choice of the density or weight 
function w ( 0 .  In the case that the interconnect variations 
represented by care Gaussian, then the optimal choice (w.r.1 

TheexpansioninEquation(6)wasfirstprovedbyWiener[25] 

The fact that 

io speed of convergence) for U ,<, is the GaLssian density 
iunciion. This wil l  result in the llcrmiie poiynumials being 
ihc urthonormsl babis for ihe space 0 Other common dla- 
tribution, Icad to difkrent orthogonal polynomials. 'Table I 
from[27] shons the be.vchoice Ibrtheonhonormal basis for 
m m a l  Drobabiiitv densities Se\erd of the continuous den- 
sities might be altknative choices for interconnect parameter 
variations. 

Continuous 

Discrete 

Variable Dirtnbution 

Gaussian 
Log-nomal 

Gamma 
Beta 

Uniform 

Poisson 
Binomial 

Negaiive Binomial 
HypergeOUletliC 

Polynomial Class 

Hermite 
Hermite 

Jacobi 
Lag"" 

Legendre 

Charlier 
Krawtehouk 

Meixner 
Hahn 

Table 1. Relationship between the distribution of random 
variables and the choice of orthogonal polynomials 

Finite Approximation 
The unknowns in the expansion of the stochastic response 

shown in Equation (2) are the deterministic coefficient func- 
tions a,(s). The number of random variables in the expan- 
sion are finite. However. the oolvnomials are of all orders. 
We need to truncate the expaision after including only a fi- 
nite number of terms. The criterion will be to minimiLC the 
error, and in doing so, we find the coefficients L L , ( ~ ) .  

The method to determine the coefficients i s  based on the 
well known principle oforthogonality. Suppose that we are 
dealing with two finitedimensionai inner product spacer V ut' 
dimrnsionii,andasubspncs II'ufdimensioni,1,m < ,,,and 
\\e wish to find the best approximation of a vector U E V 
by a \'ector w E 11'. Bert is in the sense of minimizing 
thc norm 01' the error, I e. v - U , . n i u  principle o i  
onhogonaliry states that [he best choice for U i b  the one that 
1% orthogonal to the error t - w ,  i.e. determine the 111 such 
that (U - io, w, = U. 

The extension of the pnnciple of orthogonality for map- 
ping a vector in a infinite dimensional inner product space 
to a finite dimensional subspace i s  known as the Calerkin 
meihod 161. Let r be the dimensionality of the random vari- 
able < i.e., the number of random parameters of the system. 
Let ip( 3.  d denote the truncaird version of the rerponse T, 
using only the first p order polynomials. That is  

N 

? p \ 5 , d  = cax(.SJ*~(fJ (8) 
,=U 

Let E, denote the error due to the truncation. It is simply 
the difference behveen right hand side of Equation (1) and 
the lee  hand side with Z, replacing z. That is, 

Ep(s,d = M(s,dZ,(s,d - f h d  (10) 
The orthogonality condition (inner product of the error and 
the truncated series must be zero) results in p equations that 
have to be solved for the coefficients. These equations are 
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An Example 
We illustrate our approach with the aid of an example cal- 

culation on the circuit shown in Figure l .  The metal in- 
terconnect can be modeled as a second order RC circuit 
consisting of two RC sections. The input excitation is a con- 
stant voltage source V,. The metal interconnect is subject 
to geometric process variations. Without loss of generality, 
we assume that the only variations of significance are in the 
width W and in thickness T of each section and that they 
have a Gaussian distribution. These are modeled as zno-  
mean normalized Gaussian random variables (E,,, E t ,  for 
RC section 1 and C w 2 ,  E t ,  for RC section 2). Thus for the 
two RC sections, we have 

(L? < , , I  ,,' (1,T t o )  r7-v 
R ~ l C w r C t i )  V I  R z ( C w 2 C U )  "1 

r 

Wl = W" + ow, E,, (12) 
Ti = T L n  + at, ti, (13) 

Wz = W" + ow2 E,,,? (14) 
Tz = TAan t ai2 Et, (15) 

In general, the random variables t,,, E t , ,  t,,, Et,  may 
be correlated. This implies that the resistance-conductance 
pairs of the RC sections are (implicit) functions of all the 
random variables. We thus have E = {E,,,, , et,,  

In this example, we attempt to capture the effects of the 
process variations on RI (or GI), CI and Rz (or G z ) ,  CZ by 
expressing them as a linear function of the geometric random 
variables. This is consistent with the models developed in 
much of the contemporary literature [15, 161. However, 
we emphasize that there are no limitations in choosing any 
particular form of the expansion for GI,  Gz, C1, Cz in terms 
of We thus have, 

- 
Et2}. 

