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Abstract— Variability in digital integrated circuits makestim-
ing verification an extremdy challenging task. In this paper, a
canonical first order delay model is proposed that takes into
account both correlated and indeperdent randomness.A novel
linear-time block-based statistical timin g algorithm is employed
to propagate timing quantities like arrival times and required
arrival times through the timing graph in this canonical form.
At the end of the statistical timing, the sensitvity of all timing
guantitiesto eadh of the sourcesof variation is available. Exces-
sive sensitvities can then be targeted by manual or automatic
optimization methods to improve the robustness of the design
This paper also reports the first incremental statistical timer
in the literatur e which is suitable for usein the inner loop of
physicd synthesis or other optimization programs. The third
novel contribution of this paper is the computation of local
and global criti cality probabilities For a very smdl cost in
CPU time, the probability of each edgeor node of the timing
graph being critical is computed. Numerical results are presened
on industrial ASIC chips with over two million logic gates,
and statistical timin g results are compared to exhaustive corner
analysis on a chip design whose hardware shaved ealy-mode
timin g violations.

Index Terms— Statistical static timing, variabili ty, incremental
timin g, criticality probability.

|. INTRODUCTION

HE timing chamlacteristicoof gatesandwiresthat make up

adigital integratedcircuit show mary typesof variability.
Therecanbe variaklity dueto manufactuing, due to erviron-
mental facta's such asV; and temperatue, and due to device
fatigue phenanera swch as electomigration, hot eledron
effectsand NBTI (Negative Bias Tenperature Instalility). The
varialility makesit extremely difficult to verify the timing of a
design before committing it to marufactuing. Nominally sub-
critical pathsor timing points may becone critical in some
regions of the spaceof variatins due to excessve sensitvity
to one or more saurcesof variation. The goal of robust design
to first order, is to minimize such sersitivities.
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Traditional static timing methalology is comerbasedor
case-based e.g., best-caseworst-ae ard nominal. Unfor-
tunately such a metlodology may require an exponential
number of timing runs as the number of independent and
significant sourcesof variation increase Further, asdescribel
in [1], the analysis may be bath pessimistic ard risky at the
sametime At comers that are timed, worst-case assunptions
are madewhich are pessimistic, whereassinceit is intractale
to aralyze all possble corners,the missingcornersmaylead to
falluresdetectedatfter the marufacuring of the chip. Statistical
timing aralysisis a sdution to thes problens.

Statisttal timing algorithms fall into two broad classes.
The first is path-based algorithms wherin a selectedset
of paths is submitted to the statistical timer for detailed
aralysis. This set of methals can be thought of as “depth
first” traversal of the timing grgph. In [2], the maximum of a
setof pathdelays is computed but correlatiors betweenthe
path delays are ignored In [3], somrre theortical resuts are
derived on bounds on the maxmum of a setof path delays
under certain restrictiors. In [4], theseasaimptions are relaxed
ard correlations both due to dependence on global sourcesof
variation and due to recawergert fanaut (or path sharing) are
taken into accaunt.

Path-basedstatistcal timing is accuate ard has the ahility
to realistically caggure correlatiors, but suffers from other
wedknesses. First, it is not clear how to select patls for the
detailed analysis since one of the pathsthat is omitted may
be critical in some pat of the proces space. Secad, path
basedstatigical timing often doesnat provide the diagnastics
necessaryo improve the robustress of the dedgn. Third, path
basedtiming does nat lend itself to incremertal processing
wherely the cdling program makes a charge to the circuit
ard the timer answerghe timing query incremenally and ef-
ficiently [5]. Finally, path-tasedalgorithms aregood at taking
into acount global correlations, but do not hande independent
rancdomnessnindividual delays.Doping effectsandgate oxide
imperfections are usually modded as uncorelated random
pheromena.ln fact,few if ary statigical timing attempsin the
literature include support for bath correlated ard independent
rancdbmness.

The statistical timer describe in this paper belongs to
the second class of statisical timers, namely block-based
statistical timers This set of methods traversesthe timing
graph in a levelized“breadthfirst” mamer. In [6], proballity
distributions are assumd to be trains of discrete impulses
which are propagated through the timing graph. However,
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correlaions both due to globd depencencies on the souces
of variation and due to path-staring are ignored, as is the
casewith [7]. In this same gereral framework, [8] descibes
how correlations due to recawergent farnout canbe taken into
accaunt, but nat depencenceon global souces of varation.
In [9], an approximate block-based statisticaltiming amalysis
algorithm is descritedto redwce pessmism in worst-casestatic
timing andysis The corcept of pammeteized dday models
is proposed Recetly, [10], [11] focus on handling spatial
correlaions dueto intra-die variability. While the timer in this
paper shaessone key similaritieswith previous efforts (such
astheuse of ageneral canmical delay model), these alsosufer
from same weaknessesFirst, they do not provide diagrostics
tha can be usedby a human designer or synthess program
to make the circuit more robust. Second, there is no report of
ary increnental statigical timing approachin the literature
Third, with the excegtion of [11], they do nat provide for
a gereral enough timing model to accommodate correlation
due to deperderce on common global saurces of varation,
indepencent randomnessand correlation due to path shaing
or recawergentfanout. This paperdescritesa statistical timing
algorithm tha possesss the following strenghs.

