
Unifying Functional and Parametric Timing Verification

Luis Guerra e Silva
INESC-ID / IST / TU Lisbon

Lisbon, Portugal
lgs@inesc-id.pt

ABSTRACT
This paper proposes a unified modeling framework for tim-
ing verification of IC designs that, through an elegant SMT-
based formulation, seamlessly integrates functional timing
analysis and parametric delay modeling. Such framework
enables accurate timing verification by simultaneously ig-
noring false paths and accounting for process variability. By
casting the timing verification problem as a general SMT in-
stance it is possible to benefit from the continuous advances
in performance and robustness of modern SMT engines. The
proposed framework is validated for a representative set of
benchmarks, using Microsoft’s Z3 SMT solver.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Algorithms, Design, Theory, Verification

Keywords
Timing Verification, False Paths

1. INTRODUCTION
Timing verification is concerned with predicting, prior to

fabrication, the timing-critical paths of an IC design, and
assessing whether it will be able to operate at its target clock
frequency. Such task is becoming increasingly challenging,
given the sheer size and complexity of modern IC designs
and the uncertainty introduced by nanometric fabrication
technologies, extremely sensitive to process variations.

The need to adequately model process variability has mo-
tivated the introduction of parametric delay models, where
cell and interconnect delays are no longer given by fixed real
numbers, but instead by affine functions of the parameters
of the fabrication process. Several compatible parametric
static timing analysis (PSTA) techniques that make use of
such models have likewise been proposed [20, 18, 10].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’12, May 3–4, 2012, Salt Lake City, Utah, USA.
Copyright 2012 ACM 978-1-4503-1244-8/12/05 ...$10.00.

While modern timing verification tools incorporate sophis-
ticated, variability-aware, parametric delay modeling tech-
niques, they only consider the topology of the circuit, still
lacking the ability to account for its logic behaviour. Unfor-
tunately, for reasons hard to assess, high-level synthesis sys-
tems are prone to generate circuits with many false paths [3],
i.e. paths that cannot be exercised by any input pattern [13].
Topology-based timing verification tools, the standard in in-
dustrial design flows, can often produce conservative timing
estimates by considering such paths as critical, even though
they cannot be exercised in real circuit operation. This can
lead to wasteful overdesign, which constitutes a serious prob-
lem in the competitive market of microelectronics, where
continuously increasing performance and complexity must
be packed into the same die area.

The inability of industrial timing verification tools to iden-
tify false paths was slightly mitigated by allowing the de-
signer to tag known false paths, to be ignored during timing
verification. However, it is impossible to manually identify
and tag all the false paths of any useful design block which,
most often, may contain thousands of cells. Therefore, the
integration of automated and systematic false path identi-
fication capabilities into modern timing verification tools is
badly needed for enabling performance optimization to be
guided in a computationally efficient manner.

Due to the existence of false paths, the problem of com-
puting the delay of a circuit can no longer be solved in linear
time, being instead an NP-complete [11] problem. During
the 90s, the research work on false paths was extensive and,
among others, several promising modeling and algorithmic
approaches have been proposed [1, 4, 7, 16, 15, 22]. The
added complexity that entails solving the false path problem
and the existence of comfortable design margins, that could
accomodate conservative timing estimates, were the main
reasons why, despite all the research work conducted on
the topic, automated false path detection techniques never
found their way into industrial timing verification tools.

Recent years have seen a renewed interest on false path
identification techniques, with most contributions [19, 23,
5] targeting practical aspects of their integration into deter-
ministic timing verification. Variability-aware timing veri-
fication has also been addressed [14, 12, 21]. However, the
difficulty of combining, in a single formulation, logic con-
straints and parametric delay models, led to ad hoc solu-
tions. False paths were ignored either by performing Monte
Carlo electrical simulation, for several parameter settings,
or through a pre-processing step, that would perform func-
tional analysis assuming worst-case parameter settings.

