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Abstract 
Piocess variatiuns have become a critical issue in performafrce 

verification of high-performance designs: We present a new, stofisti- 
cal timing analysis method that accounts for inter- and intra-die 
process variations and their spatial correlations. Since staristical 
timing analysis has an exponential run time complexiw, wepropose 
a method whereby a sratistica1,bound on theprobability distribution 
function of the exact circuit delay is computed with linear run time. 
First, we develop o model.for representing inter- and intra-die vari- 
ations and their spatial correlations. Using this model, we then 
show how gate delays and arrival times can be represented as a sum 
of components, such that the correlation information berween 
arrival times and gate delays is preserved. We then show how 
arrival rimes are propagated and merged in the circuit to obtain an 
arvival time distribution that is an upper bound on the distribution 
of the exact circuit delay. Weprove the correctness of the bound and 
also show how the houndcan be improved hypropagating multiple 
arrival times. The proposed algorithms were implemented and 
tested on a set of benchmark circuits under several process varia- 
tion scenorioios. The results were compared wifh Monte Carlo simu- 
lation and show an accuracy of 3.32% on average over all test 
CaSeS. 

1 Introduction 
Static timing analysis has become an indispensable part of per- 

formance verification. Static timing analysis has the advantage that 
it does not require input vectors and has a run time that is linear with 
the size of the circuit. A number of methods have been proposed to 
increase the accuracy of static timing analysis through improved 
delay models and analysis techniques. In recent technologies, the 
variability of circuit delay due to process variations has become a 
significant concern. As process geometries continue to shrink, the 
ability to control critical device parameters is becoming increas- 
ingly difficult, and significant variations in device length, doping 
concentrations, and oxide thicknesses have resulted. 

Traditionally, process variations have been modeled in static tim- 
ing analysis (STA) using so-called case analysis. In this methodol- 
ogy, best-case, nominal and worst-case SPICE parameters sets are 
constructed and the timing analysis is performed several times, each 
time using one case file. Each execution of static timing analysis is 
therefore deterministic, meaning that the analysis uses deterministic 
delays for the gates and any statistical variation in the underlying 
silicon is hidden, While this approach has been successfully used in 
the past to model die-to-die variations, it is not able to accurately 
model variations within a single die. With the continual scaling of 
feature sizes, the ability to control critical device parameters on a 
single die has become increasingly difficult. Using a worst-case 
analysis for these so-called intra-die variations therefore leads to 
very pessimistic analysis results since it assumes that all devices on 
a die have worst-case characteristics, ignoring their inherent statisti- 
cal variation. The emerging dominance of intra-die variations there- 
fore poses a major obstacle for deterministic STA, giving rise to the 
need for statistical timing analysis approaches. 
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In general, process variations can be divided into inter-die varia- 
tions and intra-die variations. Inter-die variations are variations that 
occur from one die to the next, meaning that the same device on a 
chip has different features among different die of a wafer, from 
wafer to wafer, and from wafer lot to wafer lot. Intra-die variations 
are vanations in device features that are present within a single chip, 
meaning that a device feature varies between different locations on 
the same die. Intra-die variation result from equipnient limitations 
or statistical effects in the fabrication process, such as statistical 
variations in the doping concentrations. 

Intra-die variations often exhibit spatial correlations, where 
devices that are close to each other have a higher probability of 
being alike than devices that are placed far apart. This has been 
reported especially for gate length variations [I]. Intra-die varia- 
tions can also have a deterministic component due to topologically 
dependencies of device processing, such as CMP effects and optical 
proximity effects [Z]. In some cases, such topological dependencies 
can be directly accounted for in the analysis [3][4], whereas in other 
cases, such variations are treated as random. 

Statistical timing analysis is similar to deterministic timing anal- 
ysis in that arrival times are propagated through the circuit from pri- 
mary inputs to primary output. In statistical timing analysis, 
however, the gate delays and arrival times are represented with ran- 
dom variables. The difticulty of statistical timing analysis results 
from the correlations that arise among the arrival times in the circuit 
and between the arrival times and gate delays. These correlations 
must be taken into account when arrival times are propagated in the 
circuit, leading to an exponential run time complexity and making 
statistical timing analysis a challenging problem. 

A number of statistical timing analysis approaches have been 
proposed in recent years [5-18]. In [13 ]  thecorrespondence between 
deterministic timing analysis and statistical timing analysis was first 
shown. However, the proposed method does not address the correla- 
tion between the arrival times. In [14], a novel mcthod using dis- 
cretized probability distributions is proposed. However, the run time 
of the method is exponential and the proposed approaches to reduce 
the run time have an uncleni impact on the accuracy. In [ 151, a novel 
method using statistical bounds is proposed with gate delays 
restricted tu Gaussian distributions. However, to obtain a high qual- 
ity bound, it is necessary to enumerate all paths in the circuit, lead- 
ing to exponential run time complexity. In [16], a path based 
statistical delay computation is presented using an accurate delay 
model. However, the analysis is performed one path at a time and 
the number of critical and near-cntical paths in a circuit can be very 
large. In [17], a new circuit optimization method was therefore pro- 
posed that reduces the number of near critical paths in a circuit, 
thereby improving the statistical delay ofthe circuit. Finally, in [IS] 
a method using statistical hounds is presented that addresses the 
arrival time correlations due to path reconvergence. However, the 
method does not address arrival time correlations due to spatial cor- 
relations between the gate delays. 

