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Radiation Effects and Hardening of MOS Technology:
Devices and Circuits

H. L. Hughes and J. M. Benedetto

Abstract—Total ionizing dose radiation effects on the electrical as by the specific radiation environments [3]. Explanations of
properties of metal-oxide-semiconductor devices and integrated many different factors and complex interrelationships that affect

circuits are complex in nature and have changed much during e yadiation responses of MOS devices and integrated circuits
decades of device evolution. These effects are caused by radia- brief i der t id f material and topi
tion-induced charge buildup in oxide and interfacial regions. This are DHiEtin Orderto cover a wide range ol material and topics.

paper presents an overview of these radiation-induced effects, The primary purpose of this paper is to provide a resource to
their dependencies, and the many different approaches to their help locate detailed explanations about the various mechanisms,
mitigation. effects, and techniques published in the refereed literature.

Index Terms—Aerospace testing, CMOS integrated circuits, hy-
drogen, magnetic resonance, MOS devices, power MOSFETS, ra-
diation effects, radiation hardening. Il. BACKGROUND

As the linchpin of integrated circuits, MOS structures are
|. INTRODUCTION crucial elements in most silicon device technologies, including
digital complementary-metal-oxide-semiconductor (CMOS),

N ADDITION to providing an overview of the field during N-channel (NMOS), and P-channel (PMOS) ICs, as well as
the past 40 years, this paper can serve as a guide to qular;ce ' !

; ; ; : A ear CMOS and bipolar CMOS (BICMOS) ICs, charge
literature in a wide range of topics related to total ionizing dosceOu led devices (CCDs), power MOS field effect transistors
(TID) radiation effects and hardening of bulk metal-oxide-sem P ' P

conductor (MOS) devices and integrated circuits (ICs). TID e¢MOSFETS)’ and nonvolatile memories. CMOS integrated

. N circuit technology alone has dominated the electronics industry
fects referenced here are due to accumulation of ionizing radja- . -
) : . ) N . for more than 30 years, channel size scaling in length by a factor
tion over time, which results in long-term degradation in devic L ; oo : :
. R . .~ Of over 100 in size during this time period. Changes associated
performance. (Single event and transient ionization radiation ef- . .
. With the evolution to smaller and smaller devices have had
fects, as well as displacement effects, are covered elsewherge | oo -~ )
o : a dramatic influence on the radiation effects and hardening
this journal issue.)

Lo : rocedures of MOS-based structures. Updated alterations in
A short background section introduces some terminology aﬁacgrication rocessing, design and layout procedures all require
basic concepts. This is followed by a brief chronology and a b 9 g youtp 9

discussion of various radiation-induced effects on the electri anthEd modification to accommodate further scaling [4].

properties of MOS transistors and integrated circuits. The Iatefv?/gIrrslrJT:Sgtsse;;rsecgil;fgefr?trailctjhtiru2Ir?:vgzr(fj?m‘rfgzr;n(t:?m%ragvgn
sections of this paper discuss factors influencing MOS TID 1 ID hardness. The evolution of IC density requires that device
diation sensitivity and conclude with techniques and approacheesometries s'cale proportionately, impacting MOS radiation
for hardening that have been published previously in the op%n '

. ardness, depending on whether power or performance is the
literature. overriding design goal [5]. Not only is the geometry changin
Much of the hardening of MOS technology has been bas?d g desigh g ol y 9 y ging
: . r?m one device generation to the next, but also the processing
on phenomenological results from experiments performed a

various times along the evolutionary path of MOS technolog.teTChmque.s’ materials, and processing tQOIS are changing. It
. . now fairly well known that TID radiation effects are all
These technology-specific experimental results, as well as re; . .
o . , — ~influenced, in varying degrees, by each of these factors from
cent efforts to build in and predict hardness from first-principles .
one generation to the next.

atomic models [such as ihose utiliz.ing eIeptron spin.res_onance“D radiation effects in MOS devices occur in the relatively
(ESR)] [1], [2] are reviewed. There is no single "magic” ingrey, noncrystalline dielectric films and at the dielectric film/sil-

dient or process available to produce radiation hardened Ilcso'n interfaces. These dielectric films (typically SiOrange
Radiation hardness is determined by complex interrelationshms y ypicaly g

among technology, design, and fabrication procedures, as IfhiCkness from 2 nm (for modern gate oxides) to 1000 nm
9 9. an. P ' V\f?or field oxides) and are used throughout MOS IC structures

