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Abstract. As the device size continues to shrink and circuit complexity
continues to grow, power has become the limiting factor in today’s micro-
processor design. Since the power dissipation is a function of many vari-
ables with uncertainty, the most accurate representation of chip power
or macro power is a statistical distribution subject to process and work-
load variation, instead of a single number for the average or worst-case
power. Unlike statistical timing models that can be represented as a lin-
ear canonical form of Gaussian distributions, the exponential dependency
of leakage power on process variables, as well as the complex relation-
ship between switching power and workload fluctuations, present unique
challenges in statistical power analysis. This paper presents a compre-
hensive case study on the statistical distribution of dynamic switching
power and static leakage power to demonstrate the characterization and
correlation methods for macro-level and chip-level power analysis.
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1 Introduction

The advent of continued device scaling and increasing process variability has
contributed to the growing popularity of statistical timing analysis, which not
only replaces the traditional process-corner-based approach used in static timing
analysis, but also revolutionalizes the way that chips are designed and verified
today. In statistical timing analysis, all timing quantities such as gate delays,
wire delays, arrival times, slews (rise/fall times) and slacks are represented by a
canonical first-order delay model [1]:

a0 +
n

∑

i=1

ai∆Xi + an+1∆Ra , (1)

where a0 is the mean or nominal value, ∆Xi represents the variation of the ith

global source of variation Xi from its nominal value, ∆Ra is the variation of an
independent random variable Ra, and ai is the sensitivity to each of the sources
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of variation. By scaling the sensitivity coefficients, the random variables ∆Xi and
∆Ra can be assumed to have a normalized Gaussian distribution N(0, 1). The
capabilities of parameterized block-based statistical timing analysis in [1] have
since been extended by [2] to handle non-Gaussian parameters and nonlinear
delay functions.

Like static timing methodology, most traditional power analysis method-
ologies are deterministic and corner based, where only selected cases such as
the nominal case, best (−3σ) case, and worst (+3σ) case are analyzed. How-
ever, when the worst-case assumption is made for each random variable, the
corner-based approach is inherently pessimistic. In order to avoid parametric
yield prediction based on fully correlated and overly pessimistic corner points,
statistical methods have been developed to model leakage power due to pro-
cess variability. For example, an empirically-fit exponential quadratic equation
is proposed in [3] to represent the subthreshold current as a function of channel
length and estimate its probability density function. The mean and variance of
the leakage current for the entire circuit can then be obtained by adding the log-
normal distribution of leakage current from individual gates. A full-chip analysis
of both the subthreshold leakage and gate tunneling leakage is described in [4]
by considering spatial correlation due to intra-chip variations.

Although simplified lognormal models have been developed to estimate the
leakage power distribution, the industry-standard BSIM [5] device models gener-
ally cannot be easily adapted to the analysis of process variability without loss of
accuracy. Furthermore, the statistical characterization of power should include
not only the static leakage power, but also the dynamic switching power. When
the macro power is characterized deterministically by an average or worst-case
number, designers often have little information about the true distribution of
power that could potentially lead to thermal or yield problems. For example, a
macro might consume 0.3W of power on average, but in any given cycle or state,
this macro could operate with an idle power of 0.1W or a peak power of 0.5W

under a wide range of switching factors (Fig. 1). Therefore it is important to
look beyond one deterministic number that has traditionally characterized the
power, and provide circuit designers an insight into the statistical distribution
of power due to both process and workload variations. Such power analysis is
useful for yield prediction, maximization of battery life, prediction of on-chip
thermal gradients, power distribution design, decoupling capacitance allocation,
eletromigration analysis, etc.

In addition, it has been shown that in leakage dominated technologies, the
leakage power can cause the yield window to shrink by imposing a two-sided con-
straint on the window [6]. The correlation between power and performance due
to their dependence on common process variables could have a significant impact
on yield, especially in high-frequency bins [7]. In this paper, we will present a
case study to analyze the statistical distribution of not only static leakage power,
but also dynamic switching power, so that we can accurately estimate and op-
timize the parametric yield by finding the joint probability density function of
both power and delay.
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Fig. 1. Probability density function of normalized power.