In this paper, we therefore propose a new statistical timing analy- 
sis approach to model the impact of process variations on circuit 
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delay. We model both inter- and intra-die process variations and 
account for spatial correlations of the gate delays. In our analysis, 
we focus on gate length variability since it has been shown to have a 
dominant impact on gate delay [I]. However, our analysis can be 
easily extended to other process variations as well. We fust present 
a model for inter- and intra-die gate length variation and their spatial 
correlations. Gate delays and arrival times are represented as a sum 
of random variables, and presewe the spatial correlation infonna- 
tioo. 

The correlation between the arrival times complicates the com- 
putation of the maximum arrivals times, as required during arrival 
time propagation. Since the exact computation of the maximum 
arrival time requires exponential run time, we propose a method that 
produces an upper bound on the exact anival time in linear run time. 
We prove the correctness of the proposed bound in the presence of 
spatially correlated gate delays. The obtained bound is itself a ran- 
dom variable with a probability distribution function, allowing for 
the computation of useful statistical quantities such as confidence 
points. In order to improve the proposed bound, we propose a 
method whereby multiple arrival times are propagated in the circuit 
at the expense of additional mn time. We implemented the proposed 
methods and tested them on benchmark circuits. We demonstrate 
that using the proposed methods, the statistical delay of a circuit can 
be computed with high accuracy. 

The remainder ofthis paper is organized as follows. In Section 2,  
we present our model of process variations and our modeling 
assumptions. In Section 3 we present our approach for statistical 
timing analysis. In Section 4, we present the heuristic method for 
improving the quality of the bound by propagating multiple arrival 
times. In Section 5 .  we present our results and in Section 6 we draw 
our conclusions. 

2 Process Variation Model 
In this section, we present our model for process variations. We 

consider two basic types of process variations in our analysis: inter- 
die variations and intra-die variations. Intra-die variation can he fur- 
ther divided into random variations, and spatially correlated varia- 
tions. Random intra-die variations have no dependence on the 
location of the devices, while intra-die variations that are spatially 
correlated produce an increased likelihood of similar gate lengths 
for devices that are closely spaced versus those that are placed fur- 
ther apart. We first discuss our model for inter- and intra-die varia- 
tions which is based on the model in [I91 and then discuss how this 
model is extended to account for spatial correlations. 

We propose the following model, where the device length L,,,,",, 
of device k is the algebraic sum ofthe nominal gate length, the inter- 
die device length variation A L d e r  and intra-die device length varia- 
tion, ALkt,a,k: 

(EQ 1) 

where A Ljnar and ALinrm,k are random variables. Lnom represents 
the mean of the gate length across all possible die. All devices on a 
die share one variable ALinur for the inter-die component of their 
total device length variation, which represents a variation of the 
chip mean of the gates of a particular die. A Lin,,o,k represents the 
variation of an individual gate from this chip mean. For the 
moment, we ignore the spatial correlation of intra-die variations, 
and hence each device is represented with a separate independent 
random variable ALinrm,k, where all random variables ALintro,k 
have identical probability distributions. For the purpose of our dis- 
cussion, we assume that both random variables A Li,,,e, and A Linr,u,k 

L m d , k  = Lnom + A L j n t e r +  ALinrro,k 3 

have a truncated normal distribution. This reflects the fact that the 
gate length in an operational chip cannot be less than some finite 
minimum value or more than some finite maximum value. How- 
ever, any suitable distribution can be used, and our proposed 
approach is not restricted to normal distributions. 

After defining a model for the gate length variation, the delay dk 
of gate k is now defined as follows: 

(EQ 2) 
Since function Dk is in general a non-linear function, finding the 
distribution of dk can be difficult. However, we take advantage of 
the fact that the gate length variations A Lie,,, and A L;n,ra,k are typ- 
ically small, with typical 3-sigma values of less than 15% of LnOm 
Hence, we make the simplifying assumption that, for small varia- 
tions, the change in gate delay is linear with the change in gate 
length. Hence, we can write EQ2 as follows: 

(EQ 3) 
where ADp(Linnr) and ADk(L;,,,,a,k) are the change of gate delay 
due to inter- and intra-die gate length variation. For convenience, 
we define ADk() as follows: 

dk= Dk(Lmm + ALin,w+ ALintma,k) 

dk = Dk(Lnom) + A Dk(A Linter) + A Dk(A Lin,ru,k)3 

where the sensitivity of the delay with respect to device length 
aDk/aL is computed at  the nominal device length. We can now 
express the delay o f a  gate with the following simple expression: 

= onom + CA Linrer + a A Linrra,k (EQ 5 )  
where a= aDk/JL. Note that instead of using EQ4 any linear fit- 
ting function could be used as well. Although EQS uses a simple 
linear approximation, such an approximation was found to give very 
good accuracy for current process variabilities [16][19]. 

Spatial Correlation Model 
In EQI, the intra-die variation of gate delay is modeled by 

assigning an independent random variable for each gate. However, 
in the presence of spatial correlation, these random variables 
become dependent which greatly complicates the analysis. We 
therefore propose the following method for modeling spatial corre- 
lation ofintra-die process variation. 