for purposes such as gate control, electrical isolation (lateral
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interfaces; however, the details related to the basic mechanisaasing unpaired spins, thus the detection is charge state depen-
of radiation effects in MOS devices are very complicated [6{lent.) The first ESR, also referred to as electron paramagnetic
(For basic mechanisms details see the review paper by Oldhaasonance (EPR), measurements on irradiated MOS structures
and McLean in this journal.) were performed in the late 1960s at the RCA Sarnoff Labora-
Due to the aforementioned complexities MOS TID radiatiotories [43]. It was found that oxide/silicon structures (formed
sensitivity depends on many factors involving details of ddsy a dry oxygen growth with a post oxidation heat treatment in
sign and fabrication, as well as conditions of use and radiatibgidrogen at 1100C for 10 min and irradiated with & 10"
exposure. In particular, TID radiation-induced charge buildwuglectrons/cr?) generated % 10'* EPR centers/cf The con-
in MOS devices depends on: dose, dose-rate, and type of itnols with no postoxidation heat treatment, as well as samples
izing radiation [7]-[9], applied and internal electric fields (inheat-treated in helium, showed no increase in EPR centers [43].
cluding space-charge effects) [10], [11], device geometry [12This work initiated concern about high temperature hydrogen
[13], [5], [14], operating temperature [15], [16], postirradiatiomeat treatments and helped to stimulate radiation hardening of
conditions (e.g., time and temperature) [17], [18], dielectric méhe RCA process by changing from forming gas anngls+
terial properties (stoichiometry, structure, defects, and doping}) to 100% nitrogen anneals (helium being too expensive).
[19], [20], fabrication processing (oxide growth and anneal cofhis process change eventually enabled, a decade later, the pro-
ditions), oxide impurities (including hydrogen [21]-[23], ni-duction of CMOS parts able to survive the radiation environ-
trogen, [24], [25], and sodium [26], [27]), final packaging proments related to a Jupiter space mission.
cesses [28], [29], burn-in [30] reliability screens [31], and aging The Defense Atomic Support Agency (DASA) and U.S. Air
[32]. In addition, issues of IC architecture also impact survivorce sponsored programs to investigate ways to further harden
ability against TID effects [33]. MOS transistors. DASA supported programs at Hughes Aircraft
Co. (HAC) and Autonetics [later, Rockwell International (RI)]
to modify the gate dielectric materials through doping, as well
Ill. CHRONOLOGY as by growth and anneal conditions [44]-[46].
During this decade, the Air Force pursued aluminum oxide at
A. 1960-1969 RCA as an alternative dielectric material [47], [48]. Although
The radiation sensitivity of MOS devices was discovereldtis approach looked promising from a TID standpoint, it was
in the early 1960s at the Naval Research Laboratory (NROgver put into production because of process-related instability
[34]. Previously, it was thought that newly introduced MO®roblems [49]. However, more than 20 years after these initial
transistors (being majority-carrier devices) would not be a@stempts, use of deposited aluminum oxide is again of interest
radiation sensitive as bipolar transistors and, as such, woal a high-k (high dielectric constant) alternative to ultra-thin
be attractive devices for space applications. The high ingisermally grown silicon dioxide [50], [51].
impedance, low current attributes of MOS devices [35] were
being explored at that time by NRL for use in the worlg’®: 1970-1979
first reconnaissance satellite (GRABE), which was intended During the early 1970s, the Defense Nuclear Agency (DNA,
to fill the void left when the USA's U-2 flight was shot downformerly DASA) established a major program to develop radia-
by the U.S.S.R. in May 1960. Prior NRL efforts had beetion hardened CMOS integrated circuits. Previously, MOS ICs
directed at the basic mechanisms of radiation-induced surfagere limited to the use of P-channel type MOS devices because
effects using cobalt-60 gamma rays to investigate the effectsNoichannel MOS (which operates with positive gate biases) ex-
ionizing radiation on oxide passivated bipolar transistors [36]hibited instabilities due to positive ions (primarily sodium) con-
The early NRL work determined that the fundamental causgminating the gate oxide. The Nd@on contamination in the
of damage in devices with oxide regions was related to chargate oxides of N-channel MOS transistors would drift to the sil-
buildup in the oxide and not due to the usual radiation-inicon/silicon dioxide interface under the operational positive gate
duced ionic effecton device surfaces (as was the case fdsias and cause changes in device characteristics. CMOS (which
the unpassivated bipolar transistors that failed in the Telstases both N- and P- channel transistors) became possible with
satellite exposed to radiation from the high altitude nucle@iie enhanced capability to produce stable sodium-free oxides
test, Starfish) [37]. The newly found debilitating effect of52]. This capability enabled low-power CMOS technology to
radiation-induced charge buildup in the gate oxides of MO$minate digital electronics for the next three decades, when
transistors using cobalt-60 gamma rays was confirmed the channel length evolved down in size 100-fold from an ini-
other groups and with other types of radiation, including: flasial value of 18 to less than 0.18m (and still is progressing to
X-rays, TRIGA reactor radiation, and high energy electronsmaller values at this time).
both pulsed and steady state [38]-[42]. These efforts estabUsing ESR (beyond the initial RCA work related to postoxi-
lished that the dominant radiation effects in MOS devices wedation anneal ambients), it was shown at NRL that the oxides of
due to TID effects, and not due to displacement damage, theadiated MOS structures produce an ESR signal (callefl’an
usual cause of radiation-induced degradation in bipolar deviceenter) [53] identical to that observed in irradiated bulk glass
In order to gain insight into what types of radiation-induce¢ksilica) [54], [55] and modeled by Lehigh University workers
centers were being generated, and going beyond electrical mesan oxygen vacancy in the structural network of glass [56].
surements of TID effects, electron spin resonance (ESR) wHe ESR signal found by NRL in thin TID irradiated MOS
explored. (ESR can detect point defects in dielectric films ksilicon dioxide films, coupled with the Lehigh work, led to a
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damage mechanism possibly being related to oxygen deficiermmya 1 Kb CMOS SRAM [72]. This technique was extended and
defects in the oxide. Agreement with the bias dependency mit into production by Harris [73].