GI (d = G,u, + Gw, E,, + GT, Ci, (16) 

G z ( 6  = GM, + Ew9 + G T ~  Et ,  (17) 
~ ( 6  = chr, + ~ w ,  L, t cT, ~ t ,  (18) 
CZ(d = C M ,  + CW, E,, t CT, E t ,  (19) 

where GM, and G,+r3 indicate the mean value of the conduc- 
tances, and Gw,, Gw,, G h  and G T ~  signify the perturba- 
tions in GI and Gz due to the variations in E,,, and E t , ,  
E t , .  C, and CZ are represented in the same way. 

To make the illustration more tractable, and without loss 
of generality, we will assume that the variables E,,,, and E, 
are same for the purposes ofthis analysis and so are E t ,  ana 
Et,. Thus we have Ew1 = E,? = E1 and E t ,  = Et, = tz. 
We also assume that El and & are orthonormal. Thls IS 
always possible to achieve by a linear transformation [19]. 
The MNA equation for our RC circuit is given by 

( G ( d  + sC(d) ~ ( s ,  c? = u(s) G,(d (20) 

Matrices G., Ga, G, and C,, Cb, C, are 2 x 2 symbolic 
matrices (they become numerical matrices for a specific set 
of real values of Cl, Gz, CI Cz). 

We now expand the response X ( S ,  E )  using second order 
= 2 in Equation (8)) Hermite polynomials. 

x(5 ,d  = ao(s)+a1(s)E1 + a 2 ( S ) E 2 + a 3 ( s ) ( ~ 1 2 - 1 )  

+ a4(3) (E152)  + a 5 ( s )  ((22 - 1) (21) 

Note that ai (s) is a two component vector corresponding to 
eachnode in the network. That is, a i ( s )  = (V1,s(5), V ~ , i ( s ) ) ~  

To obtain the response x ( s , d  we need to determine the 
coefficients ai(s) using the Galerkin procedure described in 
Section . From (IO) we have the definition of the error E, as 

EJs, c? = (G(d + sc(E?) ~ ( s ,  d - O(S) G(d (22) 

The coefficients 4.3) are obtained by solving (see Equation 
(11)) 

(C,[s,E),'€'j(<)) = 0 for j = 0,1,. . . , N (23) 

C,(s, f), 9,) is defined as 

where w ( d  is the standardized bivariate Gaussian probability 
density futiction. 

Thus, for each j = 0,1,. . . N, Equation (23) gives us 2 
equations in terms of the unhown deterministic coefficients 
represented by the vector a(s) .  This results in 12 linear 
equations with 12 unknowns in a ( s ) .  Expressing the linear 
system of equationsiohtained in a matrix form we have 

where 

Now ue can solve Equmon ( 2 5 )  numcrically 10 obtain thc 
cocfficicnt \ector,j(s). Oncrthc vcctoro(d, ijobtincd, we 
have an explicit cxprcssion for the circuit response I(*. ( 1  in 
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terms of <given by Equation (21). With this explicit expres- 
sion the probability distribution of the delay from the source 
node to any node w.r.t to the geometric random variables E 
is readily determined. And some of the unique properties of 
the Hermite polynomials help us calculate easily the mean, 
variance, etc., of the delay distribution. 

For a general RC circuit, if the dimensions of G, C and 
U ( s )  are k x k, k x k and k x 1 respectively, then c, 6 and 6 
are of the order 6k x 6k, 6k x 6k and 6k x 1 respectively for 
a order 2 (p = 2) expansion of the stochastic circuit response. 

General Method 

interconnect can be broadly classified into four steps: 

- 

Our approach for obtaining the stochastic response of an 

Modeling the Interconnect system using stochastic 
MNA equations: Any interconnect can be modeled as 
an RC (or RLC) circuit with multiple ?i sections. An 
MNA equation similar to ( I )  can be obtained for every 
RC (or RLC) interconnect. 
Expressing the Interconnect response as an infinite 
series of orthonormal basis set of polynomials: The 
stochastic interconnect response (z(s, <)) can be ex- 
pressed as an infinite series of an orthonormal basis set 
of polynomials using an expansion similar to that of 
(6). The choice ofpolynomial set depends on the prob- 
ability distributions of the geometric random variables 
(Table ) 
Minimizing the error due to projection on to  a finite 
subspace: The infinite series interconnect response 
expansionistruncatedforanorderpasshownin(8). To 
optimally minimize the error due to the finite truncation 
of the series, we minimize a norm of the error and each 
polynomial of the orthonormal basis set defined as in 
(1 I), (3). 
Solving for the unknown coefficients ofthe finite se- 
ries expansion: The coefficients of the finite series 
interconnect response expansion (aj(s) in (8)) are de- 
terministic and unknown. And the error norm mini- 
mization from step 3 gives us a linear system of equa- 
tions in terms of these unknown coefficients (aj(s)). 
We can solve these equations numerically to obtain the 
stochastic interconnect response. 