We first divide the area of the die into regions using a multi-level 
quad-tree partitioning, as shown in Figure 1.  For each level I ,  the die 
area is partitioned into Z1-by-2' squares, where the first or top level 0 
has a single region for the entire die and the last or bottom level m 
has 4"' regions. We then associate an independent random variable 
ALl,, with each region ( I ,  r )  to represent a component of the total 
intra-die device length variation. The variation of a gate k is then 
composed as the sum of intra-die device length Components ALL,, 
where level 1 ranges from 0 to m and the region r at any particular 
level is the region that intersects with the position of gate k. For the 
gate in region 2,1 in Figure I ,  the components of intra-die device 
length variation are therefore A&,l, ALI , ,  and A h , , .  The intra-die 
device length of gate k is now defined as the sum of all random 
variables AL,,, associated with a gate: 

ALtnira,k = A L ~ , r +  ALrandom. t 8 (EQ 6)  
0 < I < m. r intersects k 

901 



also that length A h , ,  associated with the region at the top level of 
the hierarchy is equivalent to the inter-die device length ALinler 
since it is shared by all gates on the die. 

We can control how quickly the spatial correlation diminishes as 
the separation between two gates increases by controlling the allo- 
cation of total intra-die device length variation among the different 
levels. If the total intra-die variance is largely allocated to the hot- 
tom levels, and the regions at top levels have only a small variance, 
there is less sharing of device length variation between gates that 
are far apart and the spatial correlation will diminish quickly. On the 
other hand, if the total intra-die variance is predominantly allocated 
to the regions at the top levels of the hierarchy, then even gates that 
are widely spaced apart will still have significant correlation and 
spatial correlation will diminish more slowly as spacing increases. 
The proposed model is therefore flexible and can be easily fit to 
measured device length data. 

Based on the above model for intra-die spatial correlation, we 
can combine EQ5 and EQ6 to obtain the following expression of the 
delay a gate: 

dk = Dnom+ . (EQ 10) 

a' ALinior+ ALi,r+ ALmndom,k 1 0 < i<m. r i n t e r s l s  k [ 
Note that all random variables in EQlO are independent random 
variables. This has the advantage that spatial correlations can be 
processed using only independent random variables, which simpli- 
fies the analysis. Note also that some of the random variables in 
EQlO will occur in the expressions of multiple gate delays. 

Finally, to simplify the notation, we rewrite EQlO using a more 
general form as follows: 

' k  = Dnom + cai ' Li + ADrmdom, k @Q 11) 

Where Li and A D,dom,k are random variables and ai are con- 
stants. A D,a,dom,~ is the random delay due to uncorrelated intra-die 
gate length variation. The variables Li correspond to one of the ran- 
dom variables in the proposed model, such as ALinicr and ALi,, 
The sum is taken over all random variables present in the model and 
ai = a f o r  the random variable A Linter and for the random variables 
ALl,r associated with the gate, based on its position in the die. For 
all other i ,  ai = 0. Note that EQll  is simply a more general and 
convenient form of EQ10, where the delay of a gate is expressed in 
terms of all random variables in the model, instead of just those 
associated with that particular gate. Using EQ11, the delay of a gate 
is expressed as a sum of independent random variables, some of 
which may be shared in the delay expression of one or more gates, 
In the following Section, we show how to perform timing analysis 
based on the proposed model for process "xiation. 

3 Statistical Timing Analysis Method 
Static timing analysis is performed by propagating arrival times 

from the primary inputs to the primary outputs using repeated appli- 
cation of two operations: 

1. Propagation. Arrival times are propagated from the input of a 
gate to the output of that gate. In the process. the delay of the 
gate is added lo the arrival time. 

1,1 1.4 

1.. 

Figure 1. Modeling spatial correlations using quad-tree 
partitioning 

where ALi , ,  are the random variables associated with the quad-tree 
and AL,,dom,kis an independent random variable, assigned to each 
gate to model uncorrelated delay variation. 

I t  must be ensured that the sum of all random variables ALl,, 
associated with a gate always adds up to the total intra-die gate 
length variation. This can be accomplished by assigning all random 
variables associated with a particular level the same probability dis- 
tribution and by dividing the total intra-die variability among the 
different levels. 

Using the described model, gates that lie within close proximity 
of each other will have many common intra-die device length com- 
ponents resulting in a strong intra-die length correlation. Gates that 
lie far apart on a die share few common components and therefore 
have weak correlation. For the three gates shown in Figure 1 in 
regions (ZI) ,  (2,4) and (2.15) the intra-die device length variation is 
expressed as follows: 

I + ALrondomn, I @Q7)  

I + ALrandom.2 (EQ 8) 

I + ALrondom, 3 @Q ') 

We can observe from the above equations that gates I and 2 are 
strongly correlated, as they share the common variables ALI,]  and 
A ~ , J .  On the other hand, gates 1 and 3 are more weakly correlated 
as they share only the common variable Note that the devices 
that are closely spaced, but fall in different squares, will have less 
correlation than those that are equally spaced, but fall within the 
same square. However, this issue can be addressed by using an addi- 
tional quad-tree which is offset by half the size of the smallest 
square. 

