
12.3

Symbolic Timing Verification of Timing Diagrams
using Presburger Formulas

Tod Amont, Gaetano Borriellot , Taokuan Hut, Jiwen Liut
t Department of Computer Science
Southwest Texas State University

San Marcos, TX 78666
tod@cs.swt.edu

$Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195
gaetano @ cs . washington .edu

Abstract
We present a novel set of tools for performing symbolic timing ver-
ification of timing diagrams. The tools are multi-purpose with uses
in verification, derivation of synthesis constraints, and design eval-
uation. Our methodology is based on using techniques for manipu-
lating Presburger formulas. We demonstrate using several interest-
ing examples that the method is efficient in practice and should be
considered for inclusion in commercial tools.

1 Introduction
Two important areas of design automation are synthesis - the pro-
cess of transforming abstract specifications into physical implemen-
tation, and verification - the process of formally ensuring designs
have been properly implemented and will meet their requirements.

In this paper we present novel work in the area of symbolic tim-
ing verification‘ for timing diagrams. Timing diagrams, e.g., see
Figure 1, are quite popular (especially for interfaces) and are easy to
understand because they correspond to execution snapshots where
the time axis is explicit. Symbolic timing verification is a powerful
extension to traditional constraint checking in that it allows propa-
gation delays and timing constraints to be specified using variables
as well as values. Because of the presence of these variables which
are essentially “unknowns,” verification will most likely be success-
ful only if these variables are constrained appropriately. Symbolic
timing verification has three principle uses:

o implementation verification - which confirms that an imple-
mentation of a design and its associated delays will meet the
constraints in the original specification,

o derivation of constraints for synthesis -using symbolic delay
variables, it is possible to determine the degree of flexibility
that is available while still satisfying the timing constraints
(this can lead to a more efficient use of resources in the final
implementation). Also,

‘This work was supported by an NSF RIA Award (MIP-9410279).
‘Sometimes the term “symbolic verification” is used to describe a verification

methodology (e.g., using BDDs to symbolically explore a state space) but, in ow case,
the actual input and output d e use of symbolic variables.

Design Automation Conference
Copyright @ 1997 by the Association for Computmg Magnery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission andor a fee. Re-
quest permissions from Publications Dept. ACM Inc., fax +1 (212) 869-0481, or per-
missionsBacm.org.
0-8979 1 -847-9/97/m/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

o design evaluation - performed by using symbolic constraint
variables and determining bounds on the values of these vari-
ables given circuit delays (this can provide information about
how well a design will perform and also relate the constraint
variables to circuit delays).

We believe that symbolic timing verification is a valuable paradigm
for thinking about synthesis process because it is a formal approach
to some of the problems in design space exploration. Working with
symbolic variables instead of numeric values clearly complicates
the process of verification, and thus symbolic verification is, gener-
ally speaking, a more difficult problem than either synthesis or ver-
ification alone.

In this paper, we present a complete suite of verification tools
which support symbolic timing verification for a large class of tim-
ing diagrams. Section 2 describes timing diagrams and their formal
representation as inequalities. Section 3 describes our verification
methodology. Section 4 presents several examples and discusses re-
lated work. Section 5 examines complexity issues.

2 Timing Diagrams
Timing diagrams are often regarded as being too informal to be used
as a formal specification for verification purposes. The existence of
formalized timing diagram editors has helped to improve this situ-
ation by enforcing a convention on timing diagram notation along
with well-defined semantics for constraints.

Although timing diagrams are graphical representations, they
inherently describe relationships between pairs of events in the tim-
ing diagram. An event is represented as an edge in the diagram -
a transition from one state (or logic level) to another for a specific
signal (waveform). The relationship between two events consists of
specifying minimum (6) and/or maximum (A) times of separation.

One of our verification tools, tdfurmulize, is responsible for tak-
ing the information present in a timing diagram and converting it
into i :presentation containing inequalities which formally describe
the semantics of the diagram. We are currently using one of several
commercially available timing diagram editors, ‘TimingDesigner,”
from Ch,onology Corporation [7]. We could easily use another edi-
tor for input as long as it captures the appropriate semantic informa-
tion present in a timing hagram. We refer readers to [3, 18, 191 for
more general discussions regarding the formal semantics of timing
diagram specifications and to [2,4, 10, 121 for some specific exam-
ples.

