
Explicit Computation of Performance as a Function of
Process Variation

Lou Scheffer
Cadence

ABSTRACT
Each manufactured chip is a little bit different, and design-
ers want as many as possible of these chips to work. Pro-
cess variation is a function of many variables, as the width,
thickness, and inter-layer thickness can vary independently
for each layer on a chip, as can temperature and voltage.
Currently designers cope with this by picking a few subsets
of these conditions, called process corners, and analyzing at
these conditions. However, it’s easy to show this approach is
both too conservative (the specified conditions will seldom
occur) and not conservative enough (it misses errors that
can occur due to process variation). We present a unified
theory of process variation that includes inter-chip variation,
intra-chip deterministic variation (such as caused by prox-
imity effects and metal density), and intra-chip statistical
variation. Using this mechanism, we can explicitly compute
performance as a function of process variation. This allows
us to compute less pessimistic timing numbers and address
yield optimization in the design process.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer Aided Engi-
neering

General Terms
Algorithms, Performance, Design, Verification

Keywords
Static timing, Process variation, Statistical timing, Yield

1. INTRODUCTION
Not all chips are created equal. Building a chip is a se-

quence of hundreds of operations, each of which will occur
a little differently on each chip despite enormous effort to
make them repeatable[8].

This variation occurs in many ways. First, there is varia-
tion from chip to chip - often one chip is significantly faster

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TAU’02,December 2–3, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-526-2/02/0012 ...$5.00.

than another. Some of these variations, such as gate delay,
are tightly correlated. If one gate is fast, then so are all the
others on the same chip.

Variations in interconnect follow a different pattern. One
machine, in one action, lays down all the metal (or dielec-
tric) for a layer of a chip. A different machine, or the same
machine at a different time, lays down the next layer. Thus
the layers are not correlated to each other, but they are cor-
related across the chip. If metal-1 is thick, then metal-1
will be thick across the whole chip, but this implies nothing
about the thickness of metal-2.

There is also variation within a single chip[7]. Some of this
is determined by the layout - for example the metal or inter-
layer dielectric (ILD) thickness may depend on the the local
metal density - and some is an artifact of manufacturing,
such as cross-chip gradients.

Finally, all the above variations have a random component
as well, due to manufacturing imperfections. This statistical
component will vary depending on the distance between two
objects on a chip. Two components close to each other on
a chip are likely to be closely matched, whereas two compo-
nents further away will have larger differences.

Process variation occurs in a highly multi-dimensional
space. Interconnect alone occupies 3N dimensions, where N
is the number of routing layers. For each routing layer there
are three main variables - metal thickness, metal width, and
inter-layer dielectric thickness. (Note that the metal width
and metal spacing do not vary independently - their sum, the
pitch, is extremely well controlled, so they are precisely anti-
correlated.) Cell delays add at least three more dimensions,
historically P (process), V (voltage), and T (temperature).
P, intended to represent the cell speed, is a composite of
more fundamental variations such as threshold voltage and
oxide thickness. V and T are operating conditions and not
manufacturing variances, but share many of the same char-
acteristics and can benefit from the same analyses. This
paper looks mainly at interconnect variation but the same
approach applies to the other sources of variation as well.

2. DETERMINISTIC VARIATION
How can we take these different sources of variation into

account? The variations in each parameter are the sum of
two kind of effects - the deterministic variation, which can
in theory be predicted from the layout, and the random
variation, which cannot. For example, the final width of a
metal line is determined partially by interactions with neigh-
boring lines (the predictable part) and partly by the exact
exposure and etching conditions on this particular chip (the
unpredictable part).

1

Accounting for deterministic local variation will improve
any analysis. It is particularly important before statistical
analysis since the deterministic effects are both reproducible
and highly correlated. Therefore treating these effects sta-
tistically will result in either significant errors or relatively
little improvement, or both.

Deterministic effects can be modelled straightforwardly,
at least in flat extraction. For example,

• Compute the nominal width of each conductor from
the neighboring width/spaces. The residual expected
after OPC should be used for this correction.

• Compute the nominal thickness of each conductor and
ILD from the local density map for that layer.

• Derive the R and C values from the local width and
thickness.

Hierarchical extraction will require deferred evaluation in
some form. If we extract a block in isolation, for example,
the average local metal density is not known for features
near the sides or corners. One solution is to keep nominal
values and derivatives, and perform correction once the envi-
ronment is known. Keeping derivatives is examined in detail
in section 4 for the purpose of computing inter-chip varia-
tions, but can also be used to enable hierarchical correction
for deterministic effects.