Figure 1 shows an example of a die with 3 levels of partitioning 
resulting in 16 regions at the bottom level. Since the number of 
regions at the bottom level grows as 4'" it is possible to obtain a fine 
partitioning of the die with only a moderate number of levels. Note 

ALinrm. I = AL2,  I + A L i ,  I + 

A L i n r m ,  z = AL2.4 + A L t ,  I + 

ALinrro, 3 = A L ~ .  15 + A L ~ ,  4' 
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2. Merging. Multiple amval times that converge at a gate output 
from different gate inputs are merged by taking the maximum of 
these arrival times. 

Statistical timing analysis can he performed in the same manner 
using propagation and merging, except that both the gale delays and 
the arrival times are now random variables. In this case, the arrival 
time is specified either with a cumulative distribution function 
(Con or probability density function (PDF). To simplify the 
implementation of statistical STA i t  is often more convenient to 
approximate continuous PDFs and CDFs with discrete functions. 
For computational efficiency, we use discrete PDFs and CDFs in the 
implementation of our proposed method. However, for generality, 
we will formulate the statistical liming analysis task using continu- 
ous functions. 

The difficulty in statistical liming analysis arises from the corre- 
lations between the random variables, which arise from one of two 
sources. First, reconvergence of circuit paths results in amval times 
that are dependent, since they share a common portion of their path 
delay. However, in [le] i t  was shown that ignoring the correlation 
resulting from reconvergent fanout produces an upper bound on the 
statistical delay and results in a conservative analysis. 

The second source of dependence results from spatial correla- 
tions between gate delays. I t  is clear that if the delay of two gates is 
correlated, the arrival times at their outputs will be correlated as 
well thereby complicating the merging operation of these two 
arrival times. Furthermore, spatial correlation also results in depen- 
dence between an arrival time and the gate delays themselves. This 
complicates the propagation opration where the delay of a gate is 
added to the arrival time at its input node. 

It is easy to show that, unlike correlations resulting from recon- 
vcrgent paths in the circuit, ignoring spatial correlations may not 
result in an upper hound on the statistical delay. This i s  intuitively 
obvious from the fact that spatial correlation makes the intra-die 
variability more similar to that of inter-die variability, which 
increases the delay of circuit paths. The correlation between the 
arrival times and between arrival times and the gate delays must 
therefore be accounted for during the propagalion and merging 
operation 

Note that i f  we express the delay of a gate using a single random 
variable. by convolving its independent components in EQ11, it will 
he very difficult to recover the correlation information between this 
gate delay and another. In the proposed approach, we therefore 
maintain the representation of the delay of a gate using its sum of 
components, as shown in the right hand side of EQI I .  Similarly, we 
need to preserve the correlation information of arrival times. Hence, 
we also represent the arrival times in the liming analysis using a 
sum of components. Similar to that of the gate delay in EQII, an 
arrival time a is therefore expressed as follows: 

a = Anom + c Bi ' 4 + AA,"",iO, (EQ 12) 

where A,,,,, is the arrival time at nominal process conditions. Li are 
the random variables of gate length, p, are constant coefficients and 
AA,,,jom is the uncorrelated component of arrival time variation. 
We will show that by expressing the arrival times in the same form 
as that of gate delay, their correlations can be determined and cor- 
rectly addressed. 

Using the proposed representations for gate delays and anival 
times, we now perform arrival time propagation and merging, such 
that the form of the zrrival times is maintained. Below, we will 

Pf 

probability underestimated 
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circuit r e l ay  
Figure 2. CDF Q(1) is a conservative bound on CDF PW. 

show that propagation can easily adhere IO this requirement and can 
be performed exactly and efficiently. However, performing an exact 
merging operation requires that all possible values of each of the 
random variable Li in expression EQll he enumerated, which has 
an exponential run time in terms of the number of random variables 
Li. This is computationally complex and also destroys the required 
form of asrival time. We therefore propose an altemate method for 
merging two arrival times, and prove that this method results in an 
arrival time whose CDF is an upper bound on the CDF of exact 
arrival times, while preserving the form of the anival time expres- 
sion. The method is simple and has linear run time with the number 
of random variables L; Using this approach, it is therefore possible 
to perform statistical Liming analysis with linear run time in terms of 
circuit size, while guaranteeing a conservative analysis. 

Below, we first define a statistical hound on the CDF of a random 
variable. We then discuss the methods for arrival time propagation 
and merging. Finally, in Section 4, we present a method whereby 
multiple arrival times can he propagated, improving the obtained 
bound at the cost of additional run time. 
Statistical bounds 

variable as follows: 
We define an upper bound on the CDF of an arrival time random 

Definition 1. The arrival time CDF Q ( I )  is an upper bound of the 
arrival time CDF P(1) if and only i f  for all 1, Q ( I )  5 P ( I )  . 

Figure 2 shows two arrival time CDFs P ( I )  and Q(Q, where Q(I )  is 
an upper hound on P(I) .  Note that the upper bound Q(I)  is itself a 
valid CDF and that all confidence points are bounded by Q ( I )  on 
P(I) .  By using CDF Q(r) instead of P(I) ,  we will overestimate the 
delay corresponding to a performance yield, resulting in a conserva- 
tive analysis for late arrival times, as shown in Figure 2. Similarly, 
for a particular required delay, the probability that a die will meet 
this delay constraint will be underestimated. 