radiation-induced oxide charge was observed in that a posiAs a result of these successful hardening efforts, TID hard-
tive gate bias during irradiation caused axl@nhancement ened metal-gate CMOS was used in various space programs,
of the E’ signal. Etch-back studies at NRL found that mostcluding DMSP, TIROS, DSP, and GPS, as well as in the Voy-
of the radiation-induced centers were located near the silicager and Galileo space probes.

dioxide/silicon interface. This work pointed the way to the pos-

sibility of controlling oxidation growth parameters for hard- 19g0_1989

ening purposes.

In light of this new finding, the question arose as to whether In the 1980s, the primary emphasis was placed on hardening
or not alternative gate oxide approaches were still necessarysticon-gate CMOS ICs, including those in the Department of
hardening. DNA then sponsored a competitive runoff of thrdeefense (DoD) Very High Speed Integrated Circuit (VHSIC)
alternative hardened gate oxide approaches, versus controfféggram. Hardening efforts on VHSIC 1.26n silicon-gate
thermally grown silicon dioxide. Metal-gate CMOS invertetechnology were carried out on the following MOS technolo-
circuits, called CD4007s, were fabricated using differegies: CMOS/ silicon-on-sapphire (SOS), NMOS, and bulk
hardened gate oxides [57]-[60], and undoped silicon dioxideMOS. It was found that hardening of high density, silicon-gate
at RCA-Somerville and HAC [49], [59]. An unexpectedechnology was significantly more complex than hardening the
result from these multisupplier comparisons was that undopeigvious generations of aluminum-gate ICs. With silicon-gate
silicon dioxide—if grown under improved, controlled condiMOS ICs, design, as well as layout issues became part of the
tions—could be made sufficiently radiation hard to meet mobardening equation.
system requirements [59], [61]-[63]. To meet increasing demand for hardened ICs of greater

Consequently, it was discovered that metal gate small-scdievice density, a hardened field oxide structure smaller than
integrated (SSI) CMOS logic circuits could be madée aforementioned SNL direct-moat type was necessary.
megarad-hard if the following controlled processing proFhe semiconductor industry pursued various new lateral
cedures were followed: gate oxides were grown in dry oxygexxide isolation approaches, such as local oxidation of sil-
at 1000°C [19], [64], [59], [24]; furnaces were cleaned by dcon (LOCOS), poly-buffered LOCOS, and selected poly-Si
flowing HCI purge [59], [61]; postoxidation anneals were donexidation (SEPOX), each having hardening advantages and
in nitrogen at 850°C to 900°C (reduced in temperature fromdisadvantages. Of major concern to the IC builder is the
the standard anneal which usually was performed at the oxieiient of oxide encroachment, such as the LOCOS “bird’s
growth temperature to reduce initial fixed charge) [62]; anbleak,” that reduces active device area and causes increased
metallization was deposited by a nonradiative process, sueldiation sensitivity due to the stressed nature of the oxide [74].
as using inductively heated crucibles (no electron beam rdpuble-layer deposited oxide structures using dopants such
sputtering type sources could be used) [64]. The thicknessssboron and phosphorus for hardening were introduced [75],
(t) of oxide regions were minimized based on the stror{@6]. TID effects in deposited field oxides studied by ESR were
power-law relationship(¢3) of radiation-induced threshold found to be fundamentally different from thermal oxides, and
voltage shift on oxide thickness [65]. it was found thatF’ centers could not be generated by hole