2.1 Previous work using corner cases
Since working in 30 or so dimensions is difficult, designers

have made various approximations. First, deterministic ef-
fects have been largely ignored, and the resulting variation
lumped into the random component (though this is chang-
ing[6, 2]). Next, the number of process variation combina-
tions is reduced to a small number of “process corners”. A
process corner sets all relevant variables to an extreme (usu-
ally 3σ) value. This corresponds to a corner of a hypercube
in the real process space. If the process space has ND di-
mensions, there are 2ND process corners - far too many to
analyze (much less the interior points). Since timing is the
most important result, designers choose a subset of these
corners where they expect the cells and/or interconnect to
be particularly fast or slow.

2.1.1 Analysis at fast/slow corners
This approach assumes that the most extreme delay cases

will be the worst. One worst case will be with slow cells and
slow interconnect; this will be used for checking for setup
time problems. Fast cells and fast interconnect will be used
for checking for hold problems. The two interconnect cases
are obtained by using two extractions - one at fast intercon-
nect corner, one at the slow interconnect corner. The two
cell models are evaluated at the worst and best combination
of PVT (process, voltage, and temperature). This approach
does not address intra-chip variation at all, as it assumes all
nets and cells scale exactly the same way.

2.1.2 4 and 6 corner analysis
What about intra-chip variation, which is smaller than

inter-chip variation, but is still present? Analog designers
have looked at this in detail[9], but in digital designs simpler
methods are used. The major worry is that problems may
arise if the clock and data signals do not track precisely.

C
lo

ck
sp

ee
d

6

-
Data Speed

�
�
�
�
�
�
�

�
�
�
�
��

�
�
�
�
��

ss s

sss

1 2

3

Figure 1: 6 corner cases

One technique, called 4 corner analysis, examines setup
and hold times in fast and slow process conditions. In each
of these four cases, the launching clock skew, the logic delay,
and the receiving clock skew are set to their most pessimistic
values.

Another technique for addressing this problem is called 6
corner analysis. It depends on classifying every gate and net
as clock or data. The six corner cases that are then analyzed
are (refer to Figure 1):

• (1) clock and data both maximally slow

• (2) clock maximally slow; data almost as slow

• (3) data maximally slow; clock almost as slow

and the 3 corresponding cases with fast instead of slow. A
complete timing analysis is done in each case. This approach
assumes that delays within the clock network will track, but
clock and data may respond somewhat differently to process
variation. This method (and the 2 and 4 corner methods)
assume that the various branches of the clock network of the
clock network are affected similarly by process variations.
This is not a serious restriction if the clock network is built
from the ground up, but is hard to enforce in an era of
included IP blocks, each with their own clocking structure.

2.1.3 Problems with corner analysis
One big problem with worst case analysis is that it is too

conservative. It is extremely unlikely to have a 3σ variation
on each of 30 or so dimensions. Without further analysis we
cannot tighten this bound, however, since it is possible that
the timing of at least some critical paths are determined by
only one process variable (say metal-1 resistance). Then a
3σ variation could in fact occur with significant probability.

The other problem is that corner analysis is not conserva-
tive enough, or in other words it can miss real errors. Take,
for example, a flip flop where the data line is dominated by
metal-1 delay and the clock line by metal-2 delay. Then the
worst case for setup is when metal-1 is slow and metal-2 is
fast. The worst case for hold time is when metal-1 is fast
and metal-2 is slow. Neither of these two cases is found by
either a 2, 4, or 6 corner analysis.

Another source of missed errors is shown in the example
below. The worst corner for a given timing constraint may
differ on each net, and even for each input on each net.
Corner analysis with any practical number of corners may
miss some of these errors.

2.2 Previous statistical approaches
The problems with corner analysis are well known. One

proposed way around them is statistical timing analysis, as

2

�
�
��

Q
Q
QQ

��@@

�
�
��

Q
Q
QQ

J
J
JJ

M1
1 mm� -

M2
1 mm� -

Figure 2: Example

in [4]. This is quite different than the approach proposed
here, though the end goal is the same. In statistical timing
analysis, probability distributions are propagated through
the timing graph. In this work, functions that describes the
delay as a function of process variation are propagated. This
has two main advantages - correlations between signals that
depend on the same process parameter are maintained, and
the contributors to the final distribution are available for
troubleshooting or optimization.

The work closest in spirit to the current work is [3]. Here
they calculate sensitivities (linear as in this work) to three
process variables (Vdd, VT , and a ∆C on each net), and
sum them along paths. This model does not look in any
detail at interconnect - they simply add a single lumped
value to every net in the design. There is no attempt to
analyze the layout and find the actual sensitivities and their
correlations. Therefore, unlike this work, they cannot hope
to replace corner analysis.