Timing Designer allows users to specify three types of timing
relationships: delays, guarantees, and constraints. Delays repre-
sent a causal relationship between two edges, and guarantees spec-
ify relationships which are guaranteed to be maintained (an envi-
ronment might specify a separation between two input events that it
guarantees will not be violated). Constraints are requirements which

226

mailto:tod@cs.swt.edu
http://missionsBacm.org

the circuit should meet (Le., what its environment expects). For ex-
ample, designers often specify setup and hold constraints and want
to know if they will be met. Every guarantee or constraint from
event el to event e2 with minimum separation 6 and maximum sep-
aration A (henceforth we write [6, A]) corresponds to the inequal-
ity:

e1 +S 5 e2 5 el +A.
The formal semantics for delays are a bit different, because they rep-
resent causal information. If an event (edge) has two or more inci-
dent delay relationships, a maximum is introduced into the equation
(essentially stating that the event will not happen until both of the
events it is dependent upon have occurred). Thus, delays el to e3
with separations [6, A] and e2 to e3 with separations [S’, A’] results
in the inequality:

maz(e1 + 6, e2 + 6’) 5 e3 5 maz(e1 + A, e2 + A’).

The maximization would include more than two terms if more than
two delays were incident on e3. This is the essential difference be-
tween delays and guarantees. Delays, because they are of a causal
nature, may result in inaximum constraints, whereas guarantees do
not. Our verification methodology can easily support minimum con-
straints as well, but we omit them from consideration in this paper
(most existing work in the area of interface verification has focused
on maximum constraints which are often sufficient). Note that we
do not require both b and A to be present, and thus sometimes the
inequalities are one-sided.

Symbolic variables may be used in place of numeric values for
6 or A for any of the three types of timing relationships. Because
Timing Designer does not directly support symbolic variables, we
make use of the ability to name each timing relationship. Specif-
ically, any name for a guarantee, delay, or constraint which ends
with the special text “%X%Y” is assumed, for the purpose of the
inequalities, to have S = X and A = Y (either X or Y can be omit-
ted). This way of adding symbolic variables to Timing Designer is
advantageous in that it solves the problem of deciding how to draw
the timing diagram when some of the [SI A] values are symbolic. In
this case, the numeric values of 6 and A can be viewed as hints (or
guesses) which Timing Designer can use to determine how to draw
the timing diagram. Eventually, the results of verification could be
fed back into the timing diagram and affect these numeric values
and, thus, the position of signal transitions.

3 Verification
The first verification step consists of using the tool tdformulize to
produce a formal description of the requirements that the symbolic
variables must meet in order for the constraints to be satisfied when-
ever the delays and guarantees are met. The description takes the
form of a set of integer n-tuples where n is the number of symbolic
variables:

{[symbolic variables] : tdfonnula}.

All of the delays, constraints, and guarantees present in the timing
diagram are present in tdfonnula. Additional inequalities implied
by the semantics of the timing diagram are also added by rdfonnulize.
For example, we add default guarantees which: order all of the events
taking place on the same signal (i.e., el 5 ez), specify that 6 5 A,
and for delay relationships that S 2 0. The tdfonnula contains two
quantifications of event variables which represent integer values for
times at which the events in the timing diagram might take place:

(Vevents : Constraints V l(de1ays A guarantees)) A

(3events : delays A guarantees).
The first line of the formula contains a universal quantification which
states that for all possible assignments of times to the events, either

227

the constraints must be satisfied or the assignment must not be well
formed (because delays Aguarantees = false). The second line of
the formula ensures that the symbolic variables must take on values
which are indicative of a well formed problem.

The next step in the verification process is performed by our tool
tdverify which performs a number of small simple transformations
on tdfonnula in order to obtain a nicely structured Presburger for-
mula. Presburger formulas consist of affine constraints over integer
variables, the logical connectives 1, A, V, and the quantifiers V and
3. One of the important transformations performed by tdverifi re-
sults in the removal of the maximizations from the inequalities us-
ing:

After performing these transformations, tdverify makes extensive
use of the Omega libraries [16], a set of software recently devel-
oped at the University of Maryland for manipulating (among other
things) integer tuple sets described using Presburger formulas. The
Omega libraries are used to remove the quantifications from tdfor-
mula and produce as a result:

{[symbolic variables] : answer}.