To avoid field oxide TID effects, the layout had to bdrapping, as in thermal oxides [77].
changed so that the gate oxide was patterned to extend to thEurther insights into the role of oxide processing on TID
guardband lateral isolation region (no thick field oxide wasffects were provided by ESR studies during the 1980s. ESR
allowed inside thep-n junction type guardband) [66], [67]. differences were observed due to process related effects for
National Semiconductor Corporation (NSC), RCA, and latead-hard and rad-soft thermally grown oxides [78]. Reassur-
Harris Semiconductor offered megarad-hard CMOS metal gangly, similar process dependencies, such as for wet versus
ICs fabricated using the aforementioned modified processidgy treatments, were found for bulk amorphous silicon dioxide
of silicon dioxide gate dielectric material. For SOS ICs the prenaterials [79]. SNL quantitatively correlated radiation-induced,
ferred oxide growth was a lower temperature wet oxide growttapped positive oxide-charge in MOS structuregitacenters
(850°C to 900°C) to avoid high temperature perturbations of80], [81]. The SNL workers correlated radiation-induced
the silicon/sapphire interface causing unwanted back-chanmgérface states (defined as electronic levels located spatially at
leakage current [68]-[71]. the dielectric/silicon interface and energetically within the band

In order to support higher density ICs, lateral device-to-dgap of the active silicon) with ESR signals callé&l centers.
vice electrical isolation had to be changed frpm junction (See Section IV-A7c for details related to interface states.)
guardband type structures to smaller oxide regions. As a resililhey found this correlation with cobalt-60 gamma-ray irradi-
this change toward the use of field oxides introduced a new THded MOS structures ofl11) silicon, without electrical-bias
oxide-related vulnerability. For more dense constrained desigdsring irradiation [82], [80]. Also, it was found fof111)

a hardened field oxide was necessary. Sandia National Labaiicon that both the interface states aRgl centers annealed
tory (SNL) developed an early type of radiation-hard field oxideut within the same temperature range, 2@0to 250°C [83].
called direct-moat, for application to nonguardbanded IC dBurthermore, both were annealed out when a positive electrical
signs and successfully demonstrated performance and hardigs was applied to the gate [84], [81]. ESR studies were
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extended to oxides grown dm00) silicon (the orientation used
for CMOS integrated circuits) by the group at Pennsylvania
State University (PSU). For cobalt-60 gamma-ray irradiated
(with positive gate bias) oxides grown dm00) silicon, two

P, type centers were generated, thg, and P,;, where P,

is chemically the same as th& center in(111). Irradiation
caused greater increases in tRg, than theP,; [85]. It was
imperative that processes be determined to minimize all of
the above radiation-inducef, centers in order to reduce the
damaging effects of radiation-induced interface staiés).

In order to develop processes to radiation harden CMOS de-
vices and circuits, it is necessary to reduce radiation-induced
oxide trapped charg@V..), as well asNV;;. Based on insights
gleaned from ESR, it became apparent that processes to reduce
both radiation induced’ and P, centers needed to be devel-_ o _ _
oped. Since many unit processes needed to be evaluated, Fid) Tarsmissn eecton mieogranh (TEw) images of (8 LOCOS,

quick-turn-around was necessary to complete the fabricatign, ) for Trench than LOCOS (courtesy of J. Schiueter of Novellus
schedule, an alternative to ESR was established (ESR beingysiems/SEMATECH).

research tool, not available on-line within semiconductor facil-
ities). A table top X-ray irradiator, the ARACOR 4100, was 5
used extensively to evaluate experimental radiation harder
processes [86]. Electrical device parameters (see Section 100 4
versus radiation dose, provided by the ARACOR, were used
qualify various unit processes. 801

(b)

D. 1990-1999

In the 1990s, the emphasis in hardening digital ICs was 1
submicron (gate-length) silicon-gate CMOS technologies
Honeywell, Lockheed-Martin, United Technology Microelec
tronics Center (UTMC), NSC, and Texas Instruments (Tl
The gate oxide became intrinsically hard to TID because . : ; ] : } : : :
its reduced thickness (due to the power-law mentioned in St 02 025 03 03 04 045 05 055 06 085 07
tion I11-B.). Work in the 1980s had shown that (due to tunne Spacing (microns) between lateral oxide isolation regions
currents) the gate oxide radiation problem would vanish once
the gate oxide thickness fell below 10 nm [87]. This, indeedig. 2. Yield versus scaling size for LOCOS versus Trench, showing reduced
has happened. The first commercial production of oxides wi jeld for LOCOS for channel scaling below Q#4n (courtesy of J. Schlueter of

. . ovellus Systems/SEMATECH).
thicknesses less than 10 nm were manufactured in the 1990s.