Indeed, the integration of functional analysis and para-
metric delay modeling is a complex task, since it requires a
computational framework capable of simultaneously manip-
ulating Boolean and linear numeric constraints which, until
recently, was not readily available. However, the advent of
Satisfiability Modulo Theories (SMT) [2], which generalizes
Boolean Satisfiability (SAT) by adding several first-order
theories such as equality, arithmetic, quantifiers, etc, has
opened the possibility of formulating problems that combine
Boolean constraints with other types of constraints, namely
linear constraints on real values.

Leveraging on the contemporary SMT technology, we pro-
pose a unified modeling framework for timing verification
of IC designs that, through an elegant SMT-based formu-
lation, seamlessly integrates functional timing analysis and
parametric delay modeling. Such framework achieves ac-
curate timing verification by simultaneously ignoring false
paths and accounting for process variability.

To the best of our knowledge, this is the first work to
cast the timing verification problem as an SMT instance.
This approach has several advantages. Firstly, the expres-
sive power of SMT formulas enables the representation of
complex relations between timing quantities and/or process
parameters, which can be used to model a wealth of tim-
ing verification problems. Secondly, the increased support
of SMT solvers for non-linear arithmetic enables easy exten-
sion to support future non-linear delay models. Lastly, by
casting the timing verification problem as an SMT instance,
it is possible to benefit from the continuous advances in per-
formance and robustness of modern SMT engines.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the parametric timing modeling, underly-
ing the work presented in this paper, as well as the essen-
tial aspects of SMT, necessary to understand the formula-
tions discussed in upcoming sections. Section 3 presents an
overview of the proposed modeling framework. Sections 4
and 5 detail functional and timing modeling for cells and
interconnect, respectively. The experimental results are pre-
sented and discussed in Section 6. Finally, Section 7 presents
brief concluding remarks and foresees future work.

2. BACKGROUND

2.1 Parametric Timing Modeling
The timing information of a circuit is modeled by a timing

graph G = (V,E), where vertices, v ∈ V , correspond to pins
in the circuit, and directed edges, e ∈ E, correspond to pin-
to-pin delays in cells or interconnect. The primary inputs,
u ∈ PI(G), are vertices with no incoming edges. All vertices
with no outgoing edges are primary outputs, w ∈ PO(G),
but there may also be primary outputs with outgoing edges.
A complete path is a sequence of edges, connecting a primary
input to a primary output. A path is a sequence of edges
connecting any two vertices

Edges are annotated with the corresponding delays. At
most four delays can be annotated on each edge, depending
on the input and output rise/fall transitions: dFF , dFR,
dRF and dRR. Since it is out of the scope of this paper to
discuss the delay computation procedure, in the following,
we will assume that the timing information of any circuit is
already made available in the form of an annotated timing
graph. Output pins of cells are also annotated with the
corresponding logic function.

This work assumes a PSTA model [20, 18, 10], where de-
lays are described by affine functions of process and oper-
ational parameter variations, corresponding to a first-order
linearization of every delay, d, around a nominal point, λ0,
in the parameter space. Considering the parameter space to
have size p, and representing d as a function of the incre-
mental parameter variation vector, ∆λ = λ − λ0, around a
nominal value λ0, we obtain

d(∆λ) = d0 +

p∑
i=1

di∆λi (1)

where d0 = d(λ0) is the nominal value of d and di is the
sensitivity of d to parameter λi, i = 1, 2, . . . , p, computed at
the nominal point λ0. Parameter variations are assumed to
lie within a given range, ∆λi ∈

[
∆λmin

i ,∆λmax
i

]
,

2.2 Modes of Operation
The primary task in any timing verification run is arrival

time computation. The arrival time, represented by at, is
a conservative estimate of the earliest or the latest time in-
stant that a signal transition can reach a given circuit point,
when traveling from an input (or the output of a sequential
element). The meaning of the arrival time values depends on
whether we assume the early or the late mode of operation.
In early mode, we are concerned with computing the earliest
time instant that a signal transition can reach a given cir-
cuit point. Conversely, in late mode we are concerned with
computing the latest time instant that a signal transition
can reach a given circuit point. Both early and late mode
analyses are of practical interest. Setup constraints are ver-
ified through late mode analysis, while hold constraints are
verified through early mode analysis. In the following, and
without loss of generality, we assume the late mode.