1) A canoncal first-order delay model is enployed for
all timing quartities. The model allows for both global
correlaions and indeendent rancomness(spdially cor-
related souces of vaiability are currertly hardled by
meansof derating factors, ard thdr statisticaltreatmen
will be a sulject of future work). Thus timing results
suchasariva timesard slacls arealso availalde in this
caronical form, thereby providing first-order sensitvities
to eachof the souces of variation. These diagrostics
canbe usedto locateexcess$ve sensitvity to saurces of
variationand to target robust circuit desigrs by redicing
these sersitiviti es.

2) The statigica timing algorithm is approximate, but has
linear complexity in the size of the circuit and the
number of globd souces of vaiation. The speed of
the algaithm ard its block-basednatue allow the tod
to time very large circuits and incrementdly respad
to timing queiies after chargesto a circuit are made
To the best of the authors' knowledge, this is the first
incremental statisticaltimer in the literature or industry.

3) The algaithm computes,with a very smdl CPU over
head,locd and global criticality probabkliti es which are
useful diagrostics in improving the performane and
robustress of a design.

Il. CANONICAL DELAY MODEL

All gateandwire delays, arrival times, required arrival times,
slacksand slews (rise/fall times)are expres®din the standrd
or caronical first-order form below:

ag + Z a;AX; + ant1AR,,

i=1

@)

where aq is the mean or nominal value, AX;,i =1,2,---,n
represen the vaiiation of n global souces of variation X;,i =
1,2,---,n from their nominal values, a;,i = 1,2,---,n are

the sersitivities to eachof the global soucesof variaion, AR,
is the variationof an independert random variable R, fromits
meanvalue and a,, ; is the sersitivity of the timing quartity
to R,. By scalingthe sersitivity coefficients, we canassune
that X; and R, are unit normal or Gaussian distributions
N(0,1). Not all timing quartities deperd on all globd souces
of variation; in fact [10], [11] suggestmettods of modeling
ACLV (Across-ChipLinewidth Variation) by having delays
of gatesand wires in physically differert regions of the chip
deperd on differen setsof random vaiiables. In chips with
voltage islands, the delay of an individual gate will depend
only on the variability of the power suppy of the islard in
which it is physically located

I1l. THE CONCEPT OF TIGHTNESS PROBABILITY

Given ary two rancbm variades X ard Y, the tightness
probability Tx of X is the probahlity that it is larger than
(or dominates) Y. Given n random varialles, the tightnes
probahlity of eachis the probability that it is larger than all
the others. Tightness probahlity is cdled binding probability
in [12], [4]. The tightnessprobalility of Y, Ty is (1 — T'x).
Below we show how to conpute the max of two timing
guartities in caronical form and how to determne their
tightness probabilities. Given two timing quantities

A:

ao + Z a;AX; + a1 1AR,, and 2

i=1

n
bo + Z b AX; + by 1ARy,
i—1

B = €)

their 2 x 2 covariarce matrix can be written ascov(A, B) =

ay b1
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where V' is the covariance matrix of the soucesof variation.

Assuming that the X; are indepencent rardom variales for

the purposes of illustration V' is the unity marix, and thus
Do aib;

cov(A, B) =
S v } N {

Z?;l a?
> i1 aib;

By comparing termsin (5) alove, o4, o and the correla-
tion coeficient p canbe compuedin linear time. Now we seek
to determne the distribution of max(A, B) and the tightness
probaklities of A and B. We appealto [13], [14] for aralytic
expressons to sdve this problem Define
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Then, the probahlity that A is larger than B is

TAZ X

[ 1y (),

—0 A OA 1—p2?

ag — bo
o ().
The mean and varianceof max(A, B) can alsobe aralyticdly
expres®d as

(9)

Elmax(A, B)] = agTa + bo(1 — Ta) + 0¢ [25%]
var[max(A, B)] = (o3 + ag)Ta + (o + 0§)(1 = Ta)+
(a0 +bo) 06 (205™) — {E[max(4, B)]}".

(10)
Thus, the tightnessprobabilities, expected value and variarce
of max(A, B) can be conmputed arelytically and efficiently.
Similar formulas can be developed for min(A, B). The CPU
time of this operationincreasesnly linearly with the number
of sourcesof variation.

Tightness probalilities have an interpgretationin the spae
of the soucesof variation. If one rancom variatle hasa 0.3
tightnessprobadhili ty, thenin 30% of the weighted volume of
the processspaceit is larger than the other varialde, ard in the
other 70%, the othe variable is larger. The weighting facta is
thejoint probaklity dersity function (JPDF)of the undetlying
soucesof varation.