For bulk CMOS, the main hardening issue then became the field ]

oxide lateral isolation structures, which needed to be scal@@osphorusand carbon related ESR centers as wellz(sien-

to even smaller geometries. To meet the scaling requiremer’i%'é,S [90].

shallow trench isolation (STI) approaches, with no bird’s A hardened STI process was developed by Honeywell
beak encroachment, were commonly used near the end of @l Put into production. These hardening efforts produced
decade. See Figs. 1 and 2 for a comparison of LOCOS arﬁ]@garaq-hard 1 Mb SRAMs within five years (three te_chnology
STI structures and their corresponding yield as a function 8gnerations) after the unhardened versions were introduced
channel length. Fig. 1 shows how the effective channel widg@mmercially. UTMC developed a “minimally invasive”
(Weg) is reduced by the “bird’s beak” inherent to LOCOSProcess module a_nd was §ucces_sfu| at .hardenlng commercial
As it can be seen from Fig. 2, due to yield problems, LocogT! to >'1 Mrad(_SQ. Combined with an mhere_ntly hardened
lateral isolation needed to be abandoned for device geomet§8&€ Oxide, radiation hardened deep submicron ICs were
scaled below 0.4m [88]. produced at commercial foundries.

Interestingly, there is a wide variation in the intrinsic hardness
of STI. In some cases, TID failure levels for STl were observegt 2000 and Beyond
at <10 krad (SiO,) [89] while in other cases radiation hard- Scaling CMOS channel lengths to 100 nm and smaller
ness levels of greater than 100 krad(Si) were measured on sgagires gate oxide thickness to be less than 4 nm. TID effects
commercial technology. It is understood that the hardness of the gate threshold voltage are not an issue for digital CMOS
STI region depends on a number of features, including geoteehnologies while they use ultrathin silicon dioxide films, but
etry and type of trench refill oxide. ESR studies of trench refithis may not be the case for alternative (high k) gate dielectric
oxides found that doped phosphor-silicate-glass (PSG) and deterials. However, for mixed signal [91] and power MOS ICs
posited (TEOS) oxides had radiation-induced charge trapped®2], where thicker gate oxides are required, radiation-induced

60+
—-LOCOS

—=STI

Yield (%)
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threshold voltage shifts are still of concern. Flash memowmary with postirradiation time, temperature, and electrical con-
[93], another MOS technology requiring higher operatinditions, so does the threshold voltage vary, accordingly.
voltage and, thus, thicker gate oxides for charge pump circuits,As an aid in analyzing radiation effects and developing hard-
is still very sensitive to TID effects. For example, thresholdning procedures, it is important to determine and control these
voltage shifts in charge pump circuits internal to MOS fieldwo components of damage. Radiation-induced oxide charge
programmable gate arrays fail at TID levels less than 20 krad,; is the net trapped charge in the bulk of the oxide due to both
(Si) [94]. trapped holes and electrons [101]. Usudlly, is dominated by

As CMOS evolves with channel lengths scaled below 0.Zipsitive trapped charges and the trapped electrons tend to com-
pm, hardening concerns about lateral isolation oxides are still pensate partially to reduce the net valué\gf. However, there
issue, as well as new alternative high-k gate dielectrics (as dige some cases where tNg; is dominated by trapped electrons
cussed in Section V-A2) [95]. Most of the previous approach§s02].
for shallow trench hardening are no longer operative for ad-Radiation-induced (TID) threshold voltage shifts depend
vanced generations of CMOS since they depend on the usenfoxide thicknesgt) according to a power-lawt™, where
doped glass [96], [97] which cannot be tolerated due to inherentcan have values of: between one and two [103]-[105],
autodoping affecting the thinner films required by scaling corr two [106]-[108], or three [65], depending on processing
straints. Furthermore, the 1.5 MeV alpha particles created agd electrical biasing effects. Since the majority of results
neutrons reacting with the boron-10 in boron-phosphorous-siliublished subsequently have observed the square law usually to
cate-glass (BPSG) films cause upsets in submicron devices. ba-operative (for thermally grown oxides), its use has become
perimental work will be needed to develop hardening processesitine.
for undoped trench refill oxides, such as high-density plasmameasured threshold voltage shifts due to irradiation can be
(HDP) and low temperature types. separated into these two components using: transistor sub-