3. EXAMPLE AND MOTIVATION
The example shown in Figure 2 illustrates many of the

problems induced by process variation. It contains a net
with one driver and two receivers. The driver has a 1 Kohm
output impedance (Rs = 1 KΩ) and the line is 2 mm long,
the first half metal-1, the second metal-2. There are two
inputs on the net, one at the driver and one at the far end.
Each input has an input Cl of 40 ff. We wish to calculate
the delay of this line under variation of 2 parameters, the
delta width of layers 1 and 2. For simplicity, we’ll use the
Elmore delay, and for concreteness we’ll use values typical
of a 130 nm copper process. Let R1, C1 and R2, C2 be the
resistance and capacitance of the first and second portion of
the line. Assuming the nominal line has a width w = 150
nm, a square cross section, and the conductivity of copper,
then a wire on metal-1 has resistance

R = 746
w

w + ∆w1

Ω

mm
(1)

For the capacitance, we’ll assume 180 ff/mm total, half to
the layers above and below, and half to the neighbors on the
same layer. The half that couples to the neighbors will scale
inversely as the space to the neighbor, nominally assumed
to be 150 nm away and with the same ∆w. A wire segment
on metal-1 will then have capacitance

C = (90 + 90
w

w −∆w1
)

ff

nm
(2)

with similar expressions for R and C of wires on metal-2.
We’ll assume the deltas have a gaussian distribution, with a
standard deviation of 10% of the width, or 15 nm.

Table 1 shows how the R, C, and delay (RC) of a 1 mm
line vary as the line widths vary. The R and C values vary
over a much wider range than their product, since they vary
in opposite directions. If metal-1 is narrow, for example,

R increases while C decreases. The slowest interconnect
happens when ∆w is negative. In this case the R goes up
more than the C comes down, so this generates the longest
wire delays. Conversely the fastest interconnect occurs when
∆w is positive. The C is higher, but R is lower by more
than enough to compensate. In all cases the interconnect
delay changes by a much smaller percentage than the change
in width. This implies that keeping only a distribution of
values for each component will not work - we need to keep
track of the correlation.

Table 1: R, C and Timing with process variation
∆W(nm) R(ohms) C(ff) RC(ps)

0 746 180 134.3

-45 1065(+43%) 159(-12%) 169.3(+26%)

45 574(-23%) 219(+22%) 125.7(-6.4%)

First, look at the worst case delay at the driven end of the
net. We show that a traditional two corner analysis is too
conservative. The Elmore delay at the output of the driver
is

d = Rs(2Cl + C1 + C2) (3)

where C1 and C2 are functions of the process parameters.
The slowest and fastest corners can be found by maximiz-
ing/minimizing C1 and C2, since we are not varying Rs in
this example. If we set both C1 and C2 to their 3σ val-
ues, we get a minimum delay of 399 ps and a max of 517
ps. Unless ∆w1 and ∆w2 are completely correlated, how-
ever, these values are needlessly conservative. If metal-1 and
metal-2 have identical uncorrelated gaussian distributions,
for example, the distribution will be

√
2 narrower than the

estimate above. This corresponds to a smaller delay range
of [416,500] ps, a 29% narrower spread. This also points out
that we need some new process data (the degree of corre-
lation between metal-1 and metal-2 widths) that was not
needed in the 2 corner approach.

Next, we look at the delay at the end of the line, and show
the worst case is missed. This can’t be fixed by without
adding more process corners since the front of the line, and
the end, have different worst corners! The Elmore delay at
the end of the line is

d = Rs(2Cl+C1+C2)+R1(
C1

2
+C2+Cl)+R2(

C2

2
+Cl) (4)

If we set ∆w1 = ∆w2 = +45 nm, the usual fast corner,
the result is 813 ps. If we set ∆w1 = ∆w2 = −45 nm,
the usual slow corner, the result is is 822 ps. So can we
conclude that for all process conditions the delay must be in
the range [813,822] ps? Somewhat surprisingly, the answer is
no - this range does not include either the fastest or slowest
case! In fact the nominal delay (∆w1 = 0 and ∆w2 = 0) is
768 ps, well ouside the range. How can this happen? The
total delay has two components - the delay of the driver and
the delay through the wire. The cell delay increases with
increasing C, as observed at the near input. But the wire
delay decreases with increasing C, since the larger C means
less R, and by more than enough to compensate. The sum of
these two delays has a local minimum, which is bracketed by
the two “worst case” corners. Furthermore the combination
∆w1 = −45 nm and ∆w2 = 45 nm has a much greater
delay, about 903 ps. This happens because wire R is the

3

dominant contributor to the delay near the driver, but wire
C dominates the delay near the end.

3.1 Motivation
How can we deal with this? Here’s one possible solution.

First, we must ask the extractor to generate not only the
nominal values, but the way they change with process pa-
rameters (a derivative, for example, can express this change
to first order). For this example we will do this from the
analytic expressions (1) and (2). Then we can calculate how
the delays will change with process parameters. For exam-
ple, for the near end load, use equation (3) to find:

∂d

∂w1
=

∂d

∂C1

∂C1

∂w1
= Rs

∂C1

∂w1
= +0.600 ps/nm

and likewise for the delay as a function of ∆w2:

∂d

∂w2
=

∂d

∂C2

∂C2

∂w1
= Rs

∂C2

∂w2
= +0.600 ps/nm

This confirms that maximizing the widths maximizes the
delays, and we can use the approximation

d = dNOMINAL +
∂d

∂w1
∆w1 +

∂d

∂w2
∆w2 (5)

to compute the distribution of delays from the distributions
of widths w1 and w2, and hence eliminate the pessimism of
two corner analysis.

