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DEPTH AND DELAY IN A NETWORK

UDC 519.95
V. M. HRAPCENKO

It is a widespread point of view that the delay of a combinational logical network is
equal to its depth. i.e. to the maximum of the delays of its chains. [t is clear that for an
combinational network the delay is no larger than the depth. But it would be a mistake to
assume that it cannot be smaller. The point is that in a network there can be chains (even
with maximum delays) through which the signal never passes. This isftriviul for redundant
networks. In this paper we will show that minimal networks can also have this property.
Theretore, the delay in a combinational logical network can be Jess than the depth,
the network is minimal.
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An example of such a network is given in Figure
P, oo, X, are input variables, Yis .., yg vari-
ables at the outputs of the cells Ly, ..., Eg). Letus
denote the values of the variables at time ¢ by x, (1),

XL v (1), .. . ¥g(¢) respectively. We will as-
sume that while the network is active the values of the
input variables remain unchanged. This means that at

each time which interests us the following equality
holds:

.'lf.’(t)=1'.', i=1,...,7. (l)

Further. we will assume that each cell has a delay
equal to 1. i.e.

() =z, (t—1) Vz,(1—1).
B(8) =y (t=1) 2y (£1),
(2)
W)=y (t=1) Vs (1~ 1)

Under these conditions it is the longest chain
E\. E, k3 E,, E¢, £, Eg that has the maximum
delay. It is not difficuit to see that this chain does
not influence the vutput of the network. In fact,
if x5 = 0, then the cell F, is open, while it x,=1,
then the action of the chain is duplicated by the
faster chain Eg, E,, £g. This intuitive argument Ficury |

can be formalized if, using (2) and (1), we muke the following simple transtormations:
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() =ys(t- DV y(t=1) =y (t=2, 1V yua(t=2) 13
=13 (t=3) T3V (Yo (¢=3) Va3 )itn=(y.(t—4) V&) 2sx:V (y: (t—4) 2,V 1,) Iy

=(y,(t=5) 2.V 2.) 1324V ((y=(t—5) V z.) 2,V z5)
=((2,V12) 2,V x) Tszs V ( (¥ SR EAVENEAVERES

\ithough y (¢ — 6) appears in the last line, in reality y 5(¢) does not depefid on y, (¢ — 6) (one
can see this, for example, by expanding and simplifying the expression). It follows from this
that the network given in Figure 1 has delay at most 6. At the same time, the delay of the
longest chain E, £,, E,4, E,, Eq, E,, Eg,and therefore the depth of the network, is 7.

It may seem strange that such a “nonworking” chain cannot be eliminated. The reason
is that different parts of the chain belong to two different “working™ chains: £, E,, £,
Fo Fq. Eg and Eg, E,, Eg, and thus not one cell can be deleted from the “nonworking”

<hain without affecting the “working” chains.
We will now show that the network shown in Figure 1 is minimal (in the number of
.elis) in the class of networks constructed from &, V, “l-cells. This network, as is easy to

see, cvaluates the function
GolTyy ..oy T1) =T Z3ZsZ\/ LT sLsZs \/ LiTsLe\/ ToLsL7\/ T3k,
{ ¢t us denote by L(f) the number of cells in a minimal network for an arbitrary function f.
1t 15 sufticient to show that
L(q.)=8. (3)

Consider any minimal network for the function ¢,. Since the function ¢, depends essen-
nally on the variable x , there is a cell in the network with input x,. Putting x, = 0 and
Jeleting from the network at least one cell (the cell with input x, and possibly the cells
toflowing it), we obtain a network for the function

@y (x21 ey 17) =xzx3$slsv1'sl'51's\/l':.l'5.r7\/I,.l‘-,.
F'rom what has been said it is clear that
L(qo)=L(gy)+1. )

Now consider any minimal network for the function ¢,. Obviously there is a cell in it
with input x,. If it is an &-ell or a 7I<ell, put x, = 0 and, deleting at least two cells (the
cell with input x, and at least one cell following it), obtain a network for the function

(P:(-Ta, sy .2'7) =I'.1'5$sv1'(1'521v231'7.