2 Statistical Distribution of Leakage Power

The total standby Current IDDQ of a CMOS transistor is comprised of two major
components: the device subthreshold current IOFF and the gate tunneling cur-
rent IGATE . Therefore the analysis of total leakage power must include both the
channel leakage due to device subthreshold current IOFF and the gate leakage
due to tunneling current IGATE . The leakage model described in this paper is
a hardware-based model that has been extracted from various experiments in a
pre-determined process window. After a model is fitted to the hardware measure-
ments, it will accurately characteristize the leakage current of the corresponding
device such as an NFET, a PFET, or an SRAM cell.

For our 45-nm SOI technology, the device subthreshold current IOFF is an
exponential function of the channel length LP , the supply voltage VDD, and the
temperature T . The exponential function IOFF (LP , VDD, T ) not only captures
the charge-sharing and drain-induced barrier lowering effects, but also considers
IOFF variation due to threshold voltage (VT ) scattering and narrow channel ef-
fects. Fig. 2 shows the probability density function of subthreshold current due
to channel length variation in a typical device. Although the variation of chan-
nel length LP could be modeled as a Gaussian distribution, the corresponding
subthreshold current variation is not a Gaussian distribution. For example, the
long tail of Fig. 2 illustrates that IOFF could increase by a factor of 4 due to
channel length variation.

In addition to subthreshold current IOFF , the gate tunneling current IGATE

for the thin-oxide devices could also be a significant contributor to the total
leakage current on the chip. As depicted in Fig. 3, the gate tunneling current
includes the current between gate and source/drain diffusion through the chan-
nel region (Igcs and Igcd), the current between gate and source/drain diffusion
through the overlap region (Igos and Igod), and the current between gate and
body (Igb).

For our 45-nm SOI technology, the gate tunneling current IGATE is a linear
function of the channel length LP , but an exponential function of the gate oxide
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Fig. 2. Probability density function of normalized subthreshold current.
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Fig. 3. Components of gate tunneling current.

thickness TOX , the supply voltage VDD, and the temperature T . Fig. 4(a) illus-
trates the probability density function of the normalized gate tunneling current
due to channel length and oxide thickness variations in an NFET . Although
the red curve in Fig. 4(a) shows that the gate tunneling current due to channel
length (LP ) variation alone is a Gaussian distribution, the closely matched TOX

blue curve and TOX + LP green curve clearly demonstrate that the statistical
distribution of gate tunneling current is dominated by the variation of oxide
thickness. As the TOX decreases, IGATE increases exponentially.
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Fig. 4. Probability density function of gate tunneling current and total standby current.
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Since gate leakage occurs when the gate is on and channel leakage occurs
when the channel is off, Fig. 4(b) shows one statistical distribution of normalized
IDDQ when the gate is turned on 25% of the time and the channel is turned off
75% of the time. Based on the time-averaged channel and gate leakage state for
each device reported by the circuit simulator, the probability of each leakage
state not only reflects a device’s average time in the on or off state, but also
considers circuit topology effects such as device stacking.

3 Statistical Distribution of Switching Power

An accurate analysis of chip power is imperative for high-performance micropro-
cessor design to understand system requirements and ensure system reliability.
Therefore, in addition to the estimation of leakage power under process variation,
the distribution of switching power due to workload variation should also be in-
cluded in a statistical power analysis. The common power analysis methodology
that we have developed to estimate switching power starts with transistor-level
simulation of each on-chip macro. As a building block of the chip design hier-
archy, the macro can be as simple as an I/O buffer, or as complex as a cache
or multiplier. After generating the net list for each macro, adding input vectors
and output loads, and capturing the current waveforms from circuit simulation, a
comprehensive power analysis can be performed to extract device current models
and specific circuit power characteristics.