The far end delay has a more complex expression, but the
principle is the same. Both R1 and C1 are a function of w1,
so we need to use the chain rule on equation (4) to get

∂d

∂w1
=

∂d

∂C1

∂C1

∂w1
+

∂d

∂R1

∂R1

∂w1

= (Rs +R1/2)
∂C1

∂w1
+ (C1/2 + C2 + Cl)

∂R1

∂w1
= −0.716 ps/nm

A similar calculation for delay as a function of w2 yields

∂d

∂w2
= +0.402 ps/nm

From the signs of the derivatives it’s clear the longest delay
will be with ∆w1 negative and ∆w2 positive, so the correct
worst case corner is identified.

The advantages of this approach are

• You can use the derivatives to get a first order approx-
imation of the delay at any process conditions.

• It’s easy to find the worst case corners (from the signs
of the derivatives)

• You can plug in a distribution for process parameters
and easily generate the resulting distribution of delays.
No assumptions are needed on the shapes of the distri-
butions - we do not need to assume they are gaussian.

• These delays can be added, subtracted, and compared
without losing any correlations that may exist.

4. KEEPING DERIVATIVES
As seen in the example above, the basic idea is that each

quantity of interest (such as a capacitance or a delay) is
described by a nominal value and a description of how it
changes with each process variable. To first order, this
change in value is just a vector of derivatives, with one entry

for each process variable. There are several ways this vector
of derivatives can be computed; first we show how this data
could be used if we had it.

As an example, look at timing analysis. We wish to show
that the data signal of a flip-flop arrives neither too late (a
setup violation) nor too early (a hold time violation) over all
process conditions.

First, we note that the arrival time of a data signal will
be a continuous function of the process variations ~P , with
components p1 through pN :

A(~P) = A(p1, p2, · · · , pn)

We first approximate this with a Taylor series expansion
around the nominal process conditions, pnom1 , · · · , pnomN :

A(p1, p2, · · · , pn) ≈ A(pnom1 , · · · , pnomN) +

N∑
1

ai ∆pi,a

where ∆pi,a is the deviation of pi from the nominal process
point for the net ’A’. Since A(pnom1 , · · · , pnomN) is the normal
arrival time under nominal process conditions, we will write
this as Anom and get

A(p1, p2, · · · , pn) ≈ Anom +

N∑
1

ai ∆pi,a (6)

Now, what is the deviation from nominal of the process pa-
rameters for net A? This is composed of three parts - a
deterministic portion which we assume has already been ac-
counted for, a global portion, Gi, and a statistical portion
Si,a.

pi,a = Gi + Si,a

In this case, Gi is the global deviation of the ith process
parameter (i.e., metal is thick on this chip), and Si,a is the
statistical deviation of parameter i for net A.

The clock arrival time has a similar approximation:

C(p1, p2, · · · , pn) ≈ Cnom +

N∑
1

ci ∆pi,c

The coefficients ci and ai will (in general) have different
values depending on the layer of the routes, relative amounts
of wire delay and cell delay in the path, and so on.

4.1 Relative times
Except for primary inputs and outputs, the designer does

not care about the arrival time of each signal independently,
but only the relative delay between various signals on the
chip. In particular, the data must arrive at specified times
with respect to the clock on the receiving element. We can
subtract the clock time from the data time to get the differ-
ence:

A(~P)− C(~P) = Anom − Cnom +

N∑
1

(ai − ci) ∆Gi︸ ︷︷ ︸
global

+

N∑
1

(aiSi,a 	 ciSi,c)︸ ︷︷ ︸
statistical

Where the 	 indicates the difference is statistical. For a
given net pair, the second sum evaluates to a single random

4

variable with a distribution that depends on the similarity
of the nets. Two adjacent lines on the same layer will yield
a very narrow distribution, but two lines that are far apart
will have a larger difference. 1

For the setup check we want to ensure this difference is
in the legal range, not too long (violates performance spec)
nor too small (violates hold spec). This translates into

A(~P)− C(~P) < Ttmax

and

A(~P)− C(~P) > Thold

Each of these conditions, for each flip-flop, defines a fuzzy
hyper-plane in process space. On one side if the hyper-
plane the chip will (probably) work, and on the other side
it will (probably) not. The thickness of the fuzzyness is de-
termined by the random component of process variation -
since this component will usually be small compared to the
global effects, the hyperplane (in general) is not very fuzzy.
Furthermore, the more closely matched the clock and data
are in terms of location, layer assignment, wire widths, and
so on, the more tightly correlated the signals will be, and
the less fuzzy the hyperplane.