The new millennium saw the first quantitative data on thgareshold current-voltage characteristics [109], [110], including
role of hydrogen regarding/,.;. Using ESR and CV measure-corrections for dopant deactivation [111] or dual-transistor
ments on samples with controlled hydrogen doping, it was fousgchniques [112]. These approaches work particularly well on
that the correlation o’ centers with radiation-induced positivecommercial parts since measurements are performed at 2-5
trapped charge depends also on radiolytic hydrogen. Withattlers of magnitude greater current than subthreshold slope
trapped hydrogen th&” center was found, in this case, to beand charge pumping methods [113]-[116]. The dual-transistor
neutral, and not positively charged, as it had been previouglgproach is not as sensitive to spurious radiation-induced
modeled [98]. Thus, thé&’ center may not account for all of leakage paths such as those due to edge effects. This technique,
the radiation-induced oxide trapped chafgé,.). Previously, however, requires that both N- and P-channel transistors be
it was noted that ionizing radiation, X-rays, and Co-60 gamnfabricated identically. For example, this would not be the case
rays could cause a hydrogen-related ESR signal to disappg@ere buried-channel type P-channel MOS transistors would
[99], [100]. Hydrogen-related ESR signals, such as the 74& used, since they receive a channel implant not used on
and 10.2 G doublets, have never been investigated thorouglibthannel transistors. Where this is a problem other methods
enough to provide insightinto understanding MOS trapped pagre available, such as using mobility degradation to determine
itive charge effects; heretofore, research focused mainly on tNg [117], [118]. For instance, the Hall effect has been used
E' center as being due to an oxygen-vacancy related to trappedmeasure the spectral density of postirradiation interface

positive chargé N,,;). More ESR work needs to be performedstates near the conduction band that affect transconductance
from the standpoint of understanding the hydrogen chemisifggradation due to mobility changes [119].

related to MOS radiation-induced effects and hardening, espepartitioning the radiation-induced subthreshold cur-

cially concerningNo. rent-voltage characteristics into the oxif¥,) and interface
(Ni;) components requires mid-gap neutrality (the contribu-
IV. RADIATION -INDUCED DEGRADATION IN THE ELECTRICAL  tions of interface states at the mid-gap energy are neutral; i.e.,
PROPERTIES ORMOS TRANSISTORS ANDINTEGRATEDCIRCUITS  ho lateral shift in the CV curve would occur for interface states,
o . . implying that interface states above and below the mid-gap
e e et 110 ey compenste).For ot cases the assumptio f i
Ptrahty is a good engineering approximation, which is

o . . ne
grated.cwctuts t(()j_v_arymgr(]j_eﬁreesadﬁpenmg%ulpon a numberu%ually found to introduce only small errors; however, it should
operational conditions which are delineated below. not be used uncritically [120]. For the particular oxides used by
. SNL, this condition was met [109], [121]. However, for other
A. Transistor Effects oxides the condition of mid-gap neutrality was observed not to
1) Threshold Voltage ShiftsThreshold voltages for both N- be satisfied [120], [122].

and P-channel MOS transistors shift due to radiation-inducedSaturation of threshold voltage shift at high total dose was
trapped oxide charg@V..) and trapped interface charg®i;) modeled with the aid of computer simulation of charge buildup.
(with the caveat that oxides less than 10 nm in thickness sh&aturation was found to be caused by a complex interaction be-
almost no radiation induced threshold voltage shift). The conttiween trap filling and recombination of radiation-generated free
butions of N, andN;; are additive for P-channels and subtracelectrons with trapped holes, modulated by trapped-hole-distor-
tive for N-channel MOS transistors. Since both types of chargjen of the oxide electric field [123].
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2) Subthreshold SlopeRadiation-induced subthreshold®C to 100°C thermal emission becomes important [153]-[155],
slope is affected by both trapped interface charge and late8], [156]-[158]. Shallow electron traps anneal faster than deep
nonuniformity of trapped oxide charge [113], [124]. Laterafraps, and exhibit a response similar to compensatetknters
nonuniformity of trapped oxide charge can be caused by[¥59].
nonuniform deposition of charge or by a nonuniform dis- Using first principles quantum mechanical calculations, the
tribution of traps [125], [126]. These effects degrade devig&r Force Research Laboratory (AFRL) has provided insights
performance by increasing leakage currents. regarding the oxide trapped-hole annealing process [160]. These