The answer may be false - indicating that there is no way to ensure
that the constraints will be satisfied. Otherwise, the answer con-
sists of a description of the requirements that the symbolic variables
must meet in order for the constraints to always be satisfied when-
ever the delays and guarantees are met. Some of these requirements
are quite trivial (e.g., 6 5 A) while others represent important dis-
coveries that arise from transforming the specification by removing
the quantifications using Omega. Numeric bounds for the symbolic
variables may result, or important relationships between the sym-
bolic variables may be exposed. This is the essence of our work;
discovering relationships between the circuit’s delays, guarantees,
and constraints.

4 Examples and Related Work
In this section, we present several verification examples and discuss
the most relevant related work. For all examples we report execu-
tion times for tdverzfy in CPU seconds on a DEC 3000 with 64 MB
of memory.

4.1 A simple symbolic example

[40,40+
B I

C

D

Figure 1
A timing diagram with a single constraint requiring that the second
edge on signal A (event A z) be within [0,30] of the first edge on
signal C (event Cl). All other times are propagation delays.

Figure 1 contains a simple example taken from [I J in which CLP(R)
and symbolic linear programming are used to perform the verifica-
tion. Using our methodology the timing diagram (which contains

five events: A I , A2, B1, C1,Dl) is analyzed and the following in-
teger tuple set is obtained by tdfomulize:

{ [M , N , x , YI :
(V A i , A 2 , B i , C i , D i :

C i 5 A2 5 Ci $30 V
- t (A 1 5 A 2 A O j X L Y A O < M < N A

m a ~ (B i + 10, D1 + 10) 5 A2 5 m a ~ (B 1 + 10, D1 + 10) A

A 1 + 4 0 5 Bi 5 A1+40 A

A i + X I C i I A i + Y A
C i + M I Di 5 C i + N)) A

(~ A i , A 2 , B i , C i , D i :
A 1 5 A 2 A O S X S Y A O < M < N A

maz(B1 + 10, D1 + 10) I A2 5 maz(E1 + 10, Di + 10) A
A i i - 4 0 5 E1 5 Ai-l-40 A
A i + X 5 C 1 5 A 1 + Y A
C i + M 5 Di 5 C i + N) } .

Our verification tool tdverzfi transforms the above formula into a
Presburger formula (by removing the maximizations) and then uses
the Omega libraries to simplify the Presburger formula and remove
all of the quantified variables (the events). The result is a greatly
simplified Presburger formula which is obtained using .2 seconds of
CPU time and specifies the requirements that the symbolic variables
must meet in order to satisfy the constraint (Cl 5 A2 5 C1 + 30)
assuming the delays and guarantees are met:

{ [M , N , X , Y] : 0 6 M 5 N 5 20 A 20 5 X 5 Y } .

The solution can be explained by observing that the constraint would
obviously be violated if N > 20 and because A2 waits for both B1
and D1 the constraint would also be violated if X < 20.

4.2 Event graphs
There is a very direct relationship between our verification work
and previous work regarding the verification of event graphs. An
event graph is an altemative way of representing a set of inequal-
ities, and thus our tools support the verification of many different
types of event graphs. npically constraints are not present in an
event graph. The event graph is used to determine minimum and
maximum separations between pairs of events and these calcula-
tions are then compared with any required constraints. If no guaran-
tees are present, a simple linear time algorithm exists [13]. If guar-
antees are present, the best known algorithmis that of [19]. We have
used our tools to verify all of the examples present in [13] and [19]
and our results are identical. Event graphs can also be used to rep-
resent infinite sets of inequalities which can be used to model sys-
tems with repetitive behavior, e.g., [l , 8, 111. Our methods are not
directly applicable to such event graphs.

One interesting problem discussed in [191 is a symbolic problem
with a disjoint solution. The symbolic verifier of [l] cannot handle
disjoint solutions and requires the event graph to have a very spe-
cific structure, and is thus not able to analyze most timing diagrams.
In [191 this example (the event graph appears in Figure 2) is solved
manually. Our verification tools report the following solution using
.2 seconds of CPU time:

{[w,x,Y,z] : w 5 X 5 50 A Y 5 Z 5 70 A
(Y 2 60 V (Y 5 59 A w = 50 A X = 50))).