IV. BLOCK-BASED STATISTICAL TIMING: THE KEY IDEA

To apply theseideasto static timing, we need probabilistic
equivalentsof the “max,” “min,” “add’ and “subtract” opera-
tions. The difficult patt of block-basedstatisttal timing is to
re-express the reallt of a min or max operationin caronical
form for further correlated propagation in the timing graph.
The corceptof tightnessprobahbility helps us in this difficult
step. The intuition behind this step is explained below in
refererce to a snippet of the timing graph shovn in Fig. 1,
assumig late mode computatiors for illustration purposes
Let C = co+ Y. c;iAX; + ¢ 11 AR, be the late-node
ariival time atnode C, D = do + Y. | d;AX; + dy11ARy
be the latemode arival time at node D, ard the late-node
deays of the two edges of the timing graph be deg = eq +
S eAX; + enp1AR. anddpg = fo + iy iAX; +
for1AR;. We would like to conpute the late-node arrival

time at timing point G

co + 2?:1 C,AX1 + Cn+1ARC

+ eg+ Y 6iAXi +ent1AR},

{ do+>"  diAX; +dp1ARy

+ fo+ X, filXi+ far1ARy}]

{ (CU + 60) + Z?:l(ci + ei)AXi
+ (\/ oyt e%ﬂ) AR},

{ (do+fo) + 301 (di + fi) AX;
+ (VB + £210) AR

=max[ { ao+ Y1 @AX;+an1AR.},

{ bo+ > biAX; + by 1 AR},

where the codficientsof A and B (the two quartities whose
max we seekto compute) are computed from the equdions
above. Thusindependentrandomnessis treatedn anRSS(root
of the sumof the squares)fashia, which redwcesthe spread
of dday of a long path consistingof mary stages.

Using the formulas of the previous sedion, we seekto
expressthe max of the two potertial arrival times (A and B)
back into canmical form for further correlated propagation
through the timing graph. From (10), we know the mean
and variance of G. In traditioral statictiming, G would take
the value of the larger of A and B, and for all downstream
purposes, the charaderistics of the dominart potential arrival
time tha determined the ariival time G are presrved, ard
the other potertial arival time is ignored. This is like having
a tightnessprobahlity of 100% and 0%. In the probalklistic
domain, the chaactersticsof G aredeteminedfrom A and B
in the proportion of ther tightnessprobahilities. Thus if the
probakili ties were 0.75 and 0.25, the sersitivities of A and
B would be lineaty combined in a 3 : 1 ratio to obtain the
sersitivities of G. Mathematically

=max| {

= max]|

(11)

gi =Taa; + (1 —=Ta)bj,i =1,2,--- n, 12

where T'4 is the tightnessprobahility of A.

The mean of the distribution of max(A, B) is preserved
when converting it to canamical form. The only remaining
quartity to be computed is the independently rancdom part
of the reallt. This is done by matching the variarce of the
canornical form to the variarce computed analytically from
(10). Thus the first two momentsof the real distribution are
always matchal in the caronical form.

Interestingly, the coefficients computed in this mamer pre-
sene the carrect covarianceto the global sourcesof variation
asderivedin [13] and are similar to the coefficients computed
in [10]. Accoring to the theoem from [13], the covariarce
betweenG = max(A, B) and any rardom variade Y can be
expres®d in terms of covariancebetween A andY ard B ard
Y, as

Cov(G,Y) =Cov(A)Y)TA+ Cov(B,Y)(1-TA) (13

ChooseY = 4 X;, one of the globd soucesof varigion. By
obsening tha Cov(A,AX;) = a; and Cov(B,AX;) = bi,
we obtain
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Fig. 2.  Sampeé circuit.

Now, by applying the assumption that G is normally dis-
tributed, we get ¢; = o;TA + b;(1 — TA) corfirming the
previous intuition. It shauld be noted that the covarianceto
the independent souces of variation AR, ard AR, is not
presered in our methad.

The max of two Gawssiars is not a Gaussan, but we
re-express it in the caronical Gaussianform and incur an
accuagy pendty for doing so. However, this step allows us
to keep alive and propagate correlations due to depencerce
on the global soucesof varation, which is absdutely key to
performing timing in a realistic fashim. Monte Carlo results
will be shavn in the reallts sectim to assessthe accuacy of
this method.

Whenmore than two edges of the graph converge ata node
the max or min operation is conducted one pair at a time,
justaswith deteministic quantities. The tightnessprobabilities
are treatel as condtional probabilities and post-processedo
compute the final tightness probability of eacharcincidert on
the node whose arival time is being computed For exampe,
suppose there are 3 arcs P, Q and R incident at a node
Supposethetightness probabilitieswhen maxing P and@ are
0.6 and 0.4, regectively. The max of these two quantitiesis
then max’ed with R, and supposethe tightness probabilities
are 0.8 ard 0.2 regectively. Then the final tightness prob-
ablities are Tp = 0.6 x 0.8 = 048, Tp = 0.4 x 0.8 =
0.32 and T = 0.2. As more equally critical signals are
max’ed,accuagy degradesslightly sincetheagymmetryin the
restuti ng probability distribution increasesmaking it harder to
approximate in canonical form.