Even though functional analysis in static timing verifi-
cation does not require any specific input excitation, some
assumptions on the variation of logic values of circuit nodes
must be made. Two possibilities have been considered and
extensively studied in the literature: transition mode and
floating mode. In the transition mode of operation [8], cir-
cuit nodes are assumed to switch from a known initial logic
value to a known final logic value (e.g. 1 → 0). In the
floating mode of operation [4], circuit nodes are assumed to
switch from an unkown initial logic value to a known final
logic value (e.g. ?→ 0). In this work we assume the floating
mode of operation. Even though the transition mode pro-
vides more accurate timing estimates, it has a significantly
higher computational cost.

2.3 Satisfiability Modulo Theories
This subsection is not meant to be a comprehensive intro-

duction to SMT, as it would probably exceed the length of
the entire paper (see [2] for that). It is solely intended to
informally introduce a few basic concepts necessary for the
reader to understand the use of SMT throughout the paper.

Satisfiability is one of the quintessential problems in com-
puter science, which consists of determining whether a given
formula, enconding one or more constraints, has a solution.
SAT is the best known of the constraint satisfaction prob-
lems, where the formula is built using logical connectives,
over the Boolean variables.

An SMT instance is a formula in first-order logic [17]
where function and predicate symbols can be interpreted
resorting to a variety of underlying theories. SMT can be

seen as a generalization of SAT, but where some of the
Boolean variables are replaced by predicates. A predicate
is a Boolean-valued function, P : X → {0, 1}, designated by
predicate on X. A predicate can be seen as a condition that
evaluates to either 1 (true) or 0 (false), depending on the val-
ues of its variables. For instance, a > 3.14 is a predicate that
evaluates to 1 if the real-valued variable a assumes a value
larger than 3.14 and evaluates to 0 otherwise. Predicates
are classified according to the theory they belong to. For
example, linear inequalities over real variables are evaluated
using the rules of the theory of linear real arithmetic.

The SMT problem is concerned with determining a set of
variable assignments that make the corresponding formula
true, or prove that no such assignments exist and the formula
is always false. An example SMT formula, on a real-valued
variable a and two Boolean-valued variables b and c is,

(a > 3.14) ∧ (¬b ∨ c)

A model for this problem, i.e. a set of satisfying variable
assignments, is a = 3.15, b = 0 and c = 1.

SMT formulas are built by combining logical connectives,
such as ¬ (negation), ∧ (conjunction), ∨ (disjunction), ⊕
(exclusive disjunction),⇒ (implication) and⇔ (equivalence),
with Boolean variables and predicates. The structure of the
predicates depends on their underlying theory. For example,
predicates under the theory of linear real arithmetic, can be
built by combining real-valued variables and constants with
comparison operators (<, =, >, ≤, ≥, 6=) and arithmetic
operators (+, −, ∗, /), among others.

3. MODELING FRAMEWORK
First and foremost, we should clearly state the general

problem to be addressed by our modeling framework. Given
the timing graph for a combinational circuit, as described
in Section 2, we want to determine the largest arrival time
at its primary output vertices. This problem, which is of-
ten designated by circuit delay computation, constitutes the
cornerstone of any timing verification procedure.

The problem variables are, in first instance, the values
that need to be computed, i.e. the arrival times at the pri-
mary output vertices. However, such arrival times are de-
pendent on the arrival times at the intermediate vertices, as
well as on the delays between them. Delays, on the other
hand, are dependent on the Boolean values assumed by the
vertices and on the values of the process parameter varia-
tions. Through this simple dependency analysis we are able
to conclude that the variables of our problem should be:

• a Boolean-valued variable bv, for every vertex v, cor-
responding to the final logic (Boolean) value assumed
by vertex v after the transition;

• a real-valued variable atv, for every vertex v, corre-
sponding to the arrival time at vertex v;

• a real-valued variable ∆λi, for every parameter of or-
der i, corresponding to the parameter variation.