The computational steps of our approach described above 
have beenimplementedinaprototypesoharecalled OPERA. 
OPERA also has the additional ability to perform Monte 
Carlo SPICE simulations. 

Computational Cos t  
The key computational steps of OPERA are evaluating the 

inner product in Equation (24) and solving Equation (25) for 
a(s). Since the integrands in the inner product are poly- 
nomials in < and include an exponential function 
integration by parts ensures easy numerical or even symbolic 
integration. In fact, for any given order p of the stochastic 
response expansion, the integration need on/y be performed 
once for symbolic values of matrices G and C followed by a 
substitution of the actual numerical matrices. The resulting 
symbolic block matrices 8, c and 6 consist of some constant 
multiples of the sparse matrices E,, Gb,G,, C,, C b ,  C, 
and V,. In addition the matrices G and C have been ob- 
served to become increasingly sparse with an increase in the 
order p of the stochastic response expansion or an increase in 
the number of the uncertain parameters (random variables) 
of the interconnect circuit. 

The computational cost of (25) increases linearly with the 
number of coefficients a(s).  This depends on the order p of 
the expansion and the number of random variables T. If the 

order of the polynomial chaos is p, then the number of coef- 
ficients a ( s )  will be O(T"), where T is the number of random 
variables. The computational cost increases as a polynomial 
w.r.t to the number of uncertain parameters. To further re- 
duce the computational complexity of OPERA model order 
reduction techniques are used. 

Model Order Reduction 
The model order reduction (MOR) techniques can be ap- 

plied in two domains in our approach. Application of MOR 
in one domain targets the order p of the stochastic response 
expansion and in the other domain targets the number of 
terms approximating the coefficient q ( s )  in (8), (21). Both 
these techniques are integrated in to OPERA . 

Stochastic Hilbert space domain: The order p of the 
stochastic response expansion in Equation (8) provides 
the first opportunity to limit the order of the system. 
However, the order of the system is primarily deter- 
mined from the accuracy requirements and an order 2 
or order 3 expansion seems to be adequate for practical 
purposes. 
Deterministic Hilbert space domain: Equation (25) 
from section represents adeterministic system oflinear 
equations of the unknown coefficients a(s) .  This is 
similar to the MNA equation of ageneric RC (or RLC) 
interconnect in the absence of process variations. And 
hence all the existing MOR techniques can be applied 
to this system of equations. 
Model order related stability issues have been discussed 
in a number of literatures and any existing stability 
technique can be applied in our method. The resulting 
system due to MOR will have almost a linear increase 
in complexity with regard to the number of uncertain 
parameters (random variables). Figure 2 shows the in- 
crease in the computational cost (for a sample intercon- 
nect) with increase in the number of uncertain param- 
eters for the Monte Carlo SPICE simulations (SPMC) 
technique, OPERA without MOR, and OPERA with 
MOR. Cost for OPERA with MOR increases linearly 
with the number of the uncertain parameters. 

~ -. . SPMC 

.OPERA no-MOR 

Figure 2. Computational cost increase trend 

Experimental Results 
OPERA has been verified for several test cases and the 

results for some representative test cases of RC and RLC 
interconnects are given below. The (normalized) random 
variables considered in all our test cases are width and thick- 
ness variations. Our algorithm has been verified for two 
cases of probability distributions of the random variables: 1) 
Gaussian, 2) Lognormal. 

Gaussian Distribution 
Case A. RC Tree: The first test case considered is an RC 

tree shown in Fig.3([11]). It is assumed that this RC tree 
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Figure 3. RC Tree 

Figure 4. Delay distribution at a node with fixed wire 
thickness B changing wire width 

is on Metal Layer 4 and is subject to metal wire width and 
thickness variations. We compare the delays obtained from 
SPICE based Monte Carlo (SPMC) simulations with 1000 
sampling points with those from OPERA with an order 3 
expansion. The results for the mean 50% delay and 90 
% delay with a 3 m  maximum width variation of 20% and 
thickness variation of 30% are summarized in Table 2. The 
differences between the delays obtained from OPERA and 
SPMC at each of the leaf nodes is about 0.1% or less. 