The example demonstrates an interesting aspect of our methodol-
ogy. Timing diagrams usually view time as continuous, but due to
our reliance on integer tuple sets and Presburger formulas, we as-
sume time is discrete. The equation: Y < 59 could perhaps be
more easily understood as -(Y 2 60). There exist pathological
examples for which our verifier would report failure because of the

yy”’
A

[30,501
1- D1

Figure 2
A simple event graph with a constraint (not shown) indicating that
80 5 A2 - A1 5 100. The corresponding timing diagram would
be quite similar to the one in Figure 1 except that the numeric and
symbolic timing information has changed, and the constraint is now
from A1 to A z .

need for an integer solution (e.g., examples which rely on forcing an
event to take place between two other events which are constrained
to be one time unit apart) but we believe this is simply an indication
that the user is not working with an appropriate time scale, and this
would be clearly obvious from the timing diagram itself. Further-
more, we actually need integer solutions when synchronous signals
are considered, see Section 4.4.

At this point, we must also confess that the actual solution which
tdvenfy reports is not as readable as the one given above. Currently
solutions are expressed as unions of sets containing no disjuncts (i.e.,
in sum of products form) and we manually simplify the reported for-
mula and formally verify that no mistakes are made during simpli-
fication. We are in the process of exploring how to best report so-
lutions for human readability.

4.3 Interface timing verification
Many verification problems with respect to timing diagrams are con-
cerned with interface verification, in which two pieces of hardware
are connected, and each acts as the other’s environment. The verifi-
cation problem, in this context, is to decide whether or not each de-
vice satisfies the other’s timing requirements. Our symbolic verifier
has the capability to not only perform interface timing verification,
but interface timing synthesis as well.

This example of interface timing verification is taken from [20]
and consists of two specifications for a memory controller and a bus.
Here, we consider only the read protocol. Figure 3 contains the
two timing diagrams. Walkup performed the verification by creat-
ing (manually) an event graph corresponding to the composition of
both timing diagrams. The event graph was analyzed and the com-
puted maximum separations between events were compared to the
required constraints. We have discovered a few minor errors in her
event graph but they do not affect her results, which we were able
to duplicate.

Verification takes place directly from the timing diagrams, which
are combined into a single timing diagram shown in Figure 4, and
then verified using our tools. At present our tool tdmerge requires
the merged diagrams to be topologically identical. Future work is
needed in this area. For example, one diagram may not contain all of
the transitions present in another, and this should not prevent merg-
ing if it is clear how the two diagrams “match up.” Additional con-
cems involve circumstances such as allowing “valid” and an actual
value (e.g., “low”) to result in a merging, and there are additional
semantic issues that will need to be resolved in a more mature tool.
Some of these issues are discussed in [2] and others have been iden-
tified in the context of timing diagram simulation [9].

Using symbolic variables (Figure 4 contains only numeric val-
ues) we can easily perform experiments which might, for example,
help us to select another memory controller which would also meet
our constraints. After changing the numeric values associated with

228

..I PADDRsetup /t-ADDRhol-

I I
A d d r m I

R e a d y H R e d
,,,,

I Request 7
I I

Ready

Data

Row IName I Formula
ADDRsetuD 1130.1

19 IDTReadvHRea li10.301 1

ADDRsetup W A D D R h o l d
Addr wH1 1 -

I

Request

Ready

I LtDataValicb I 1
Data

Row IName I Formula
1 IC I ADDRsetuD 1125.1

Figure 3
Two timing diagrams and tables for a read-from-device protocol for a
simplified bus (top) and a simplified memory controller’s read opera-
tion (bottom). The nature of each relationship (constraint, guarantee,
or delay) is specified to the right of the row number.

the memory (rows 5,6, and 8) to symbolic variables ([RRZ, RRh],
[DVZ, DVh], and [PWl, PWh] respectively) we can ask the ques-
tion: “What will the overall length of the read cycle be?” by adding
an additional constraint that makes use of two new symbolic vari-
ables: RTlower 5 Request2 - Request1 5 RTupper. Our tool
reports (using .6 seconds of CPU time):

{[RTlower, RTupper, RR1, RRh, DVI, DVh,PWl,PWh] ;
30 5 RR15 RRh A

0 5 DV15 DVh 5 100 A 0 5 P W 1 5 P W h A

ADDRhol6--c

Request

Ready

Data

lRow IName I Formula I
1 IC I mADDRsetuD 1125.1
2 IC ImWsetuD 1125.1
3 IC ImADDRhold 1115.1

1115.1 I

Figure 4
Combined timing diagram and tables for the bus and memory con-
troller. The prefixes “b” and “m” indicate whether the relationship
came from the bus specification or the memory specification.