Formulating the timing verification problem as an SMT
instance, requires capturing both functional and timing con-
straints, for all circuit elements, into an SMT formula, ϕ.
While the expressive power of SMT admits a wealth of dif-
ferent formulations, in the following we shall assume that

such SMT formula is a conjunction of other partial formu-
las, capturing functional (ϕb) and timing (ϕt) constraints:

ϕ =

(∧
i

ϕb
i

)
∧

(∧
j

ϕt
j

)
(2)

Therefore, for the whole formula to be satisfied, all the par-
tial formulas must also be satisfied. ϕ can be progressively
built by traversing the timing graph in a levelized breadth-
first fashion, and augmenting it with the partial formulas
that capture the relations between boolean values and ar-
rival times of input and output vertices of cells and inter-
connect, as detailed in Sections 4 and 5.

The SMT solver is not an optimization engine, since it is
only able to find a solution that satisfies the formula, not
the best solution according to some given criteria. However,
we need to determine the largest arrival time at the primary
output vertices, not just some valid arrival time value. This
is the typical case where an optimization problem must be
cast into a sequence of decision problems.

The topological arrival time is cheap to compute (linear
time), yet it assumes that all paths can be exercised. Since
some paths may be false, the topological arrival time is ac-
tually an upper bound to the true arrival time (assuming
late mode). Therefore, we can start by checking whether
the topological arrival time is the true arrival time or not. If
it is not, then we can check that for a slightly smaller value,
and continue iterating until we reach the true arrival time.
On each iteration, we must check whether the arrival time
at some primary output can be not smaller than the given
required arrival time, rat. This “question” can be asserted
into the SMT formula by adding,

ϕt
PO =

∨
w∈PO(G)

(atw ≥ rat) (3)

Once all the functional and timing constraints are built
into the SMT formula, as detailed in Sections 4 and 5,
other “questions” may be asked, by adding proper assertions
and subsequently running the SMT solver. For example,
this same formulation can be used to check setup times, or
arrival times for specific parameter variation settings (cor-
ners). Moreover, it can also be used for generating input test
patterns capable of producing specific arrival time values at
particular points in the circuit (ATPG). For any problem
instance, the answer will always be a set of assignments for
the logic values, arrival times and process parameter varia-
tions, that satisfy the problem constraints, or the proof that
no such assignments exist.

4. CELL MODELING
This section details how digital cells are modeled in our

SMT-based timing verification framework, both at functional
and timing level.

4.1 Functional Constraints
The logic function of a given output pin, for any given

combinational cell in the library, is described in a particu-
lar field of the Liberty (.lib) file, in terms of one- or two-
operand elementary logic operations: & (AND), | (OR), !
(NOT) and ^ (XOR). Exemplifying, for the single output pin
of a 3-input AOI21 cell we would have the following formula:
”!(A | (B1 & B2))”. This representation enables arbitrar-
ily complex functions to be described in terms of elementary

B1 B2

A

YB1

B2

!(A | (B1 & B2))

AOI21

Au

x

k

v

AND

NOT

OR

Figure 1: Parsing tree for logic function of AOI21 cell.

logic operations. A trivial parser for this type of logic ex-
pressions was developed. Such parser maps each expression
into a parsing tree, as illustrated in Figure 1, where internal
nodes are logic operations and leaf nodes represent input
pins of the cell. As we will see, the parsing tree is a conve-
nient representation that can be easily traversed for gener-
ating all the required functional and timing constraints.

Modeling the functional behaviour of a combinational cell
amounts to adding to the SMT formula, ϕ, all the con-
straints that assign to the logic value variables of every out-
put pin their corresponding value, in terms of the logic value
variables of the input pins. Since the parsing tree of each
output pin already contains its logic function factored into
elementary logic operations, we can trivially generate all the
necessary constraints by traversing the tree in a bottom-up
fashion and generating the constraints for each operation, as
summarized below:

ϕb
AND = {bv = bu ∧ bx} (4)

ϕb
OR = {bv = bu ∨ bx} (5)

ϕb
NOT = {bv = ¬bu} (6)

ϕb
XOR = {bv = bu ⊕ bx} (7)

where v is assumed to be the output pin and u and x the
input pins. This procedure is illustrated, for the AOI21 cell,
in the left tree of Figure 2. Since only the root and the leaves
of the parsing tree actually correspond to vertices in the
circuit, with associated logic value variables, we must add
variables to represent the logic values in the intermediate
nodes of the parsing tree, that we designate by bi1,2,....