We now introduce following useful lemma for arrival time CDFs: 
Lemma A. If two random variables a and x have arbitrary CDFs 

P(n) and Q(x) and for any value of a random variable x i s  such that 
a i x then, the probability distribution of x is a statistical upper 

hound on the probability distribution of a. 

Proof: Consider an arbitrary fixed value of I .  We then separate cases 
x < f and x > I and using the fact that according to the assump- 

tion a < x  , we can write: 

P ( 0 5 f )  = P ( r < r , a < l ) + P ( x > l , o < l )  (EQ 13) 
= P ( x i  I )  + P ( x >  1, a 5 1 )  

From which it follows that 
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P J r )  = P ( x < r ) + P ( x > r , u 5 r )  (EQ 14) 
= P x ( r ) + P ( x > r , a 5 i ) > P , ( r )  

0 

It should be noted that in Lemma A random variables a and x need 
not be statistically independent. We now show how amval times 
can be computed using propagation and merging. While the propa- 
gation operation is exact, the merging operation results in an upper 
hound on the CDF of the exact arrival time 
Arrival time propagation 

During the propagation operation, the delay of a gate is added to 
an amval time. We perform this operation using the following pro- 
cedure: 
Procedure 1: 

Given a gate delay d = U,,, + C i a i .  Li + AD,,,,,, and an 

arrival time n I  = A , , , , , t + ~ i P i , I . L i + A A , , , d o m . I .  at the 
input of the gate, we now compute the arrival time a2 at the output 
of the gate as follows: 

a2 = A " ~ ~ , . 2 + C B i , z ' L , f A A m n d o m . 2  (EQ 13 

where A"?>,, 2 = D,", + A"",, I 

Pi,2 = ai + P i ,  I 
AArandnm.2 = AD,,,,,, +AAmndom, I 

The derivation of the above procedure can he easily shown as fol- 
lows: a2 = a ,  + d .  From this it follows that, 

' 2  = D " , , + ~ , a i . L i + ' D m n d o m + A . ~ m , i + C j P , . ~  ' L i  

+ AAr""d"m. I 

Simple rearranging of the terms results in 

D n o m + A n ~ ~ ~ ,  I + ~ j ( a i + P i .  I ) '  L i + A D , , " d " , + A A , ~ ~ d o m .  I ' 
from which follows EQl5. Note that the computation of a2 using 
EQl5  is exact and therefore correctly accounts for the spatial corre- 
lation of the arrival time U ,  and the gate delay d. Also, propagation 
using EQl5  is efficient as a simple summation of the coefficients of 
U ]  and d is performed. Since random variables AD,,,,,),,, and 
AAranduml are independent, computation of A Arundom,2 is per- 
formed by simple numerical convolution. 
Maximum operation 

As mentioned earlier, computing an exact maximum of two 
arrival times aI and a2 where each is expressed as a sum of c o m p -  
nents, requires enumeration of the random variables Li. which is 
expensive. Also, the resulting arrival time would not he in the 
required form and spatial information would not he available for 
futhcr propagation and merging operations. We therefore propose a 
merging operation, which is efficient, and which generates an 
arrival time whose CDF is an upper hound on the exact arrival time. 
The proposed procedure is based on the following theorems. 

Lemma B: For any given numbers a, b, x, y the inequality 
max(u + b, x + y) 5 max(a, x )  + mux(b, y )  is valid 

Prool: There exist only 4 mutually cases: (a) a 5 x, b 5 y ; (b) 
U 51, b > y ; (c) U > x. b < y and (d) a >x, b > y . 

In case (a) mux(a+b, x+y) = x+y and muxiu.x)+mux(b.y)=x+y so 
inequality max(a + b, x + y )  I " ( a ,  x )  + mux(b, y )  is valid. 

In case (h) mux(a, x)+muxib, y) = x + b and according to the 
assumption both a + b 5 x + b and x + y 5 x + b are valid. So ine- 
quality mnx(a + b, x + y )  5 "(a ,  x )  + max(b,  y )  is again valid. 

Cases (c) and (d) are symmetrical to cases (b) and (a), proving the 
lemma. 0 

This lemma can be generalized to the following Theorem 

Theorem A: For any given numbers nl,a2 . . .  an and x,.xz ...., x, the 
following inequality is valid. 

m u [  a,,  x ]  5 m a x ( n i , x i ) .  (EQ 16) 
i = l  i = l  , = I  

Theorem A can be proven by induction using Lemma B 

Note that Theorem A holds for any numbers, regardless of their 
nature, including random variables. Applying Theorem A to the 
maximum of two arrival times, we can formulate the following pro- 
cedure for the merge operation. 
Procedure 2 : 

Given arrival times, aI = A,,,,, +Cipi,, . L,+AA,,,,,,,,, 

*, we can compute an and a2 = A,,,, + Zip,, 2 .  Li + 
upper hound of merged arrival time a3 as follows: 

where An"m.3 = max(A,,,, I.An",,,) 

Pi. 3 = max(bi ,  Pi ,  2 )  

or = m i n ( P i ,  ,. P , d  
AA,,,d",. 3 = max(AA,,,do,, 1. AAr""dm,2) 