Since the worst conditions may (and probably will) be dif-
ferent for each flip-flop on the chip, we end up with at least
twice as many hyperplanes as flip-flops (one setup and one
hold constraint from each). Taken together, all the hyper-
planes from all the flip-flops determine an ND dimensional
convex polytope.

The chip works provided its process condition is inside
this polytope, so the polytope determines the parametric
yield. This is the integral over process space of (probabil-
ity of this process condition) times (probability chip works
under this process condition). The point on the surface of
the polytope that is closest to the origin will define the most
likely condition under which the chip will fail.

5. APPLICATIONS
The main result of this technique should be less conser-

vative timing numbers, since we are no longer assuming 3σ
variations on all parameters. It will also find some errors
that are currently missed.

We can show that this technique always gives a better
(less pessimistic) result than corner analysis. We start with
a simple case where the delay depends only on 2 process
parameters.

Delay = D0 +K1∆P1 +K2∆P2

1This makes the implicit assumption that after the deter-
ministic and chip-to-chip errors are removed, the remaining
intra-chip variation is purely random and uncorrelated. This
is not exactly true, but the penalty for this simplification will
be small if the intra-chip variation is much less than to the
inter-chip variation. What if this assumption proves false as
processes shrink? Many of the most significant forms intra-
chip variation can be handled by increasing the number of
process parameters. From[8], most of the intra-chip inter-
connect variation can be expressed as a gradient. Instead of
metal-2 thickness, therefore, we might have metal-2 thick-
ness, metal-2 X gradient, and metal-2 Y gradient. Then
correlations caused by the gradients will be taken into ac-
count correctly, at the cost of more complex calculations and
(likely) less efficient pruning in timing analysis.

where ∆P1 and ∆P2 have 0 mean and standard deviations
σ1 and σ2. Then the 3σ corner case will have delay

D0 + 3K1σ1 + 3K2σ2

Assuming P1 and P2 are independent, we can compute the
distribution of delay as a standard distribution with a mean
of D0 and a standard deviation of

σ =
√

(K1σ1)2 + (K2σ2)2

So the true 3σ value will be

D0 + 3
√

(K1σ1)2 + (K2σ2)2

or equivalently

D0 +
√

(3K1σ1)2 + (3K2σ2)2

This is always an improvement since√
(3K1σ1)2 + (3K2σ2)2 ≤ 3K1σ1 + 3K2σ2

by the triangle inequality - the left side is the length of the
hypotenuse of a right triangle with sides 3K1σ1 and 3K2σ2.
Equality holds only in the case where all the Ki are zero
except one. In practice, however, each observable depends
one more than one process parameter, and the inequality is
strict.

The same argument generalizes to more dimensions, and
in general, the more parameters an observable depends on,
the bigger the improvement. If an observable depends on
N parameters, then improvement will range from 0 to 1 −
1/
√
N , depending on the correlation of the parameters. For

two parameters, the maximum improvement is about 29%,
for 3 parameters 42%, and so on. Because of this effect,
path delays will in general have a bigger percentage im-
provement than the individual stage delays, since they will
depend on more parameters (barring fortuitous parameter
cancellation).

Also, with this technique we can compute the yield due to
timing effects. Start with the paths in order of their nominal
timing, longest paths first. Find the odds the first path fails,
then find the odds that the second path fails subject to the
condition that the first is OK. Find the odds that the third
fails subject to the condition that the first two are OK, and
so on. Terminate when each new path is adding only a
negligible probability of failure.

The order in which we consider the paths does not mat-
ter except for efficiency, since we are measuring a weighted
integral over the volume of a polytope. A different order
of paths just corresponds to doing the defining cuts in a
different order; the integral is unchanged.

It’s also possible to estimate the improvement in paramet-
ric yield from removing a critical path. This can be done by
removing the hyperplane associated with the path and see
how much the (weighted) volume of the polytope increases.
This technique could in principle allow the user to trade off a
slightly increased chip size versus fewer, less critical, paths.

6. COMPUTING DELAY AS A FUNCTION
OF PROCESS VARIATION

How can we generate delays as a function of process pa-
rameters, as in Equation 6? There are two basic approaches
that could be used. The first we’ll call the “experimental”
approach. Here we simply run extraction, delay calculation,
and timing verification many times, using different values

5

�
�0.9 + 1.0 · Pi

1.0

Figure 3: Difficult case for experimental approach

D
el

ay

6

1.0

2.0

-

-1.0 0.0 1.0Pi

!!
!!
!!
!!
!

Estim
ated

resp
onse

�
�
��

Actual response
b bs
s

Figure 4: Resulting timing

of the Pi, and try to deduce the coefficients Ai in equation
6. Alternatively, we can try the “computational” approach.
Here we start with an extractor that computes not only
nominal component values, but how they change with pro-
cess variation. From this data, we can compute net delays,
and then timing, as a function of the process parameters.