4.2 Timing Constraints
The timing constraints for any given cell must enable the

computation of the arrival times at its output pins from the
logic values and arrival times at its input pins, and from the
input/output pin delays.

We start by adding an artificial arrival time variable, for
each cell input/output combination, representing what would
be the arrival time at the output if its transition was trig-
gered by the corresponding input. The value of this variable
will be computed by adding the arrival time value at the
input pin to the proper delay value, chosen according to the
logic value variables of the input and output pins. Assuming
the input and output pin vertices to be u and v, respectively,

atu,v =


atu + dFF

u,v if ¬bu ∧ ¬bv
atu + dFR

u,v if ¬bu ∧ bv
atu + dRF

u,v if bu ∧ ¬bv
atu + dRR

u,v if bu ∧ bv

(8)

Eqn. (8) can be added to the SMT formula, ϕ, by nested
application of the ite(t1, t2, t3) (if-then-else) operator, sup-

bv = ¬bi2

bi2 = bu ∨ bi1

bi1 = bx ∧ bkbu

bx bk atx,v

atu,v

atk,v

ati1 = τ0i1

ati2 = τ1i2

atv = ati1

Figure 2: Functional and timing constraints.

ported by most SMT engines, whose result is t2, when t1 is
true, and t3 otherwise. Therefore, we obtain,

ϕt
ATD = { atu,v = atu+ ite(¬bu ∧ ¬bv, dFF

u,v ,

ite(¬bu ∧ bv, dFR
u,v ,

ite(bu ∧ ¬bv, dRF
u,v ,

dRR
u,v))) }

(9)

Computing the true arrival time at any given cell output
pin involves considering its logic function as well as the logic
values, arrival times and delays at the relevant input pins.
For the two-input AND and OR cells, the arrival time at the
output pin is computed considering whether each input pin
assumes a controlling value or not. For the AND cell the
controlling value is c = 0 and for the OR cell the controlling
value is c = 1. The arrival time for the output pin vertex v
of an AND/OR cell, assuming the controlling value to be c
and the input pin vertices to be u and x, is given by

τ cv =


min(atu,v, atx,v) if bu = c ∧ bx = c

atu,v if bu = c ∧ bx = ¬c
atx,v if bu = ¬c ∧ bx = c

max(atu,v, atx,v) if bu = ¬c ∧ bx = ¬c

(10)

Eqn. (10) can be added to the SMT formula using nested
ite operations, as in the case of Eqn. (8). However, a more
efficient encoding would be to use implications, resulting in

ϕt
AND/OR = {bu = c⇒ atv ≤ atu,v} ∧

{bx = c⇒ atv ≤ atx,v} ∧
{bu = ¬c ∧ bx = ¬c⇒ atv ≤ atu,v ∨ atv ≤ atx,v}

(11)

For the XOR cell, no single input pin can independently
determine the logic value at the output pin, therefore,

ϕt
XOR = {atv ≤ atu,v ∨ atv ≤ atx,v} (12)

For the NOT cell, assuming input pin vertex u and output
pin vertex v, we obtain,

ϕt
NOT = {atv = atu,v} (13)

The timing constraints for complex cells can now be easily
generated. Since cell delays have already been incorporated
into the artificial arrival time variables given by Eqn. (8),
we can plug such variables into the corresponding input pin
leaves of the parsing tree and, by traversing it in a bottom-
up fashion and applying Eqns. (11), (12) or (13), according
to the logic function of each internal node, all the required
timing constraints are generated. New arrival time variables
ati1,2,... must be added for the internal nodes of the parsing
tree. This procedure is illustrated, for the AOI21 cell, in the
right tree of Figure 2.

5. WIRE MODELING
This section details how the interconnect (wires) between

digital cells are modeled in our SMT-based timing verifica-
tion framework, both at functional and timing level.