Based on Theorem A. we can replace the maximum function 
mux(u1, a*) in procedure 2 with mar(A,,,,I, A,,,,Q), 

max( Pi. I . Lis Bi, 2 .  L i ) .  2nd max(Mrando,,,I. Ma,,dOm,2). It is 
clear that as 
shown in Procedure 2,  for the positive values of the random variable 
Li and max(p i ,  , . Li, p i ,  z .  Li) = ,n in(P, ,  8 ,  2 )  . Li , for lhe neg- 

ative values of Li . Also. since Mrondom,l and Mrondom,z are corre- 
lated only through path reconvergence, ignoring their correlation 
during their maximum computation will result in an upper hound 
[IS], and hence the maximum of AA,a,dom,l and AArandom,2 can be 
efficiently computed numerically. 

max(P i ,  I . L ,  B ,  z .  Li)  = mux(pi ,  I, Pi, ?) .  L i ,  
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4 Multiple Arrival Time Propagation 
While the maximum operation in Procedure 2 has the desired 

features that it is conservative and preserves the required form of 
arrival times, it nevertheless introduces error in the analysis. The 
degree to which ermr is introduced by Procedure 2 is dependent on 
the relative magnitude of the different components of al and a t  If, 
for instance, pi, > 0 ,  for all i, and also A,,om,l > A,,2 and the 
minimum value of M,,,,,,, with non-zero probability is greater 
than the maximum value of M,dm,z with non-zero probability 
(i.e. M,adom,l > M,dom,Z for all possible values). it is easy to 
show that the arrival time computed by Procedure 2 is exact. How- 
ever, if some terms of arrival time al are greater than a2 and some 
terms of amval time a2 are greater than a / ,  it is clear that a (conser- 
vative) error is  introduced in the analysis. 

To improve the analysis, we therefore extend the proposed 
appraoch by propagating multiple arrival times. In this case, only 
those arrival times are merged that result in a small error while 
those arrival times whose merger would result in a high error are 
propagated separately. If the correct arrival times are selected, it is 
clear that the analysis accuracy will improve. Given a set I. of K 
arrival times incident at a node, we must select a subset m of M 
arrival times to propagate, while all other arrival times are merged 
with other arrival times. It is clear that the optimal set of arrival 
times to propagate depends on many factors, including the arrival 
times that will combine with the set m later in the circuit. Determin- 
ing the optimal set is an intractable problem. We therefore propose 
the following heuristic to select the set of amval times m given a set 
of incident arrival times k.  

First, we compute for each pair of arrival times, mi and mj the 
maximum arrival time aij using Procedure 2. Then, we determine 
the mean of each arrival time a i j  which is computed by summing 
the means of each component. Finally, we select the amval time nij  
with the minimum mean and replace the original two arrival times 
mi and mj with in the set m. This procedure reduces the size of 
the set m by one arrival time. The procedure is then repeated until 
the number of arrival times in m is reduced to a set of K anival 
times, that can he propagated. 

The above selective merging procedure effectively merges those 
arrival times incident on a node that result in an “early” arrival time 
that will have less impact on the overall delay of the circuit. These 
arrival times are therefore good candidates for merging, while 
arrival t i e s  whose merger would result in a late arrival time are 
propagated. The selective merging procedure is repeated at each 
node. 

Finally, at the output node of the circuit, the set of K propagated 
arrival times mnst be merged to obtain the final amval time of the 
circuit as a whole. Since the arrival t i e s  K do not need to he prop- 
agated further in the circuit, their p ~ i c u l a r  form, in terms of a sum 
of independent random components, need not be preserved. Hence, 
we can convolve the components Am,{, (a,, i .  L j )  , and M,,dom,i 
into a single random variable before taking their maximum. This 
has the advantage that the ermr introduced by Procedure 2 is not 
incurred in the final merger of the arrival times at the output node. 
However, the arrival times are correlated, and to compute their 
exact maximum would require high computational complexity. We 
wiIl therefore show that, due to the particular form of the arrival 
times, their correlation can be ignored and the computed maximum 
will bound the exact maximum. Hence, the maximum of the con- 

volved amval times can be efficiently computed using simple 
numerical techniques. 

In 1181, it was shown that the CDF of mar(xl+y, x2+i). wherexl. 
xa y.  and z are independent random variables, is an upper bound on 
the CDF of max(x+y, x+z), when x1 and x2 have an identical proba- 
bility distribution as x .  However, the form of our particular problem 
is more general in that we require the computation of mar(x+y, 
ar+z), where x, y. and z are independent random variables and a is a 
positive constant. We will now show that, similar to the previous 
case, the CDF of max(xl+y, oq+z) is an upper bound on the CDF of 
max(x+y, ar+z). This means that ignoring the correlation between 
the two arrival times (x+y) and (ar+z) during the maximum opera- 
tion will result in an upper bound of the CDF of the exact maxi- 
mum. We prove the correctness of this bound with the following 
theorem. 

Theorem 1: Let x, x,. x2, y. and z be positive, independent ran- 
dom variables with probability density functions p ( 4 ,  p(xl), p(x2) 
q(yJ. r(z), noting that x I  and x2 have the same probability density 
functions as random variable x. For any positive constant value a>O 
the CDF of random variable mar(x+y, ar+z! is upper bounded by 
the CDF of random variable max(x,+y, q + z ) .  