6.1 The experimental approach
The most straightforward way to find timing as a function

of process variation is to simply vary one pi at a time, then
re-run coefficient generation, extraction, delay calculation,
and timing analysis. The advantage is that no changes to
these programs are required. The main disadvantages are
massive CPU and data requirements, and possible inaccu-
racy due to the non-differentiable nature of timing analysis.

Assuming the coefficient generation has already been done
ahead of time, each analysis takes about 2ND times the
effort of a single extraction through timing run. Although
time consuming, this technique at least gives good results
for extraction and delay calculation, where the results are
continuous and differentiable functions of the parameters. It
does not work as well for timing analysis, since the answers
here contain min() and max() functions, and hence are not
differentiable. For example, suppose we have the gate of
Figure 3, where the specified arrival times are a function of
process variable Pi. Suppose that Pi varies from -1.0 to 1.0.
If we use a small variation in Pi in our experiment (shown
by the open circles in Figure 4), we will conclude that Pi has
no effect on the output time. If we use the whole range, as
shown by the filled circles, we will conclude the time varies
from 1.0 at minimum Pi to 1.9 at the maximum. This is
correct as it stands, but interpolation between the two data
points gives a wrong estimated response.

6.2 The computational approach
A different approach is to keep the variation with process

parameters through each step of the process. This is poten-
tially both more efficient and more accurate, but requires
changes to many tools and data formats.

Coefficient generation can keep the variation of coefficients
with process variables. This may be slow to derive but is

F
Q AA AA�� ��AA AA

R1 R2

C1 C2
��
QQI

Figure 5: Example for chain rule analysis

only done once per process. Then extraction can compute
the variation of the Rs and Cs with process variables. Next,
delay calculation can compute the interconnect and gate de-
lays as a function of process. Finally, the timing verifier can
sum these delays to get the final arrival times, and then
compare against constraints. Each step is more complex,
but it only takes one run to get the full performance over
all process variations.

Adding or subtracting two variables with derivatives is
straightforward - just operate component by component.
More complex operations require the chain rule. This lets us
compute the derivative of a function whose inputs are also
changing. For example, the delay Delay of a gate depends
on the process conditions ~P , and also on the input slope I
and output load C, which are also functions of ~P . We can
write

Delay(~P) = D(~P , I(~P), C(~P))

where D gives the delay for a particular ~P , I, and C. From
this we can compute the derivatives

∂Delay

∂Pi
=
∂D

∂Pi
+
∂D

∂I

∂I

∂Pi
+
∂D

∂C

∂C

∂Pi

Figure 5 gives an example of how this works. In this dia-
gram, the values of all components are functions of process
variation. For example, in the diagram, we write R1, but we
really mean R1(~P). The first step is to calculate the delay at
pin Q of the flip-flop as a function of process variation. Pre-
suming we have characterized the delay at Q as a function
of ~P , we need to find the effective C value of the network
(which will also be a function of ~P). If Cin is the input
capacitance of instance I, and DP the driver parameters of
F (both as a function of ~P), then the driver load CD is

CD = CEff (DP,R1, C1, R2, C2, Cin)

Using the chain rule, we can calculate the dependence of CD
on ~P :

∂CD
∂Pi

=
∂Ceff
∂DP

∂DP

∂Pi
+
∂Ceff
∂R1

∂R1

∂Pi
+
∂Ceff
∂C1

∂C1

∂Pi

+
∂Ceff
∂R2

∂R2

∂Pi
+
∂Ceff
∂C2

∂C2

∂Pi
+
∂Ceff
∂Cin

∂Cin
∂Pi

Now we can find the delay D at the output of flip-flop F ,
as a function of process variation, by using the chain rule
again:

∂D

∂Pi
=
∂Dff
∂Pi

+
∂D

∂Ceff
· ∂Ceff
∂Pi

The slope S at the Q output of F , as a function of ~P , is
computed in a similar manner. Then we find the delay and
slope at the input of I ([5] concentrates on this step), and
then the delay and slope at the output of I. We continue in
the manner until we come to the timing sinks.

6

�
�0.7 + 0.5 · P1

0.8− 0.2 · P1 + 1.0 · P2

Figure 6: Two hyperplanes needed

6.2.1 Propagating functions
Propagating delays with process variation through multi-

input gates requires special care. For example, consider a
2 input AND gate. The output delay is determined by the
later arriving of the two inputs. It is possible that the last
arriving input depends on the process variation, as shown
in Figure 6 where P1 and P2 have ranges [−1, 1]. (Here we
will assume we are using a first order approximation to the
real process variation, and hence each response surface is a
hyperplane.)

Attempting to handle this exactly may result in a com-
binatorial explosion. Unless the two inputs have identical
process derivatives (very unlikely) there will be some condi-
tions under which each input arrives last, so the number of
hyperplanes needed to describe the output timing at least
doubles with every multi-input gate. To prevent a data ex-
plosion, the timing verifier must prune as it goes.