5.1 Functional Constraints
In a digital circuit, the role of signal wires is to carry

digital signals with minimal voltage degradation, such that
the voltage on each endpoint corresponds to the same logic
value. The logic function of wires can thus be thought as of
identity. Therefore, for every wire edge 〈u, v〉, a constraint
enforcing the equality between the logic values at vertices u
and v must be added to the SMT formula, ϕ:

ϕb
WIRE = {bv = bu} (14)

Most often this equality does not need to be explicitly stated
in the form of a constraint. It is sufficient to define a single
logic variable buv that will be used in place of both bu and
bv. This approach reduces the number of variables, thus
contributing to improve the performance of the SMT engine.

5.2 Timing Constraints
Timing constraints for wires are quite easy to generate.

Since both ends of a wire must assume the same logic value,
to compute the arrival time at the output pin of the wire
we only have to select the rise/rise or fall/fall delay corre-
sponding to that logic value and add it to the arrival time
of the input pin. Assuming the input pin vertex to be u and
the output pin vertex to be v, we obtain,

ϕt
WIRE = { atv = atu + ite(bv, d

RR
u,v , d

FF
u,v) } (15)

6. EXPERIMENTAL RESULTS
The modeling framework described in the previous sec-

tions was coded in C++. We have used Microsoft’s Z3 The-
orem Prover v3.2 [6] as our SMT solver, given its perfor-
mance, robustness, and the availability of a C++ API. Z3 is
one of the most reputed SMT solvers, and is the workhorse
behind several of Microsoft’s software verification tools. For
benchmark circuits we have used the traditional ISCAS’85
combinational suite. All the results presented in this sec-
tion were obtiained on a machine with an Intel Core i7 @
3.07GHz and 12GB of available RAM. For all the runs a
single processor was used.

6.1 Validation
The first stage of our experimental procedure was dedi-

cated to validate that the proposed framework was actually
ignoring the false paths, and therefore was able to compute
the true arrival time values of any given circuit. Therefore,
we evaluated our implementation with a few benchmark cir-
cuits, for which correct results are published in [16, 9]. Such
benchmarks assume the unit delay model. The results are
reported in Table 1, where column “TD/RD” presents the
topological vs. the real (true) delay computed by the pro-
posed framework, column “SMT” presents the CPU time
in seconds taken by such computation and column “SAT”
presents the CPU time in seconds taken by the SAT ap-
proach described in [9]. For all approaches, the computed
delays were the same, which validates our proposed frame-
work. CPU times in our case are larger, particularly because
the ones reported in column “SAT” were obtained for a sig-
nificantly slower machine. Nevertheless, this was to be ex-

Design TD/RD SMT SAT

c432 17/17 0.08 0.03
c499 11/11 0.22 0.02
c880 24/24 0.09 0.04
c1355 24/24 0.75 0.12
c1908 40/37 1.34 0.26
c2670 32/30 0.74 2.83
c3540 47/46 1.30 0.54
c5315 49/47 1.63 1.27
c6288 124/123 853.02 11.19
c7552 43/42 1.23 0.17

cbp.12.2 40/23 0.67 1.53
cbp.16.4 44/27 1.01 1.03
cla.16 34/34 0.06 0.04
tau92ex1 27/24 0.79 0.63
mult-csa 78/78 299.60 5.90

Table 1: Results for unit delays.

pected, since our formulation is significantly more complex,
as necessary for handling process variability.

6.2 Evaluation
For evaluating the proposed framework in the context of

process variability, we have synthesized and mapped the
benchmark circuits to the Nangate OCL 45nm technology.
As process parameters, we have considered the widths and
thicknesses of the 10 metal routing layers, resulting in a to-
tal of 20 parameters. Variational delay computation was
subsequently performed, and the resulting affine delay for-
mulas were annotated into the corresponding timing graphs.
Table 2 presents a brief characterization of the resulting
benchmark circuits, where ”#PI” and ”#PO” columns re-
port the number of primary inputs and outputs, ”#C” and
”#N” columns report the number of combinational cells and
nets, and ”#V” and ”#E” columns report the number of
vertices and edges in the corresponding timing graph.