Slews (rise/fall times) are propagated in much the sane
manrer. If the pdlicy is to propagate the worst slew, then a
sepaate tightness probabtility is computed for the slews and
applied to repreent the bigger slew in caronical form. If
the pdlicy is to propagate the latestarriving slew, then the
samearrival tightnessprobabtilities are apdied to combine the
incoming slews to obtain the outpu slew.

In this mamaer, by replecing the“plus; “minus; “max” and
“min” operaticns with probabilistic equivalerts, and by re-
expressng the resut in a canmical form after ead operation
regular static timing canbe caried out by a stardard forward
ard backward propagation through the timing graph [15].
Ealy and late mode, segaraterise ard fall delays,seqertial
circuits and timing test are therefore easily accommodated
just asin traditional timing andysis.

Fig. 3. Timing graphof the samplecircuit.

V. CRITICALITY COMPUTATION

The methads presentedn the previous sectionerable statis-
tical timing aralysis, during which the corcept of tightness
probaklity is leveraged to propagate arrival and required
arrival timesin a paameric caronical form. In this section
the use of tightness probalilities in computing criticality
probakili ties[16] is preseted. One of the importarnt outcames
of deterministic timing is the ability to find the most critical
path. In the statisttal domain, the concept of the most critical
pathis probabilistic. The criticality probalility of a path is the
probahlity that the path is critical; the criticality probalklity

of anedyeis the probalhility that the edce lies along a critical
path; andthe criticality probaklity of a nodeis the probabklity

that a critical path passes through tha node. Computing
these probabilities will obviously have importart berefits in

erumeratirg critical paths, emabling robust optimization ard
geneating teg vectas for at-speedtest.

The method of computing criticality probakilities in this
section assunes independencebetween the various tightness
probahli tiesin a timing graph. While we believe this is a rea-
soralde assumption in practice it is nonetrelessa theaetical
limitation of the approach.

A. Forward propagation

The ideas behird criticality computations are descibed by
meansof an examge. Conside the combinatioral circuit of
Fig. 2. In this example, sepamate rising andfalling delaysand
slew effectsare ignored for simgicity, but the ideas can be
exterded in a straightforward mamer. Likewise, sequential
circuits poseno special problem The exanple assimeslate-
mode timing, but earlymode follows the samereasonig.
The timing gragph of the circuit is shown in Fig. 3. During
the forward propagation phaseof timing aralysis, each edge
of the timing graph is amotated with an arrival tightness
probability (ATP), which is the probability that the edge
deterninesthearrival time of its output node. The ATPsin this
exanple have beenchosen arhtrarily, andareshown at thetalil
of eachedge of the timing graph Once the primary outputs
are reached a virtual output edge is added from eachprimary
output to a sink node, shown asedgesG andH in Fig. 3. Each
sudt edgeis consideredto have a dday equal to the negative of
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Fig. 5. Soure nodeof the timing graph.

the assertedequred arival time at the corresponding primary
output. In the presenceof timing tests(suchas setup, hold or
clock pulse width tests),a virtual edge is added to the sink
node whaose delay is the negative of the conputed statistical
required arrival time. Then the standrd forward propagation
procedure is continued to compute the “arrival time” of the
sink of the graph, and the ATPs of the virtual output edges.
In this case,for illustration purposes, the ATP of eachof the
virtual output edgesis 0.5.

Property 1. The sum of the ATPs of all edgesincident
on any node of the timing graph is 1.0.

Property 2: The criticality of a path is the product of
the ATPs of all edgesalong the path. For path 2B5E6GS to
be critical, for examge, edye B hasto deternine the arrival
time of node 5 (probability=0.5), edge E hasto detemine
the arrival time of node 6 (probahility=0.6) and edge G has
to detemine the arival time of node S (probability=0.5), for
a total probability of 0.15, assunng indepencerce between
these everts.

Property 3: The sum of the criticality of all pathsin a
timing graph is 1.0.

B. Backward propagation

Fig. 4 shows the criticality calcuations during the backvard
propagation phase of timing aralysis. During the backward
propagation we will conpute the global criticality of each
edge ard eachnode of the timing graph and the required
arrival tightnessprobahility (RATP) of eachedge of thetiming

graph, which is the probability that the edge deternines the
regured arrival time of its source node.

Property 4: The sink node has a node criticality prob-
ability of 1.0. This property is obvious since all patts must
passthrough the sink node. The sumof the ATPsof the virtual
output edgesis therebre also 1.0.

Startirg with the sink node S, the backward propagation
first consides edges G and H. They eachhave a 0.5 edge
criti cality since they eachdetermne the arival time of S with
0.5 probalility. The criticality of nodes6 and 7 are likewise
0.5 each.