Our circuit simulation is based on an event-driven circuit simulator [8], which
allows current waveform integration on the fly and greatly reduces the output
file size. Technology-dependent data such as device models, temperature and
voltage parameters, and clock cycle time are used during circuit simulation.
In addition, over 100 parameters are typically specified in a project file, which
contains information such as signal timing and capacitive loads.

The process of creating a circuit net list can be run from both the schematic
and layout views. The physical layout extraction not only identifies all the tran-
sistors and their parasitic capacitance, but also inserts current meters at the
junction contacts between the transistors and power nets to collect detailed cur-
rent distribution data under various operating conditions.

After the raw net list is extracted, appropriate input stimuli and output
loads are added to generate the final net list. Voltage sources are applied at the
primary inputs to represent the correct input vectors that satisfy all circuit and
logic constraints and provide sufficient coverage for power, noise, and reliability
analysis. The input vectors can be categorized into different states such as ramp-
up, clock-gated, hold (idle), functional (average), and peak power. For example,
the ramp-up cycles serve to flush random data through the circuit to initialize its
state. After the circuit is initialized, all inputs are held constant for several cycles,
except for the global clock signals, to allow the circuit to reach its inactive state
where the idle or hold power can be determined. The hold power is a measure
of the clock-related power, which is often regarded as the power of the most
common state. Finally, workload-based random input vectors are applied to the
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data input nodes to measure the average functional power. A range of switching
factors is applied to provide coverage for not only power calculation, but also
noise and electromigration analysis.

The generation of the final net list is further controlled by a configuration
file, which includes global circuit information such as voltage, temperature, clock
cycle, signal timing, and output loads. The correct arrival time of input signals
is extracted from the timing file and data-type constraints are assigned to the
input nodes. Once all the macros have been simulated, the current data can be
collected during the hold cycle, average-current cycle, and peak-current cycle
for macro-level and chip-level power analysis. Fig. 5 shows the scatter plot of
141 data points for the switching current of a macro with 79,082 NFETs and
79,921 PFETs. The relationship between switching current and input switching
factor can be approximated by a linear, quadratic, or higher-order polynomial
regression. In Fig. 5, about 80% of the data points are scattered between the
upper and lower regression lines, which represent the 90th and 10th percentile
of switching current respectively.

Fig. 5. Regression model of switching current as a function of switching factor.

Fig. 6 shows the probability density function of macro power when there is
a 10% probability that the macro operates with a switching factor about 0.5,
a 10% probability that the macro operates with a switching factor about 0.1,
a 30% probability that the macro is idle (SF = 0 with clock running), and a
50% probability that the macro is clock-gated (with leakage only). For the two
clusters of data points where SF 6= 0, their input switching factors are assumed
to follow two relatively narrow Gaussian distributions N(µ1, σ1) and N(µ2, σ2),
where the means µ1 and µ2, and standard deviations σ1 and σ2 are determined
by the data in Fig. 5. Similarly, the variations of channel length and gate oxide
thickness are assumed to have Gaussian distributions during leakage calculation.
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Fig. 6. Probability density function of total macro power.

4 Experimental Results

A statistical power analysis has been performed on selected benchmark macros
in our 45-nm technology. For gate tunneling leakage calculation, the oxide thick-
ness TOX is assumed to have a Gaussian distribution N(µT , σT ), where µT is
the mean and σT is the standard deviation of gate oxide thickness. To take into
account the inter-chip and intra-chip variation, the oxide thickness is modeled as
TOX = µT +σT (α∆Tglobal +β∆Tlocal), where ∆Tglobal is a normalized Gaussian
distribution due to global chip-to-chip variation, ∆Tlocal is a normalized Gaus-
sian distribution due to local intra-chip variation, and α2 + β2 = 1. In our case
study below, α is set to 0.8 and β is set to 0.6.