Proof: The CDF of random variable mnx(x+y, ar+z)  is: 

P(!) = p ( r ) q ( y ) r ( z ) k d y d z  (EQ 18) 
mar(x+y ,  (1. I+ z )  < I 

The CDF ofrandom variable mar(xj+y,ax2+z) is: 

QV) = I p(x,)p(x,)q(y)r(z)k,dxzdrdz (EQ 19) 
“(1, + y .  U .xi +z)  5 ,  

By transforming the integral over the 4 dimensional volume into an 
iterated integral we express Q ( f )  as follows: 

j j q ( y ) r ( z )  I ,,,,,,14)dYd (EQ 20) 
o n  I , L , - y ,  xi i 5 

__ 
We now rewrite Q(t) as follows: 

Q(t )  = r ( q ( y ) r ( z ) R ( y ,  d d y d z ,  where (EQ21) 
o a  

R(Y,z) = 5 P ( X ~ ) P ( X ~ ) & ~ ~  (EQ22) 

XI i I - y .  x2 I e2 

Multiplying equation EQ18 by the integral of probability density 

function p(x) K p ( v ) d v  = 1 we express Plr) as follows: 

We now rewrite P(tJ as follows, by rearranging the terms: 

I p ( x ) p ( v ) q ( y )  r ( z W d v d y d z  (EQ 24) 

We now convefl this integral over the 4 dimensional volume into an 
iterated integral we obtain the following expression for P ( 0 :  

m a ( = +  y , o  - x + 4  51, v < a ,  
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The integrals expressing R(y.2) and S(y,z) in Formulae EQZ2 and 
EQ28 have the same integration functions f l x ~ , x ~ ) = p ( x ~ ) p ( x ~ )  and 
f lx ,v)=p(x)p(v)  and differ only in the names of their variables. 
Moreover functionj7x.v) is symmetric with respect to its variables: 

flx,v) =f(v,x).  Using this, we can prove that for any given values of 
y and z R ( y ,  z )  6 S(y ,  2 ) .  We do this by considering two separate 
cases: r - y S ( l - z ) / a  and r - y > ( r - z ) / a  

In the firstcase m i n ( r - y , ( t - z ) / a )  = f - y  andEQ28becomes: 

S ( Y , Z )  = J' p ( x ) p ( v ) d r d v  (EQ 29) 
I S  ( t -y) ,  " 5  - 

Comparing EQ22 and EQ29 and renaming the integration variables 
X J  and x2 into x and Y we can conclude that: 

R ( Y , z )  = J  ~ ( x l ) p ( x z ) d ' l h z <  J' p(xl)p(xzWldrz = 
x , s , - y . z * < -  

XI < I - y. x2 5 1 2  

(EQ 30) J p ( + ) p ( v ) d r d v  = S ( Y ,  4 
x <  I -  y. Y s - 
In the second case m i n ( f - y , ( f - z ) / a )  = ( I - z ) / a  and EQ28 
becomes: 

S(Y,Z)  = J p ( * ) p ( v ) h d v  (EQ 31) 
x s 5, " I  - 

Comparing EQ22 and EQ31 and renaming integration variables x, 
and x2 into v and x we can conclude that: 

R ( Y , z )  = J P ( ~ ~ ) P ( X Z ) ~ , & S  P ( X ~ ) P ( X Z ) ~ ~ ~ ~  = (EQ 32) 

XI <,- y, x* s q x ,  5 -, I> 5 '-1 

J p ( x ) p ( v ) d r d v  = S(Y,  z )  

zs '2, " s- 

Thus for any y and L R(y ,  z )  6 S(y ,  2)) , from which using EQ21 
and EQ26 we obtain Q ( f )  2 P ( f )  . Therefore, according to Defini- 
tion I ,  CDF Q(t) of random variable - (x ,+y ,a2+z )  is an upper 
bound of the CDF P(f) of random variable mm(x+y,  ar+z). 0 

~35.W 
c51lS 
C ~ U  

5 Results 
The statistical hound computation, as well as the proposed refine- 

ment method were implemented and tested on the synthesized ver- 
sion of ISCAS85 [20] benchmark circuits. Delay sensitivities were 
calculated for the standard cell library which used a 180 nm nomi- 
nal device length. We used 3 levels of intra-die variation to model 
spatial correlation, as shown in Figure 3. Accordingly, each gate k 
was randomly allocated a location on a 4x4 grid, which determined 
the random variables'associated with that gate along the hierarchy. 
Process variability information was used for different scenarios hav- 
ing a total standard deviation of 10%,14% and 15% from L",,,. The 
computed hounds were compared with Monte Carlo simulation and 
worst case analysis. Monte Carlo simulation was performed for 
10,OW samples. The worst case analysis assumes the total variation 
to be inter-die variation and computes the 99% confidence point for 
the circuit delay CDF by setting ALinrer at its 99% point. For each 
gate length random variable, a Gaussian delay distribution uuncated 
at the 3 sigma point, was used. 