Some conditions for dropping hyperplanes are obvious.
For each input, there is a corresponding inequality that must
be satisfied when this input is the last to arrive. If this
inequality cannot be satisfied (no solution within the max-
imum expected process variation) then the corresponding
hyperplane can be dropped. A slightly more complex calcu-
lation can also discard hyperplanes that are possible but of
sufficiently low probability.

Beyond this, there is a wide variety of pruning and ap-
proximation strategies that could be used. In general, the
more aggressive the pruning, the less data growth, but the
more pessimism that is introduced. As an example of an
aggressive pruning strategy, we can always express the out-
put timing as a single hyperplane that dominates the hyper-
plane derived from each input. (This is the moral equivalent
of the MAX() function in normal timing analysis.) It’s pes-
simistic for most process conditions, but preserves at least
some process variability and prevents data explosion. In the
example above we could replace both input hyperplanes by
1.6 − 0.2 · P1 + 0.2 · P2 if we are concerned with maximum
delays.

An exactly analogous problem happens when propagating
required times backward through the network, except it is
caused by nets with multiple fanouts instead of gates with
multiple fan-ins. The solutions are exactly the same - we
discard the conditions that cannot happen, and devise a
pruning strategy to cope with the rest of the conditions.

6.3 Memory and computation needs
Won’t keeping a vector of derivatives for every extracted

component take an enormous amount of memory? If we
use data compression, perhaps not. At first glance, it looks
like we need 30 or so extra floating point values for each
component, to represent the derivatives. However, we can
normalize each derivative, perhaps as a percentage change of
value from a percentage change of a process variable. For ex-
ample, a 1% change in width might result in a -0.8% change
in R value. In this format, most if not all the values will be

between -1 and 1. These can be converted to fixed point,
and stored in a byte to 1% accuracy, probably sufficient for
this application. Then we need only 30 extra bytes for each
component, a factor of 4 better.

We can do still better, though, by dropping the terms with
near 0 values. The properties of a wire on layer metal-2, for
example, will depend strongly on only 4 process parameters,
metal-2 thickness and width, and the thickness of the two
surrounding interlayer dielectrics. If we assume all the other
variations are negligible, we could represent this as 6 bytes
- a start index, a stop index, and 4 values. This is only 6
bytes extra per component - an eminently practical amount
of data. For reduced networks this particular compression
won’t work as well, since a given component in the reduced
form may have contributions from many layers, but there
are many fewer components in the reduced form.

The time tradeoff is currently unclear. The individual cal-
culations are more complex, but there will be many fewer
runs (6 times fewer than with 6 corner analysis, for exam-
ple). In theory, we can simply replace every add, subtract,
multiply, divide, and function call with a more complex op-
eration that keeps first derivatives. If there are N process
variables, then each addition and subtraction will require N
operations. A multiply requires 2N scalar multiplies and N
additions. A divide requires N multiplies, 2N divides, and
a N subtractions. Each function call (such as sin(), ln(),
or sqrt()) requires an underlying derivative calculation, N
multiplies, and N additions. These numbers can probably
improved by taking advantage of sparseness.

Thus if we assume the floating point computations them-
selves take 10% of the run time of a timing verifier, and we
have 20 to 30 process variables, then we would expect the
timing analysis portion of a program to slow down by a fac-
tor of 2 or 3. This is a extremely crude estimate and needs
to be confirmed by experiment.

7. EXPERIMENTAL RESULTS
Here we describe experiments designed to test some of

the key assumptions of the calculations described above. We
used the “experimental” approach above since it can be done
with off the shelf programs. First, we checked to see if net
capacitances are really a linear function of the process vari-
ations. Next, we quantified the improvement from using a
statistical sum rather than 3σ corners. We used total net
C for this measurement but have reason to believe this will
extend to timing as well. Finally, for every net C in one de-
sign, we checked to see how many process parameters had a
significant effect on the value. This helps indicate how well
data compression will work.

7.1 Test of linearity
This technique relies on the variations of component val-

ues and timing being near linear in process variations. The
effect of the process variations are not really independent,
though, so the “hyperplanes” are really curved hypersur-
faces. For the interconnect this effect should be small. Both
capacitance and resistance can be approximated by func-
tions of the form 1/d, where d is the relevant dimension.
Over a ±20% range, though, 1/d ≈ 1.021 − 1.035d with an
RMS error of only 1.7%. So we’d expect the linear approx-
imation to hold within a few percent.