Similarly, process variations such as gate lithography, etch bias, and lat-
eral source/drain diffusion, result in channel length variation. For subthresh-
old leakage calculation, the channel length LP is assumed to have a Gaus-
sian distribution N(µL, σL), where µL is the mean and σL is the standard
deviation of physical channel length. To take into account the inter-chip and
intra-chip variation, the total channel length variation is modeled as LP =
µL+σCHIP ·∆LCHIP +σACLV ·∆LACLV , where ∆LCHIP is a normalized Gaus-
sian distribution due to chip mean variation, ∆LACLV is a normalized Gaussian
distribution due to across-chip line-width variation, and σ2

CHIP + σ2
ACLV = σ2

L.
Fig. 7 shows the probability density functions of gate leakage, subthreshold leak-
age, and total leakage power for a macro with 1725 NFETs and 1586 PFETs. The
global and local variations of oxide thickness and channel length are considered
at the transistor level and included in the respective leakage power distribution.

To model the correlated and independent randomness of switching power,
the statistical power distribution of each macro must first be characterized by
its probability density function PDF and cumulative distribution function CDF.
The power of macro i can then be determined by the inverse function of CDFi,
where Pi = CDF−1

i (Xi), and 0 ≤ Xi ≤ 1. Depending on how the switching
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Fig. 7. Probability density function of total leakage power.

activities of macro i are associated with workload j, the random variable Xi will
be assigned a CDF value based on the equation:

Xi =

{∑n

j=1 aij · Wj + b · Mi if aij > 0 (positive correlation)
∑n

j=1 |aij | · (1 − Wj) + b · Mi if aij < 0 (negative correlation)
(2)

where Wj is the CDF value that corresponds to the power fluctuation of workload
j, aij is the sensitivity of the dynamic power of macro i to workload j, Mi is
the CDF value that corresponds to the non-workload-dependent power variation
of macro i, and b is the sensitivity of the dynamic power of macro i to its own
random variation, subject to the constraints that b ≥ 0 and (

∑n

j=1 |aij |)+b = 1.
Since CDF values are assigned to Wj and Mi, both variables assume a standard
uniform distribution U(0, 1).

In order to provide maximum generality and flexibility to model macros with
different patterns of switching activities, Monte Carlo simulation with a sample
size of 10,000 is used for statistical power analysis. It takes about 10 CPU hours
to simulate a large chip with 43 million transistors. Fig. 8 shows the cumula-
tive distribution function of macro power for 10 macros with a total of 159,003
MOSFETs. Two extreme cases where the switching activities of different macros
are either completely independent or perfectly correlated, and one nominal case
where the switching activities of different macros are 60% correlated to a com-
mon workload, are used to illustrate how the correlation of switching activities
affects the overall power distribution.

Statistical power analysis can be further combined with statistical timing
analysis to make better yield predictions. Fig. 9 shows the joint probability den-
sity function of both power and delay for a benchmark macro. By integrating the
statistical power distribution with the statistical timing distribution, this three-
dimensional yield versus power and performance plot provides a more compre-
hensive means for designers to define the corners, improve the yield, determine
bin splits, and optimize other design variables.
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Fig. 8. Cumulative distribution of total power for 10 macros.

Fig. 9. Joint probability density function of power and delay.
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5 Conclusions

Although the statistical distribution of leakage power due to process variation
has been extensively studied in the literature, the statistical analysis of switch-
ing power due to workload variation remains a difficult challenge. This paper
presents a first study on the combined analysis of leakage power and switching
power that takes both global correlation and local randomness into account.
Leakage power due to process variables such as oxide thickness and channel
length is modeled and correlated at the transistor or gate level, while switching
power due to workload-related activities is modeled and correlated at the macro
or block level. In order to provide a general framework to handle non-Gaussian
and multiple-peak distributions, a CDF-based Monte-Carlo simulation is per-
formed to analyze the statistical distribution of macro and chip power. Based
on these benchmark results, we not only demonstrate the feasibility of a gen-
eral statistical analysis for both leakage and switching power, but also develop
a design methodology where the statistical power distribution of each macro is
characterized by its PDF and CDF functions in the circuit library.
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