Property 5: The criticality of an edgeis the product of
its ATP and the criticality probability of its sink node.
Clearly anedge is globally critical only to the extert the sink
node is critical and it determiresthe arrival time of that sink
node.

Property 6: The criticality of a node in the timing
graph is the sum of the criticality of all edges leaving that
node. Using the albove two propetties, the criticalities of edges
ard nodes are easily computed during a levelized backward
traversal of the timing grgph, and are shown in Fig. 4. The
criticality computations can piggy-back on top of the usual
regured arrival time calcuations. Note that the criticality of
edge A, for examge, is the product of the criticality of node
6 (0.5) and the ATP of edge A (0.4). The criticality of node
5, for examge, is the sumof the edye criticalities of edgesE
and F

Coroallary 6.1: The criticality of any nodein the timing
graph is the sum of the path criticalities of all paths in
its fanout cone. For examge, node 5 has two patts in its
fanout core, path 5E6GS with a pah criticality of 0.3 ard
path 5F7HS with a path criticality of 0.5, totaling to a node
criti cality of 0.8 for node 5.

Property 7: The sum of the node criticalities of all
the primary outputs is 1.0. For geneal seqiertial circuits,
this propetty would apgy to all slackdetemining endpoints
(primary output and timing test points).

As the backvard propagation progres®s, recuired arrival
tightness probabilities (RATPs) are computed and anrotaed
on to the timing graph. These probalilities are shown closeto
the source node of each edge in Fig. 5.

Property 8: (Dual of Property 1) The sum of the RATPs
of all edgesoriginating at any node of the timing graph
is 1.0. At a node such as 5 where there are multiple fanaut
edyes, the RATPs will be in the proportion of the edge
criticality probabilities of the downstream edges. When the
primary inputs are readhed during backward traversal,a new
node of the timing graph calledthe souce node is postulated
with virtual input edges from the source node to each of
the primary inputs, shown asedges|, J, K andL in Fig. 5.
Each virtual input edge is consideed to have a delayequal to
the arrival time of the corresponding primary input, and the
regured arrival time of the souce node is computed During
this computation, the RATPs of the virtual edges are also
deternined

Property 9: The ATPsof eachof the virtual input edges
is 1.0

Property 10: (Dual of property 4) The criticality of the
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source node is 1.0. This propetty is obvious sinceevery path
passesthrough the source node.

Property 11: (Dual of property 7) The sum of the node
criticalities of all the primary inputsis 1.0.

Property 12: (Dual of property 9) The sum of the edge
criticalities of the virtual input edgesis 1.0 as is the sum
of their RATPs.

Property 13 (Dual of property 2) The criticality of any
path is the product of the RATP of all edgesof the path.
Thus the criticality of path Sal2B5E6GSis 0.4 x 1.0 x 3/8 x
1.0 = 0.15.

Property 14: The criticality of an edgeis the sum of the
criticality of all paths through that edge

Property 15: The product of the ATPs along any path
of the graph is equal to the product of the RATPs.

Property 16. The sum of the edge criticalities of any
cutset of the timing graph that sepaatesthe source from
the sink node is 1.0. In otherwords, ary cutthrough the graph
that leavesthe source node on one side ard the sink node on
the othe will cut edges whosecriticality probabilities sumto
1.0. This must be the casesinceevery critical path will have
to passthrough exactly one edge of the cutset.

It is important to note that the edge and node criticalities
canbe computed on a global basis,or on a perendpoint basis,
where an end paint is a slackdeternining node of the graph
(a primary output or either end of atiming teg segment). The
application will dictate which type of computation is more
efficient ard suitable.

C. Path erumemtion

Enumeration of paths in order of criticality probahlity is
uselil in a number of different corntexts, suwch as produc-
ing reports, providing diagnostics to the useror a syrnthesis
program, listing paths for test purposes, listing patts for
CPPR (Comman Path PessimisnRenoval) purposes[17], and
erumeratingpaths for analysis by a pathbased statigical timer
[4]. One straightforward mamer of erumeating pathsis by
meansof a breadh-first visiting of the nodesof anaugmented
graphasshown in Fig. 5, while following the unvisited node
with the highest criticality probability at each juncture. A
running total of the criticality probability of the listed paths
is maintaired, ard the pathenumeraion stops when the set of
critical pathshas beencovered with a certaincorfidence.

During the path erumeratian, the following propetties are
usefll.

Property 17: The ATP of an edgeis an upper bound on
the criticality of any path that pasesthrough that edge.

Property 18: The RATP of an edgeis an upper bound
on the critic ality of any path that passesthrough that edge

Property 19: The criticality probability of an edge is
an upper bound on the criticality of any path that passes
through that edge.

Property 20: The criticality probability of a node is an
upper bound on the criticality of any path that passes
through that node.

Side input
[Location
Location ‘lf AT query
I

of change.

Fig. 6. Incremena timing aralysis.