RTupper 2 180 + RRh A

RTupper 2 30 + P W h + RRh A
(RTlower 5 10 + P W l + RR1 V

(RTlower 5 150 + RR1 A PW1 5 150)).
This answer reflects constraints on the type of memory controller
that can be used so as to meet the bus’ timing requirements (lines
two and three of the result) and also provides upper (lines four and
five) and lower (lines six and seven) bounds on the length of the read
cycle, The disjunction involving the lower bound indicates that a
tight lower bound on the length of the read cycle can only be ob-
tained based on the value of PWI, which serves to distinguish two
separate regions where different linear relationships bound the re-
sponse time.

4.4 Synchronous Signals
None of the previous examples contained a clock and signals whose
events were synchronous to a clock. Figure 5 contains a timing di-
agram we will use to describe the capabilities of our verifier with
regards to synchronous signals.

Synchronous signals present many well known difficulties with
regards to formal specification. Stating that two events are “one cy-
cle apart” would not, for example, necessitate that the events are
separated by a minimum of 6 = clock period. Instead, it means
that the clock edges which both events are synchronized to are con-
secutive. Many formal timing diagram editors provide support for
specifying synchronous information in special ways.

229

........... [200 3001
Q

Figure 5
A timing diagram containing a clock with a 45 ns. period and two
signals whose events are synchronous to the clock.

As an example, consider the verification of the timing diagram
specified in Figure 5. Verification fails because the guarantee on the
setup time for the event on Q is expressed relative to the 8th event
(the 4th falling edge) of the clock (Le,, (CKa - Q1 2 25)) and the
required separation between the events on D and Q is quite large
(i.e., D 1 + 200 5 Q 1 5 D1 + 300). Events which are guaranteed
to be synchronous should not, however, necessarily have to specify
precisely which edge of the clock they are synchronous to. Rather,
we should simply state that they are synchronous to some edge.

At present, tdformulize lacks the ability to handle special syn-
chronous constraints but, if the tdformula is manually edited, tdver-
ih can provide meaningful results. For example, we can change the
equation for the setup2 guarantee to use a symbolic vanable (CC,
with CC 2 1) to represent some unknown number of cycles with
respect to the first falling edge of the clock (Le., CK2 +45 * CC -
Q1 2 25). We also need to add information which expresses some-
thing implied in the diagram, namely, that if the event on D is syn-
chronous to the second falling edge of the clock, it occurs after the
first falling edge (i.e., D1 2 CK2) - a similar inequality will be
necessary for Q as well (i.e., Q1 2 CK2 + 45 * (CC - 1)). With
these manual changes, which will eventually,be performed as a part
of timing diagram translation, we are able to verify the constraint
and the result (generated in less than .2 seconds of CPU time):

{[CC] : 6 5 CC 5 7)

represents a determination of what clock edges would be the accept-
able ones with which to synchronize Q (Le,, C K ~ + ~ * C C) .

There are other issues related to synchronous signals that require
refining the semantics of timing diagrams. In fact, there are many
other “higher level” relationships one might wish to specify using a
timing diagram editor (e.g., simultaneity). Formal timing diagram
editors likely will need a more expressive and explicit semantics if
interface verification and synthesis are to be fully supported. We
leave this for future work.

We should note that our verification methodology would break
down if the clock period was expressed as a symbolic variable and
we wanted to use another symbolic variable to express uncertainty
regarding which clock edge we should synchronize with. In such an
occasion, we would have an integer inequality which was not affine
because it contained the product of two symbolic variables. As long
as we avoid this situation, our verification methodology should sup-
port future extensions to better handle the semantics of timing dia-
grams with synchronous signals.

5 Complexity
Working with symbolic variables greatly increases the theoretical
complexity of any verification methodology. The best known upper
bound on the performance of an algorithm for verifying Presburger
formulas is 0 (2 2 2 ”) [14] and thus convention would hold that our
tools may not be able to handle anything other than small trivial ex-
amples. There are many reasons why we believe this is not the case.