Table 1 shows the results for the hound computation and refine- 
ment using multiple arrival time propagation. A total standard devi- 
ation of 14% was divided among inter-die (5.7%). intra-die with 
spatial correlation (8.06%) and random intra-die variation (10%). 
For each circuit, the total number of nodesledges (column 2) is 
shown. The 99% confidence points for worst case analysis (column 
3),  for single and multiple anival times (column 4 & 5 )  and for 
Monte Carlo (column 6 )  is shown. The % error between the Monte 
Carlo results and our approach (column 7) was 2.98% on an aver- 
age. Although we only report the 99% points in Table I ,  the com- 
puted hounds are CDFs and allow the computation of other 
confidence points. Column 8 shows the runtime of our algorithm for 
100 arrival times. For most circuits, the run time is very small with 
the maximum being 300 seconds. 

Table 2 shows comparisons between 99% confidence points 
obtained by our algorithm using LOO arrival times and Monte Carlo 
simulation for two different variation scenarios. In (Column 2, 3 & 
4) a total standard deviation of 10% was equally divided among 
inter-die. intra-die and random variations. The average error for all 
the circuits was 2.35%. The runtimes were small, not exceeding 300 
seconds. In (Column 5,6 & 7) a total standard deviation of 15% was 
again equally divided among the three components. Average error 
was 4.63% for all circuits and maximum runtime was 280 seconds. 

Figure 3 shows the CDFs for the proposed upper hounds with 

Table 1. Results for a total variation of 14% 

99111972 3 88 18913 731369 3 66 341 4 3 30 
180613311 3 7 0  35513 3613 35 335 124 3 5  32 
2503149~ l(16 I O I I I I O ~ O I I O ~ ~  106 ~ 3 2  i o 7  300  

Results for the 99% mntidence pt. 
runt Circuit 

\~755212202/3945 14.99 I 4.73/4.48/4.48 14.48 I 4.45 I 0.8 I 30 1 
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Table 2. Results for a total variation of 10% and 15% References 
[I]  S. Nassif, “Delay Variability: Sources, Impacts and Trends,” 

Proceedings of ISSCC, 2000. 
(21 A. Kahng, Y. Pati, “Subwavelength optical lithography: chal- 

lenges and impacts on physical design.” Proceedings of ISPD, 
1999. 
M. Orshansky, L. Milor, P. Chen, K. Keutzer, C. Hu, “Impact 
of systematic spatial intra-chip gate length variability on per- 
formance of high-speed digital circuits“, ICCAD 2000, pp. 62 - 
67. 
V,Mehrotra, S.L.Sam, D.Boning, AChandrakasan, R.Val1- 
ishayee, S.Nassif “A methodology for modelling the effects of 
systematic within-die interconnect and device variation on cir- 
cuit performance. DAC 2000. 

(51 Y. Deguchi, N. Ishiura, S. Yajima, “Probabilistic CTSS: analy- 
sis of timing error probability in asynchronous logic circuits.” 
Proceedings IEEWACM Design Automation Conference, 
1991. 

161 S. Devadas, H. F. Jyu, K. Keutzer, S. Malik, “Statistical timing 
analysis of combinational circuits ”, ICCD 1992 pp. 38 -43 

[?I H. F. Jyu, S. Mahk, “Statistical timing optimization of combi- 
national logic circuits” ICCD 1993. pp. 77 -SO 

[SI R.B. Brawhear, N. Menezes, C. Oh, L. Pillage, R. Mercer, 
“Predicting circuit performance using circuit-level statistical 
timing analysis” European Design and Test Conference, 1994. 

191 E.T.A.F. Jacobs, M.R.C.M Berkelaar, “Gate sizing using a sta- 
tistical delay model,” Proceedings IEEWACM Design Auto- 
mation and Test Europe Conference, 2000, pp. 283-290. 

[IO] R.-B. Lin; M.-C. Wu. “A new statistical approach to timing 
analysis of VLSI circuits”, Proc. Int. Conf. on V i s 1  Design, 
1998 

[ I l l  S. Tangsima, C. Chantraporochai, E.H.-M. Sha, N.  L. Passos, 
“Optimizing circuits with confidence probability using proba- 
bilistic retiming,” Proceedings IEEE ISCAS, 1998, pp. 270- 
273. 

1121 L. Sheffer, “Explicit Computation of Performance as a Func- 
lion of Process Variation”, Int. Workshop on Timing Issues in 
the Specification and Synthesis of Digital Systems, TAU 2002. 

[3] 

[4] 

1 0 ,  ua7“ac.m 

or”,* m> 

Figure 3. Comparison of CDF bounds and Monte-Carlo CDF 

and without refinement as well as the CDF obtained through Monte 
Carlo simulation for the circuit c3540. 

6 Conclusions 
In this paper, we have proposed a new statistical timing analysis 

algorithm. The method has a linear run time and computes an upper 
bound on the distribution of the exact circuit delay. We first, pro- 
posed a model for inter- and intra-die process variations that 
accounts for spatial correlations. We then presented an efficient 
method for propagating arrival times in the circuit, which is linear in 
run time, and computes an upper bound on the distribution function 
of the exact circuit delay. We proved the correctness of the bound 
and showed how the bound is improved by propagating multiple 
arrival times at each node, using a heuristic method for selecting 
propagated arrival times. We tested the proposed methods on a 
number of synthesized benchmark circuits and demonstrated the 
accuracy and efficiency of the approach. 
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