Table 3 reports the experimental results for true arrival
time computation, using the proposed timing verification
framework. Column “%OPT” reports the percentual reduc-
tion of the true arrival time, computed with the aid of func-
tional analysis, over the topological arrival time. When they
are the same, a value of 0 is reported. Columns “Formula”,
“Solve” and “Total” report CPU times in seconds for formula
generation, SMT solve and total, respectively.

Analyzing the results presented in Table 3 we conclude
that for some benchmarks it is possible to obtain non-negligible
improvements on arrival time estimation, with a fair com-
putational cost, given the complexity of the problem. The
cost of formula generation seems to be related to circuit size
and the improvement on arrival time estimation. The lat-
ter implies, in general, more iterations (see Eqn. 3), which
can impact the cost of both formula generation and SMT
solve. We believe that the results presented in Table 3 com-
pare favorably to the results presented in Table 1 since, in
a variability context, the problem is much harder, and the
increase in CPU time is nonetheless limited.

While the performance of the proposed modeling frame-
work does not yet make it adequate for the characterization
of large digital blocks, it can be used for characterizing small
critical blocks. Nevertheless, we believe that this approach
has enormous potential, since our implementation is rather
simplistic and can be much improved, which should enable
great savings in terms of CPU time. Moreover, the prob-
lem can be easily partitioned for parallelization in modern
multicore machines.

Design #PI #PO #C #N #V #E

c432 37 7 88 124 356 457
c499 41 32 170 211 595 736
c880 60 26 169 232 697 910
c1355 41 32 170 211 595 736
c1908 33 25 202 235 708 921
c2670 157 63 278 511 1204 1474
c3540 50 22 469 520 1841 2622
c5315 178 123 597 781 2551 3429
c6288 32 32 1005 1470 3556 5006
c7552 208 107 764 986 2820 3593

Table 2: Benchmark characterization.

Design %OPT Formula Solve Total

c432 4.25% 0.73 7.94 8.67
c499 0.03% 1.15 0.23 1.38
c880 0% 0.84 <0.01 0.84
c1355 0.24% 1.22 0.19 1.41
c1908 5.49% 1.70 8.49 10.19
c2670 0% 1.16 <0.01 1.16
c3540 3.19% 13.21 162.07 175.28
c5315 0% 8.54 <0.01 8.54
c6288 0.88% 302.33 1717.48 2019.81
c7552 0% 9.67 <0.01 9.67

Table 3: Results for variability-aware delays.

7. CONCLUSIONS AND FUTURE WORK
This paper proposes an SMT-based timing verification

framework that enables accurate computation of timing es-
timates by integrating functional and variation-aware tim-
ing constraints, that characterize modern digital IC designs
and associated fabrication technologies. While experimen-
tal evidence shows that the performance of the proposed
framework is not yet adequate for application to large digital
blocks, we still believe that it constitutes a significant ad-
vancement of the state-of-the-art, as it enables better accu-
racy in timing estimates, and provides a general variability-
aware SMT formulation, that can benefit from the continu-
ous advances in SMT engines.

Due to space restrictions, several relevant implementation
details were left out of this paper, as well as the application
of the proposed framework to sequential circuits. We intend
to publish them in a more comprehensive journal paper, to-
gether with several strategies for significantly improving the
performance of formula generation and SMT solve.

8. ACKNOWLEDGMENTS
I would like to thank João Marques-Silva for introduc-

ing me to SMT and for preliminary discussions on efficiency
issues. This work was supported by FCT (INESC-ID mul-
tiannual funding) through the PIDDAC Program funds.

9. REFERENCES
[1] P. Ashar, S. Malik, and S. Rothweiler. Functional Timing

Analysis using ATPG. In Proceeding of The European
Design Automation Conference, 1993.

[2] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.
Satisfiability Modulo Theories. In A. Biere, M. J. H. Heule,
H. van Maaren, and T. Walshy, editors, Handbook of
Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 26, pages 825–885.
IOS Press, February 2009.