First, we should mention that the Omega libraries were devel-
oped for dependence analysis for advanced cgmpiler optimizations
1151. Such optimizations rely on integer programming techniques
which were thought to be too computationally expensive until the
development of the Omega Test. A complete discussion of the meth-
ods used by Omega (and the newer algorithms which result in the
support of Presburger formulas [171) is outside the scope of this pa-
per, but we should point out that a great deal of emphasis has been
put on making the Omega libraries efficient and in many situations
in which polynomial methods provided equivalent results, Omega
has been found to have low-order polynomial worst-case time com-
plexity [15]. One reason for this may be that Omega relies on an in-
teger extension of Fourier-Motzkin variable elimination techniques.
In our case, these techniques are especially easy to perform because
all of the coefficients on our symbolic and quantified variables are
always 1 or -1 unless synchronous signals are included. This is
significant both for the algorithms used by Omega and for Cooper’s
algorithm [5].

Our Presburger formula contains only two quantifiers and they
are not nested. Verifying quantifier-free Presburger formulas is NP-
complete [141. The number of quantifiers (and the structure of their
nesting or alternation) can dramatically affect the complexity of per-
forming verification. Oppen [14] has noted that even a superex-
ponential upper bound may not be attainable if the verification al-
gorithm puts the formula (which may grow too large) in disjunc-
tive normal form (as does Omega). The number of disjuncts in our
formula is directly related to the number of maximum or minimum
functions appearing in our inequalities and this number is not likely
to be extraordinarily large.

Another point in our favor is simply that timing diagrams tend to
be fairly mall. Modularity is used to help manage design complex-
ity and this modularity will help with verification as well. Finally,
the complexity of our approach is clearly directly related to the com-
plexity of the interrelationships between the delays, guarantees, and
constraints that are present in our specification. The amount of time
spent performing symbolic timing verification is trivial compared
to the amount of time that a human typically spends looking at the
results. In some cases the results of verification will be used by syn-
thesis tools, but if there is too much freedom with regards to the
solution (i.e., the solution is very complex) it is likely that the re-
sults may be of limited use for synthesis. Finally, should our tools
prove to be of potential use, it is quite likely that a more thorough
investigation regarding verification algorithms could result in fur-
ther simplifications. Even without symbolic variables, the presence
of both minimums and maximums in the inequalities results in ver-
ification being NP-complete [131 and thus for many realistic verifi-
cation problems exponential run times cannot be avoided.

We have performed a number of small experiments to determine
if our methodology is likely to be practical for typical uses which
designers might make of it. In so doing, we attempted to analyze
systems that we believe are more complex than ones that would re-
alistically be analyzed.

We analyzed the example described in Figure 1 with all of the re-
lationships (including the constraint) expressed using symbolic vari-
ables. In this case, there were 12 symbolic variables, the verification
took 3.2 seconds of CPU time and the result, consisting of the union
of 16 sets, required approximately one hour of analysis for one of
the authors to understand (less time would have been required if the
results were reported in a more readable format).

230

I N 11 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 0 1
[seconds I[.16 I .37 I .93 I 2.6 I 7.2 I 18.2 1 68 I 703 I

Figure 6
Lattice smctured event graph out to As. The verifier is used to es-
tablish an upper bound on A N - A (~ . J - ~) which for N = 3 is
24. There is one symbolic variable and the underlying equations have
2N - 1 maximizations which result in 2 (Z N - ’) disjuncts which
Omegamust analyze. The table reports CPU times in seconds for var-
ious Ns.

We constructed a timing diagram with an event graph structure
similar to a lattice, with a number of events which could be easily
parameterized. Figure 6 contains a table showing execution times as
a function of lattice size. Clearly there are limits to our brute force
approach when maximizations and minimizations result in an expo-
nential number of terms which need to be analyzed. Algorithms for
analyzing Presburger formulas which avoid the need to put every-
thing in disjunctive normal form exist (see [5]) but it is not known if
they would perform any better than Omega. Our belief is that there
exist a large class of timing diagrams which do not contain large
numbers of maximizations (or minimizations) for which symbolic
verification would be quite valuable.

6 Conclusion
We have developed a set of tools with unique capabilities we be-
lieve designers will find especially valuable. Our tools allow ef-
ficient verification directly from the timing diagram, and yet also
support more advanced analysis. This is the case due to the general
framework provided by the Omega libraries, giving us the ability to
include arbitrary equations and inequalities. Thus, one can specify
many “higher level” constraints that may not be directly visible in a
timing diagram, such as correlated delay values [6,7]. For example,
if we have two delays in a timing diagram caused by the same com-
ponent then these delays may be known to track each other (i.e., the
two delays are constrained to be in a certain range, B1 = A1 + 61
with 10 5 61 5 20 and C1 = A1 + 62 with 10 5 62 5 20, but
their difference must be small, -2 5 61 - 6 2 5 2).