Our first experiment tests this linear approximation. Start-
ing with a nominal 0.25µ process, the test cases changed

7

N
u
m

b
er

o
f

n
et

s

-

6

0.0 3.0 6.0 9.0 12.0
Percent Improvement

1

10

100

1K

10K

Figure 7: Histogram of Improvement

three physical parameters - width and thickness of M2, and
the M1-M2 inter-layer spacing. The three parameters were
changed by 0 and ±20 % in all combinations (27 cases) plus
a few more combinations with 10% variation for a total of
35 cases in all. For each case, coeffgen and HyperExtract [1]
were used to find the total C for each signal in a 144,284
net test case. Individual net capacitances varied by as much
as 27% between the cases. For every net, a least-squares
fit tried to model all 35 extracted values as a nominal value
plus 3 derivatives. Of the 144,284 nets, the biggest deviation
from linear was [−0.75,+0.82]%. Since total C is the dom-
inant component of delay for short wires, and since critical
paths have mostly short wires, there is reason to hope that
the most critical delays will be near-linear functions of the
process parameters. Similar experiments (with a different
set of process variations) were reported in [3], where they
also found near-linear variation.

7.2 Test of amount of improvement
Next, we calculated the improvement in worst case C by

varying each of 17 process parameters one at a time, to find
the dependence of each C on each process variable. Assum-
ing the process variables were uncorrelated, we then com-
puted the statistical distribution of each C and compared
the 3σ value to the value computed at the 3σ worst case
corner. The histogram of these results is shown in Figure 7.
As expected, no nets were worse, and some nets improved
as much as 10.4%. The average improvement was 7.01%.
Path delays should show a bigger improvement than indi-
vidual capacitances, from the argument of section 5. There-
fore a total improvement on the order of 10% seems likely,
although this would need to be confirmed by experiment.

7.3 Sparseness of derivatives
These experiments also confirmed the sparseness of the

derivatives. On the average, only 8.75 of the 17 process
parameters had more than a 1% effect on each total net
capacitance. At the 3% level only 5.84 parameters had an
effect. This was true even though the variable considered
was lumped C, which will (on the average) have contribu-
tions from many layers. A distributed model, and inclusion
of R, would presumably reduce these numbers even further.

8. LIMITATIONS OF THIS RESEARCH
Due to experimental limitations, only the variation of to-

tal net capacitance was checked for linearity. A full varia-
tional timing analysis would need to include cell delays, too.

The variations of these cell delays as a function of process
variation (and voltage and temperature) may not be as lin-
ear as those of capacitance. Furthermore, the experiments
did not look at the effects of net R, which we know to be
significant in some cases.

The experiments only varied the process parameters over
a ±20% range. Real process data might require a larger
range and hence be more non-linear.

Also, although the final results (delays and slopes) are
surely near-linear functions of the process parameters, this
may not be true of intermediate forms such as moments,
poles, and zeros. New delay calculation algorithms such as
[5] that can propagate derivatives may be required.

There is a question of whether even the foundries measure
and/or keep the correlation data needed to take full advan-
tage of this algorithm. There is also a question of whether
the correlations are stable, or constantly change as the pro-
cess is tweaked.

9. CONCLUSIONS
More accurate timing through a detailed treatment of sta-

tistical variation is most likely possible - the assumptions
seem reasonable, and neither the memory or processing time
seems excessive. To do this, we would need new versions
of extraction, delay calculation, and timing analysis. The
payoff will be less pessimistic timing numbers, new possible
tradeoffs involving timing yield, and fewer missed errors.

10. REFERENCES
[1] Cadence. HyperExtract Parasitic Extractor User Guide.

[2] W. Dai and J. Hao. Timing analysis taking into
account interconnect process variation. In IEEE
International Workshop on Statistical Methodology,
pages 51–53, 2001.

[3] A. Gattiker, S. Nassif, R. Dinakar, and C. Long.
Timing yield estimation from static timing analysis. In
International Symposium on Quality Electronic Design,
pages 437 – 442, 2001.

[4] H.-F. Jyu, S. Malik, S. Devadas, and K. Keutzer.
Statistical timing analysis of combinational logic
circuits. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 1(2):126 – 137, June 1993.

[5] Y. Liu, L. T. Pileggi, and A. J. Strojwas. Model
order-reduction of rc(l) interconnect including
variational analysis. In Proc. 36th Design Automation
Conference, pages 201–206, 1999.

[6] V. Mehrotra. Modeling the Effects of Systematic
Process Variation on Circuit Performance. PhD thesis,
MIT, 2001.

[7] S. Nassif. Within-chip variability analysis. In
International Electron Devices Meeting Technical
Digest, pages 283–286, 1998.

[8] B. Stine, D. Boning, and J. Chung. Analysis and
decomposition of spatial variation in integrated circuit
processes and devices. IEEE Transactions on
Semiconductor Manufacturing, 10(1):24–41, Feb 1997.

[9] T.-H. Yeh, J. Lin, S.-C. Wong, H. Huang, and J. Sun.
Mis-match characterization of 1.8 v and 3.3 v devices in
0.18 micron mixed signal cmos technology. In 2001
Microelectronics Test Structures, pages 77–82, 2001.

8