3) TransconductanceThe gain (transconductance) of thegesults support the Harry Diamond Laboratory (HDL) model
MOS transistor is decreased by radiation-induced reductiggt reverse annealing [161], [162] and provide an electronic
in carrier mobility in the device channel caused by chargesructure explanation for the process. Localized holes form a
trapped at, or very close to, the silicon/silicon dioxide inteimetastable, dipolar complex, without restoring the precursor
face [127]-[132]. Transconductance also can be reduced $iy-Si dimer bond upon electron trapping. During an applied
increases in surface resistivity such as would be caused ilhe&\;ati\/e field, these charge up neutral dipolar complexes that
transistor with LDD regions intended to reduce hot carrigfasily can release the weakly bonded electron, exhibiting a re-
reliability effects. Radiation-induced trapped charge in thgrse annealing condition, where again there exists a positive
spacer oxide, used to fabricate the LLD, has been foundfiged oxide charge.
deplete p-type LDDs, increasing the resistivity and causing The annealing of radiation-induced oxide charge is enhanced
degradation in transconductance without affecting mobiliyy the presence of hydrogen diffused into irradiated oxide at
[133]. room temperature, while at the same time increasing the density

4) Channel and Junction Leakage Current and Brealfinterface states for MOS structures biased under both positive
down: Gate-induced drain leakage (GIDL) current is increaseghd negative voltages. The cracking sites for the hydrogen were
by TID [134], [135]. Trapped charge buildup in lateral oxidgnodeled as not being due & centers [163]. In corroboration,
isolation regions (field oxide structures) increases transisi®has been found that hydrogen impregnation of synthetig SiO
edge leakage current [66], [136], [137] and changes junctigiass suppresses formation of radiation-indug&daenters but
breakdown voltage (degradation in N-channels and enhane@hances formation of oxygen-deficient centers (Si-Si bond)
ment for P-channel power MOS transistors) [138]. [164]. Thermal annealing studies of irradiated devices have been

5) Noise: Noise, especiallyl/f noise, is increased in performed, including those for:

MOS transistors by TID [22], which also increases noise in
power transistors [139]-[141]. The radiation-induced increases
in noise have been correlated with oxide-trapped charges
[142]-[146] and interface trapped charges [147].

6) Gate Oxide Stability and Breakdowronizing-radia-
tion-induced trapped charges have been shown not to affect

1) aluminum-gate inverters (hard and soft) from -2@0to
375°C [165];

2) aluminum-gate inverters, activation energies of thermal
annealing [166], [167];

3) aluminum-gate NMOSFETS, reversible positive charge

oxide leakage current nor breakdown properties of oxides 4 [1|68]_; ¢ i i Si. flat-band di
thicker than 10 nm, [148] but have been observed to increase ) Sol;]n’EllnélgT-ga e capacitors (n-type Si), flat-band condi-

oxide leakage current and reduce breakdown voltage for
ultrathin (< 4 nm in thickness) oxides through electron trap
assisted tunneling for total dose irradiations greater than 1 Mrad
(Si) [149]-[151]. SNL found no detectable radiation-induced
leakage current for 70 nm oxides grown on n-type silicon by
rapid thermal processing at 100C in pure oxygen or hO,
and irradiated by 10 keV X-rays to 20 Mra®biO,). The
trapping of radiation-induced electrons in the oxide near the
polysilicon interface, however, has been found to modify the
reliability related Fowler—Nordheim injection characteristics of
the interface [152].

7) Long Term Postradiation Response:

5) aluminum-gate capacitors, rapid annealing, activation
energies [157];
6) silicon-gate NMOSFETS, diffusion of a small molecular
species [170];
7) silicon-gate MOSFETS, interface traps [171];
8) silicon-gate NMOSFET/SOS, open and closed geometry
[172];
9) silicon-gate MOSFETs/SOS activation energies [173];
10) silicon-gate ¢+ andp+), 4.5 nm oxide, radiation-in-
duced oxide leakage [174];
11) silicon-gate CMOS circuits (various commercial types)