VI. INCREMENTAL STATISTICAL TIMING

Optimization or physical synthesis programs often cdl an
increnmental timer millions of times in their inner loop. To
suit this purpose,a statistcal timer needsto increnentally ard
efficiently amswer timing queriesafter one or more changes to
the circuit hasbean made.

Corsider the situation shown in Fig. 6. Assume a single
change has been mack to the circuit at the location shown.
The charge could be the addition of a buffer, the resizirg
of a gate, the remova of a latch, and so on. Assumethat
the calling program queriesthe timer for the arrival time at
the “Location of AT query’ point. Clearly, only the arrival
times in the yellow cone of logic change (on blackand-white
hardcopies, the lightest grey region). Further, only arival time
changes in the fanin cone of the query point can have an
effect on the query. The intersectim of theseregions of logic
is shown in green (or the darker grey region). Theotetically,
by purely topological reasoimg, the portion of the circuit that
must be re-timed to amswer this query can be limited to the
intersectionof thesetwo coresof logic. This kind of limiting
is called leveldimiting and is acompished by storing AT,
RAT and AT-RAT levels for eachgate [5]. In practice all
arival timesin the fan-out cone of the chang point andto
the left of the queay point (i.e., up to the vertical dashed line
shavn in Fig. 6) are updaed. The levelization and limiting
procedues are identicd for the statistical timing situation
ard the implementation can easily ride on top of an existing
deterministic incremertal capaility.

In additional to level-limiting, theamaunt of re-canputation
can be further reduced by dominance-limiting Conside the
NAND gate shown in Fig. 6. One input of the NAND gate
is from the “changed” cone of logic and the other from an
unchanged region. If the amival time at the output of the
NAND gate is unchanged becawse it was determined baoth
before and after the charge by the sideinput, then the fanaut
cone of the NAND gate (shown in dark bladk in Fig. 6)
can potentially be skippedin answerirg the query. This type
of limiting is called domimance-limiting In our statistical
timer, the notion of “change” is treatedprobabilistically by
examining the tightnessprobabilities. If the ATP of the side
input is sufficiently closeto 1.0 both before ard after the
change, thenthe arrival time of the outpu of the NAND gate
neednot be recomputed, ard its fanout cone can patentially be
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skipped until some other input of that fanaut core is known
to have materally charged Similar corcefts are applicabde
during backward propagation of required arival times.

Of couse,there are several compli catiors thatmust befaced
in arealapplication swch aslatchesmultiple clock phasesand
phasechanges,ard the dynanic adatation of data structures
to such changes. These details are omitted due to lack of
space but our implementation takesinto accart all of these
considemtiors.

VIIl. IMPLEMENTATION

The above ideas have beenimplemerted in a prototype called
EinsStat. EinsStat is implemerted on top of the static timing
aralysisprogram EinsTimer in C++ with Tcl scripting under
Nutshell. Multiple clock phases, phaserenaning, rule tests
(sich assetupand had testy, auomatic tests(suchasclock
gating clock pulse width and clock inactive testg, loop cut
checks, samemode constrains (comparing late vs. late or
ealy vs. ealy, instead of the usual late/ealy conpaiison),
arbtrary timing assertios and timing adjuwsts anywhere in
the timing graph and clock overides are supported as in
EinsTimer. Thetimerworks pemarertly in incremeral mode
[18], evenif a conpletetiming repat is requested.

Ead timing as®rtion, gate delay wire delay and timing
testguard time must be modeledin caronical form, i.e., with
a mean part, a deperderce on global souces of variation
ard an indeperdert rancom portion. Backward conpatihili ty
with deterministic timing is presered by settig the mean
value of an adjust or assertionto the determiristic value, and
the randbmnessto zero or to a user-specified proportional
varialility. The EinsStat implementation allows each gate
ard eachwire to have its own custanized variability model,
provided the model can be expres®&d in the caronical form.
Furthemore, the EinsStat implementation utilizes geneal
purpose three-tier sersitivity modeling approach whereby
deay deperderces to undeflying souces of variation can
be obtainal either by 1) analytic means (i.e., appealing to
eithe tecmaogy modelsor anunderlying simulatar), 2) finite-
differencirg of corner-baseddelays,or 3) using user-specified
globd as®rtions (eg., EinsStat sugports Tcl commards to
expressa situationin which, for examge, “all normd V1t gates
have a 1% indeperdert ranrdomness ard a 4% correlatedvari-
ahlity, and similarly all low Vt gateshave a 2% indeperert
randomnessand 5% correlatedvarialility , and furthernore
thetwo setsof variations mistrackwith respetto eachother”).
To erable efficient memay use,eachsouce of variation may
be cateyorized as either “sparse” (maintained in a linked-
list datastructure, avoiding the needto explicitly store zero
sensitvity values) or “dense” (in a conmpact array structure
using fixed variable indices, explicitly stoiing zero sensitvity
values). As an example lower levels of metal which are
usedfrequently throughout a designare preferably represented
densely while less-frequertly usedhigher levels of metal are
better off being treatedin a spase mamer.