We believe symbolic timing verification has yet to be seen by
the synthesis community as an integral part of the synthesis process.
It is our hope that from this example, others recognize the inherent
potential that software such as the Omega libraries provide. Our fu-
ture work involves bringing higher levels of abstraction to the veri-
fication process. We anticipate having to address more complicated
semantics issues (e.g., improvements to tdformulize and tdmerge)
as well as improve our underlying methodology and the reporting
of results (e.g., improvements to rdverifr).

REFERENCES
[l] AMON, T., AND BORRIELLO, G. An approach to symbolic

timing verification. In Proc. ACMIIEEE Design Automation
Conference (DAC) (June 1992).

[2] BORRIELLO, G. A New Integace Specification Methodology
and its Application to Transducer Synthesis. PhD thesis, Uni-
versity of California at Berkeley, 1988.

[3] BORRIELLO, G. Formalized timing diagrams. In 3rd Euro-
pean Conference on Design Automation (EDAC) (Mar 1992).

[4] BRZOZOWSKI, J. A., GAHLINGER, T., AND MAVADDAT, F.
Consistency and satisfiability of waveform timing specifica-
tions. In Networks (1991), vol. 21.

[5] COOPER, D. C. Theorem proving in arithmetic with multipli-
cation. In Machine Intelligence 7 (1972).

[6] GIRODIAS, P., AND CERNY, E. Interface timing verification
with delay correlations using constraint logic programming.
In European Design and Test Conference (March 1997).

[7] GLADSTONE, B. Accurate timing analysis holds the key to
performance in today’s system designs. EDN (Sept. 1993).

[8] HULGAARD, H., BURNS, S. M., AMON, T., AND BOR-
RIELLO, G. An algorithm for exact bounds on the time sepa-
ration of events in concurrent systems. IEEE Transactions on
Computers (Nov. 1995).

[9] KHORDOC, K., CERNY, E., AND DUFRESNE, M. Model-
ing and execution of timing diagrams with optional and multi-
match events. In Proc. 2nd ACM Workshop on Timing Issues
in the Specification and Synthesis of Digital Systems (1992).

[101 KHORDOC, K., ET AL. Integrating behavior and timing in ex-
ecutable specifications. In Proceedings of the Conference on
Computer Hardware Description Languages and their Appli-
cations (CHDL) (Apr. 1993).

111 MARTELLO, A. R., AND LEVITAN, s. P. Temporal analysis
of time bounded digital systems. In IFIP WG10.2 Advanced
Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME) (May 1993).

121 MARTELLO, A. R. , LEVITAN, S. P., AND CHIARULLI,
D. M. Timing verification using HDTV. In Proc. ACMIIEEE
Design Automation Conference (DAC) (1990).

131 MCMILLAN, K. L., AND DILL, D. L. Algorithms for inter-
face timing verification. In Proc. Intemational Con$ Com-
puter Design (ICCD) (October 1992).

141 OPPEN, D. A 222Pn upper bound on the complexity of pres-
burger arithmetic. In Joumal of Computer and System Sci-
ences (July 1978).

151 PUGH, W. A practical algorithm for exact array dependence
analysis. In Communications of the ACM (Aug. 1992).

[16] PUGH, W., ET AL. The omega project. In URL:
http://www. cs. umd. edu/projects/omega.

[17] PUGH, W., AND WONNACOTT, D. An exact method for
the analysis of value-based array data dependences. In Proc.
6th Workshop on Programming Languages and Compilers for
Parallel Computing (Aug. 1993).

[18] RONY, P. Interface fundamentals: Timing diagram conven-
tions. In Computer Design (January 1980).

[191 WALKUP, E., AND BORRIELLO, G . Interface timing verifica-
tion with application to synthesis. In Proc. ACM/IEEE Design
Automation Conference (DAC) (June 1994).

[20] WALKUP, E. A. Optimization of Linear Max-Plus Systems
with Application to Timing Analysis. PhD thesis, University
of Washington, 1995.

23 1

http://www