[3] R. Bergamaschi. The Effects of False Paths in High-Level
Synthesis. In Proceedings of ICCAD, November 1991.

[4] H.-C. Chen and D. H. C. Chu. Path Sensitization in
Critical Path Problems. IEEE Transactions on CAD,
12(2):196–207, February 1993.

[5] O. Coudert. An Efficient Algorithm to Verify Generalized
False Paths. In Proceedings of DAC, pages 188–193, June
2010.

[6] L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver.
In Proceedings of TACAS, pages 337–340, Budapest,
Hungary, March-April 2008.

[7] S. Devadas, K. Keutzer, and S. Malik. Computation of
Floating-Mode Delay in Combinational Circuits: Practice
and Implementation. IEEE Transactions on CAD,
12(12):1924–1936, December 1993.

[8] S. Devadas, K. Keutzer, S. Malik, and A. Wang. Certified
Timing Verification and the Transition Delay of a Logic
Circuit. In Proceedings of DAC, pages 549–555, June 1992.

[9] L. G. e Silva, J. Marques-Silva, L. M. Silveira, and
K. Sakallah. Realistic Delay Modeling in
Satisfiability-Based Timing Analysis. In Proceedings of
ISCAS, Monterrey, CA, USA, May-June 1998.

[10] L. G. e Silva, J. Phillips, and L. M. Silveira. Effective
Corner-Based Techniques for Variation-Aware IC Timing
Verification. IEEE Transactions on CAD, 29(1):157–162,
2010.

[11] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-completeness.
W. H. Freeman and Company, 1979.

[12] R. Garg, N. Jayakumar, and S. Khatri. On the
Improvement of Statistical Timing Analysis. In Proceedings
of ICCD, pages 37–42, 2006.

[13] V. Hrapčenko. Depth and Delay in a Network. Soviet Math.
Dokl., 19(4):1006–1009, 1978.

[14] J.-J. Liou, A. Krstic, L.-C. Wang, and K.-T. Cheng.
False-Path-Aware Statistical Timing Analysis and Efficient
Path Selection for Delay Testing and Timing Validation. In
Proceedings of DAC, pages 566–569, New Orleans, LA,
June 2002.

[15] J. Marques-Silva and K. A. Sakallah. Efficient and Robust
Test-Generation Based Timing Analysis. In Proceedings of
ISCAS, pages 303–306, 1994.

[16] P. McGeer, A. Saldanha, P. Stephan, R. Brayton, and
A. Sangiovanni-Vincentelli. Timing Analysis and
Delay-Fault Test Generation Using Path Recursive
Functions. In Proceedings of ICCAD, November 1991.

[17] E. Mendelson. Introduction to Mathematical Logic.
Chapman & Hall / CRC, 1997.

[18] S. Onaissi, K. Heloue, and F. Najm. A Linear-Time
Approach for Static Timing Analysis Covering All Process
Corners. IEEE Transactions on CAD, 27(7):1291–1304,
2008.

[19] D. Tadesse, D. Sheffield, E. Lenge, R. I. Bahar, and
J. Grodsteint. Accurate Timing Analysis using SAT and
Pattern-Dependent Delay Models. In Proceedings of DATE,
pages 1–6, 2007.

[20] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker,
S. Narayan, D. Beece, J. Piaget, N. Venkateswaran, and
J. Hemmett. First-Order Incremental Block-Based
Statistical Timing Analysis. IEEE Transactions on CAD,
25(10):2170–2180, 2006.

[21] L. Xie, A. Davoodi, K. Saluja, and A. Sinkar. False Path
Aware Timing Yield Estimation under Variability. In
Proceedings of the IEEE VLSI Test Symposium (VTS),
pages 161–166, 2009.

[22] H. Yalcin and J. P. Hayes. Hierarchical Timing Analysis
using Conditional Delays. In Proceedings of ICCAD,
November 1995.

[23] J. Zeng, M. S. Abadir, J. Bhadra, and J. A. Abraham. Full
Chip False Timing Path Identification: Applications to the
PowerPC Microprocessors. In Proceedings of DATE, pages
1–5, Apr 2010.