EinsStat supports a multitude of processvariables,includ-
ing individual metal layers, NFET/PFET mistracking, mis-
tracking between different Vt device families, and product-
reliakility factos. For initial testing purposes, three global

souces of variation were studied The first is gate vs. wire
delays.Eachof thesesetsof delayscanhave an independent
ard correlatedvairiability, and a mistrack coeficient. In the
case of gatevs. wire delays,mistrak implies tha when gates
get faster wires ge&t slower, and vice versa, and in gereral
expres®s correlatiors between the two setsof delays. The
secand supported global souce of variation is rise vs. fall
delaysof gates(to model N/P mistrackdue to manuactuing
variations or fatigue effecty. Again, eachof these can have
a ranm and correlated part and a mistrack coefficient.
The third supported souce of vaiation is meart similaly to
study mistrack betweennormal Vt ard low Vt gaes In the
benchmak resuts preserted in the next sedion, sensitvities
to these three global souces of variation were provided in a
blanket fashi;m asa percertage of the nominal delay.

VIIl. NUMERICAL RESULTS

EinsStat was first run on industrial ASIC chips of various
sizeswith zero random varialility and no global sources of
variation. Thearival time, requredariival time andslackwere
compared betweenEinsTimer and EinsStat at every node
of the circuit, for every clock phase,bath rising and falling,
ard for both eaty mode and late mode This was a good
testto detectcettain kinds of software bugs in the EinsStat
implementatian, sincethe two setsof resultsmustbeidentical
in the absence of ary variahlity.

A setof industrial ASIC desgns was timed with 3 global
souces of varigion aswell asindeperdent randomressbuilt
into every edge of the timing graph The berchmark resultsare
shavn in Tabe I, in which the chipsarecode namedA, B, etc.,
to preserve confidertiality. The cdumn “Propaggte segments”
represents the number of edges in the timing graph with
unique soucesink pairsof nodes.The “Load” column liststhe
CPU time to load the netlist, timing rules ard as®rtions. The
“EinsTimer” cadumn is the CPU time of the deterministic base
timer, while the“EinsStat” column shavs the CPU time taken
when the statistical timer runs alongside (andin addition to)
the deterministic timer. All CPU times were measure on an
IBM Risc/Systen6000 model 43P-S850n a single processr.
All timing runs included forward propagation of early and
late arrival times, and reverse propagaion of early and late
requred arrival times. Similary, the menory consunption
to load each dedgn, as®ttions and delay models (Base),
run deteministic timing (EinsTimer) and statistical timing
alongside (and in addtion to) deterministic timing (EinsStat)
are shown in subseqent codumns of Tablel. The CPU ard
memay overhead of statigical timing are very reasmalde,
consideing the wealth of additional data being geneated In
the smalltestcase A, memay consunption wasdominatedby
the delaymaodels,sothe overheaddue to statisticaltiming was
dwarfed. In ted caseE, the larger overheadwas due to nodes
in the timing graph having extremely high incidencedue to
SaC timing macranodels.

The statistical expetimerts were performed both with and
without criticality computations, and the CPU time andmem
ory overhead were observed to be nearly idertical (within
1%), lendng credence to the efficiency of the criticality
computations.
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TABLE |
CPU AND MEMORY RESULTS.

Name

Gates

Clock
domains

Propagate
segments

CPU time (secs.)

Memory (MB)

Load

EinsTimer

EinsTimer
+ EinsStat

Base

EinsTimer | EinsTimer
+ EinsStat

3,042

2

17,579

51

2.8

3.8

111

53 60

183186

79

959,709

140.5

1213

1876

423

177 723

1,085034

182

5,799,545

51315

8099

1233.1

3200

600 4300

1,213361

18

6,969,860

783.5

1079.3

1485.7

2990

1160 4380

m|{O| O m| >

2,095176

51

13,46Q759

14949

1316.9

2724.3

4590

3320 11330

Testchip “A” (3,042 logic gates)was used to denpnstrate
the importance of global correlatiors. The critical pathin this
chip is a long combinaiond path passng through abaut 60
stagesof logic, with a nominal delay of 23.06 ns including
wire delay With 5% correlated variability (i.e., assuming all
ddays move in corcertwith regpectto a souce of vaiability)
on every gate and wire delay the longest path delay is 23.01
ns with a o of 0.9 ns. With 5% independent variability (i.e.,
assumig eachcircuit delay may vary independently) on every
gateandwire delay, the longestpathdelayis 23.62 nswith ao
of 0.13 ns. Clearly, with more indepencent randbmness there
is more carcellation of varability along a long path yielding
a tighter distribution but with a more pessimistic mean The
correlaed caseproducesa more optimistic mean path delay
but with a much bigger spread EinsStat allows the moceling
of theseextreme situatiors and anything in-beween.