Table 2. Comparison of SPMC and OPERA (time in pr)  
1 Node I SPMC 1 OPERA I SPMC I OPERA 1 

Figure 4 gives the distribution utdelays ai node 7 with regard 
to fixed wire thickness and changing wire width. 

Cnse B. RLC lrce: Our approach IJ also applicable to 
KLC circuits. As an example, we consider a 2000 micron 
dirtributed RLC line in Fig. 5 ( I  I I ] ) ,  which is modeled ir i th  
10 lumped KLC scctionh The rcsuhb from OPEKA with 
order 2 and order 3 expansions arc compared with the resuits 
irom SPhlC in thc frcquency domain (Fig.6). lhr results 
from OPEKA fur an order 3 expansion mdtch very well 
wi th  thox tiom SPMC. Thus fur buth RC and RLC circuits. 
OPERA with order 3 expansion ofrcrs good accuracy. 

Care C. H-shnped Clock Tree: .4s 3 final example for 
ihe case uf tiaussian distnbution, we consider several large 
11-shaped clock irces (Fig.7) taken from a 0 13 micron com- 
nicrciai deaign Table 3 shows the mean 50 delay coni- 
parirons at a terminal sink node from OPEKA and a 1000 
 ampl ling point SPlIC for clock trecs U 8th a varying number 
uifanouts with a 90 maximum width \,ariation of 30% and 
thickness variaiion of20 '7r. Thc t m e  consunied by both ihc 
algonthms in flops (floating point operations) is listed in the 
table it can be obscned that an average specd up of about 

~ 
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Figure 5. A distributed RLC line with a linear driver and 
capacitance load 

i 

Figure 6. Frequency response with SPMC, order 2 and 
order3OPERA , 
60x is obtained by OPERA over SPMC. 

And for a H-shaped clock tree, we obtained 50 %V& delay 
response at a sink node from OPERA and perturbation meth- 
ods from [23,15,9] for different variations in the metal width 
and thickness. The comparison of the mean delay responses 
is shown in Table 4. For want of uptodate sofhvare versions 
for the perturbation methods from [23, 15, 91, we are unable 
to compare our timing complexity with those approaches. 

Lognormal Distribution 
Case D. RC Tree:. The second probability distribution of 

the random variables we consider is a Lognormal distribu- 
tion. For this distribution, we consider the case of an RC 
interconnect with 7 nodes. Modeling the conductance and 
the capdcivanie matrices in the prcsecce of width and thisk- 
ncss vanations that ore Lognorm.il is the pnmary dilticulty 
involvcd in this c3sc. A Lomormsi vanablc I S  dcfincd as the 
ekponsntisl o r a  normal &able Assuming that the Larid- 
lions in the normalizd random vdriablcs width and ihiikncs\ 
are small (< e), we recover the Gaussian case bv perform- 
ing a taylor senes expansion of the exponential function of 
the Gaussian random,variable. We truncate the exponential 
series to a required degree of accuracy, order two in this 
example. The rest of the procedure in obtaining the delay 
response is similar to the Gaussian distribution case. Table 5 

6 
Figure 7. H-tree clock tree driven by a tapered buffet 
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!4 SPMC OPERA error 
fan 50% 50% % 

Table 4. 50% V d d  delay of H shape clock tree at one r ink 
I M 4 ~ w  I M4-h I OPERA I SPMC I error I 1231 I l l 5 l  I 191 1 

SPMC OPERA speed 
(Gflopr) (Gflops) up 

shows the comparison between the mean and standard devi- 
ation ( U )  of 90% step delays obtained from OPERA (for an 
order 3 expansion) and from SPMC simulations (1000 sam- 
pling points) for each node of the RC Tree. A 30 maximum 
width variation of 25 % and a thickness variation of 20 % 
were considered. 

Table 5. Comoarison of SPMC and OPERA (time in ns) 
N d c  SPMC OPFRA SPMC OPFRA 

\(CM YV'o Mean YU"0 o 90°0 o 90% 

3 
4 
5 
6 
7 

Conclusions 
We proposed a novel scheme for analyzing the performance 

of interconnects in the presence of process variations. The 
variations are modeled as random variables. We showed how 
the stochastic response of the interconnects can be efficiently 
computed by an infinite series orthonormal polynomial ex- 
pansion of the response. This provides a novel framework 
for the development of sophisticated algorithms for accurate 
and precise stochastic model computations. We carried out 
simulations on sample test cases and test cases from com- 
mercial designs (0.13 micron technology). Comparison of 
our results using OPERA against the classical Monte Carlo 
based SPICE simulations demonstrates an excellent match. 
In addition, our algorithm demonstrates a significant speedup 
of the order of 60X over Monte Carlo SPICE simulations. 
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