Iftis an Vcell, put x, =1 and, deleting at east two cells, obtain a network for the func-

f10on
Q:(Zs, . .., T;) =222 \/ T, T5Le\/ T ZT5T1\/ Lo

In this way at least one of the following inequalities holds:
L(¢:)=L(9:)+2, L) =L(gs)+2. (%)

Next, put x, = l in a minimal network for the function ¢, and in a network for the
function @;. In either case, deleting at least cne cell we obtain a network for the function

(p‘(x:’? Is, Ta, x‘l) =?Islovx5I1Vx,x1,
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From this it follows that
L(9:)=>L(q.) +1, L(@s)=L(p.)+1.
Hence, regardless of which of the inequalities in (5) holds, the following is satisfied:
L(9)>L(p)+3. (6)

Putx,. Ifiit is an &-cell or 3 “lcell, put X3 = 0and, deleting at least two cells, obtain a
network for the function

(p, (.?I,, IG, I',-) =1:5.r,\/1‘5.1‘7.

If it is an V-cell, put x; =

I and, deleting at least two cells, obtain a network for the func-
tion

Po (5, 24, 2,) =z,7s\/ z,. -

Then one of the following inequalities holds:

L(qn)?L((ps) +2, L(g.) =2L(¢s) 2. )
The functions ¥s and g, depend essentially on all their variables. Hence,
L(g:) =2, L(gy=2,

Therefore, no matter which of the inequalities in (7) holds, the following bound s valid:

L(q) =4, (8)
From (4), (6) and (8) we get (3). Thus, we have also proved that the network of Figure |
is minimal and jts delay is smaller than jts depth.

Other minimal networks for the function ¥y do not, however, possess this property,
for example the network constructed in accordance with the formula

Po(zy,. .., z;) =( (:1'1\/72\/-“)1526\/27) (-Tsvxi-tﬁ)-

In connection with this the author has constructed a sequence of networks having
stronger properties, which allows us to formulate the following claim: for every natura |

there exists g Boolean function 11 such that an arbitrary minimai network for J; has delay
! + 8 and depth 2/ + 8.
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Consider a network of a parallel adder wi'h acceleration carry circuits, Let « R ¢
be the digits of the first summand (listed from the most significant), Yoo oo, y, oo digits
of the second summand, and let the digits in th: construction of the cargy circuits be parti-
tioned into groups of k digits each.

We will describe the construction of a section of the network involving the most sig-
mficant group (for other groups the corresponding sections of the network are constructed
similarly). In the beginning of the calculation it computes secondary digits:

n

W=xry, v=z\ly, 1<i<l

digits of the group:

w;.-|=ukvl'hwh
)

. .

w,=u,\/v.w..

Also, this section of the network computes two functions necessary for the construction of
acceleration carry circuits:

;.. .1,
Hun v, ) =u, Vv, (u:\Vv.(u; V... (tn— Vv 11) o). (10)

Let us sce that happens if, for the computation of the function Sfu,, Uy, ..., u,), instead
of (10) two such equalities are used:

wo=u,\/va,; (11)
f(u,, Vieo s tt) =wo(u,\/ .\, ., \u,) (12)
(t12) is easy to verify by consecutively getting rid of Wo. - - . Wy _, using (11) and (9)

“and opening parentheses both in the resulting expression and in (1)). Let us turn our atten-
tion to the following peculiarity of (12): in spite of the fact that wo depends on w, (sce
(11) and (9)), the function Sy, v, ..., u;) does not depend on W,. Thanks to this,
during the transformation of the network under consideration its delay hardly changes. while
its depth grows sharply and becomes larger than 2n. At the same time, the number of
cells in the network decreases to (k — 4)n/k, provided, of course, k > 4.

In this paper we have only considered combinutional logical networks. The author,
however, assumes that the distinction between delay and depth can also be observed in many
other cybernetical networks. In other words, if a system of objects (events, ctc.) has a suf-
ficiently complex structure, then it is quite possible (o trace a multi-level connection in it.
leading from one object (event, etc.) to another, which, however, cannot for some reason or
anuther exhibit itself. Some of these reasons have bz2en indicated in considering the network
of Figure 1.
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