The primary goal of EinsStat is to produce timing results
in a pamameteized form, and therefore to give the desgner
information regardng the robustnessof the design However,
EinsStat producesthese timing resultsas rardom varialdes,
ard the correctnessof the meanand spread of theserandom
variabes can be verified by Monte Carlo analysis. To rerder
the aralysis tractable, EinsStat makes a nhumber of assunp-
tions that prevert it from obtaining the exad result.Inaccuacy
creepsin every time the probability distribution reaulting from
a max Or min opeation is re-expressedin caronical form.
Spedfically, the max or min of two Gaussianss not Gatssian
but EinsStat forcesit backinto a Gauwssianform. The extert
of theseinaccuaciesis revealedby Monte Cado aralysis

In order to validate the timing resultsobtainedfrom Eins-
Stat, a comparisonof EinsStat with Monte Carlo simuation
on 4 smallto medum-sized benchmarks was peiformed. For
each case, one represntative slack, that of the nomindly
critical encpoint, wasselectedfor comparisonpurposesFig. 7
through Fig. 10 shaw the slack distribution of both EinsStat
ard Monte Carlo analysis for the 4 testcaseslt canbe seen
from thesefigures that EinsStat predicts the mean value
spreadand tails with reasoable acairacy.

The run-time comparison of the EinsStat runs with that
of Monte Carlo aralysis appearsin Table Il. The runs were
performedon the sanme computer. From Tablell, it canbe seen
tha EinsStat is significartly fager than both seqertial and
parallel (utilizing up to 45 processas) Monte Cardo aralysis.

Eaty on in the verification process it becane obvious that
the runtimes requred for serial Monte Calo would quickly
become prohibitive. Therefore, significart development effort
was invested to create a high peformarce Monte Carlo
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TABLE 1
MONTE CARLO VS. EinsStat COMPARISON.

Testcase || Gates | EinsStat CPU Monte Carlo
Samples | Sequential CPU | Parallel CPU
dd:hh:mm:ss dd:hh:mm:ss
1 18 1 sec 100000 5:57 N/A
2 3042 2 sec 100000 2:01:15:10 2:46:55
3 11937 7 sec 10000 0:20:33:40 51:06
4 70216 59 sec. 10000 N/A 4:36:12
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cgpalility. This tod usesa client/server agproachto perform
parallel timing runs on differert host machires, cortrolled by
a certral Monte Carlo process with all datatransfer occuring
via TCP. While this effort made Monte Carlo verification a
viable option on the larger designs, nate that runtimesarestill

severd magnitudesof order larger than those of EinsStat (see
Column 6 of Tablell).

A repowering experimert on chip “A” wasusedto evaluate
increnental operatilm of EinsStat. For ead of 493 gates
with negative slack, the gate power level (size) was maodified,
ard EinsStat was queried for the new slack on eachpin of
the modfied gate. Incremenal EinsStat was 6 times faster
thannonrincrenmental EinsStat with idertical resuts. For large
designs and for different types of charges and queries, we
expect the run time improvenment obtaired by incremental
procesing to be quite dramatic.

An EinsStat analysis of anindustrial ASIC designwhose
hardvare was known to have hold violations was peiformed
to corsider the effects of backend-of-thedine variaklity on
circuit performane. This designutilized 7 wiring planes,eah
of which wasmaodeledby an indeperdert rancbm varialle to
represent metal varialility. The reailts of this analysis were
comparedto a traditional exhaustive corner-basedstudy (i.e.,
to deternine the combination of fast/dow metallayer assign
mentsthat producesthe worst possible sladk). As indicatedin
Fig. 11, a statisticaltreatrment of paameer variation resultsin
a 30 eaty mode slack of —162 ps representilg a pessimism
redwction of 63 ps over the tradtiond exhaustive corner-based
aralysis.
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IX. FUTURE WORK AND CONCLUSIONS

This pager presentsa novel increnentd statstical timing

algorithm which propagatesfirst-order sensitvities to global

souces of variation through a timing graph Each edge of

the timing graphis modeledby a caronical delay model that

permits globd depencence aswell asindependentrancomness.
The timing resultsare preserted in a pamametricform, which

canhelp a desigrer or optimization program target robustness
in the design. A novel theaetical framevork for computing

local and global criticality probalilities is preseted, thus

providing detailedtiming diagnosticsat a very small cost in

run time.

The following avenwes of future work suggestthemseles.
The assaimption of lineardependenceof delay on eachsource
of variation is valid only for small varations from nominal
behavior. Extending the theay to hardle general nonlinear
modds and asymmetric distributions would be a big step
forward. Secand, the impact of variahlity of input slews
ard output loads on the delay of timing graph edges can
be chan-ruled into the canmical delay model as suggested
by [9]. Third, the criticality computations in this pape as
sune indeperderce betweenthe criticality probabilities of any
two paths, an assaimption, but not quite correct. Extendng
the theay to remove dependene on this asaimption is a
challengng task that we hope to addessin the future. And
finally, extending EinsStat to account for spdially correlated
varialility is andher challerging tak we hope to addessin
future work.
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