. ; 175];
a) N,: annealing: Charge trapped in deep electron and [ o .
hole traps in oxides has been found to remain trapped fortimeslz) [slll7|(;c]>.n-gate commercial power VDMOSFETSs [176],

varying from hours to years, depending on temperature and elec- . )
tric fields. These space charges, which are not in electrical com—la) PMOS d0_3|meters [178]; -

munication with the active silicon regions, however, do have a 14) _commermal power MO_SFETS' prediction based on
long term annealing behavior. Tunneling and thermal detrapping |S(2)chronal af‘”ea's [179]; . . .
mechanisms have been found to be responsible for the long ter 5) C"L 1802 microprocessor, rapid annealing [180];
annealing of trapped holes near the silicon dioxide/silicon inter- 6) 16 Kb DRAM [181].

face; the reduction of the charge density is found to have aloga- b) Threshold Shifts Caused by Switching Oxide
rithmic time dependence for both mechanisms. Atroom tempdiraps: Researchers at SNL discovered, through switched
ature tunnel annealing dominates; and at temperatures abovedlarity annealing studies, that the radiation-induced net
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positive charge trapped within the oxide was not removedRadiation-induced interface state buildup is a complex
by the aforementioned annealing processes, but was ophpcess, depending on time scale, oxide thickness, temperature,
charge compensated; thus, only temporarily neutralized [183hd electric field (as well as processing). Kinetics include
By tunneling electrons from the silicon into the oxide, thethe transport of holes, radiolytic hydrogen (ions and atomic
annealed an irradiated N-channel MOS transistor (O@vith hydrogen), and defects at the oxide/silicon interface (caligd
+10 volts applied to the gate electrode) for a week until theenters, detected by ESR. (See Section IlI-C.) However, it has
oxide trapped charge, determined from the mid-gap voltageen argued that not all of the radiation-induced interface states
shift, was annealed out to the preradiation value. Then, thd¥; are related taP, centers [189]. The HDL researchers have
applied a negative 10 V to the gate and continued the annealprgvided a review paper of work through the 1980s, including
at 100°C. Within one day the initial postradiation value ofmechanisms for the prompt and delayed [192] components
positive charge was restored. This work was reproduced aofd NV, [193]. Subsequent aspects of time, oxide thickness,
verified by NRL and HDL workers [183], [161]. Subsequentlyand applied field dependencies &f,—including the role of
the HDL workers carried out an extensive systematic study ahgdrogen—have been provided by NRL and SNL [194], [195],
modeling of the negative-bias reverse-annealing mechanif85]. Hydrogen diffused into an irradiated MOS structure at
[161], [162], [184]. They observed that charge tunneled ilow temperatures (room temperature and tZ5 enhances
and out of hole traps, reversibly. The magnitude of this effettte buildup of interface states [163]. Analyses of the kinetics
depends on oxide processing—qgreater in hardened oxides thad chemistry of process- and radiation-induced interface trap
in soft oxides. They called this effect “negative bias instabilityAnnealing, including the important role of hydrogen, have
and modeled the effect as being caused by switching oxideen published [196]-[198], [406]. Contradictions between the
traps, related tak’ centers measured by ESR. (See Sectigadiation effects model for interface state formation [192] and
VI-C.) The SNL workers labeled these switching oxide tragsydrogen-annealing models [199] are still being studied [200].
“border traps” [185], [186] because the traps are located very d) Threshold Shifts due to Rebound or Super-Re-
near the interface. The switching oxide traps, or so-calledvery: After both N,; and N;; have been generated,;
border traps (or slow states), are not in communication with tkentinues to anneal out, according liot (wheret is time);
silicon as are interface tragévi;), nor are they as isolated aswhereas, the interface states generally do not anneal out with
oxide traps(Not). time. After most of the positive chargell,; anneals out, es-
The model for the switching oxide trap put forth by the HDLpecially at elevated temperatures [201], the negatively charged
group is based on the’ center which, before it trapped a holejnterface traps (due to acceptor type interface states) remain,
was a Si-Si bonded oxygen vacancy, where each siliconcasusing a positive shift in threshold voltage for N-channel MOS
back-bonded to three oxygen atoms. After trapping a hole amménsistors. If this positive shift is great enough and produces a
breaking the Si—Si bond, one of the Si atoms possesses a sitigieshold voltage greater than the initial value (super-recovery),
electron in a dangling bond while the other Si atom traps a halevice failure, as well as performance degradation, may occur
becoming net positive in charge. When this positively charg¢ti82]. This condition, called rebound, does not occur for
defect complex captures an electron during annealing (througfchannel devices since the interface states for this device are
tunneling or thermal excitation), the electron is trapped on tli®nor type (positive charge), so that tNg charge adds to the
silicon with the dangling bond which then becomes negatiymsitive charge ofV;.
in charge. The other silicon in the complex with the broken 8) Acceptor Neutralization:It has been shown that radi-
Si—Si bond remains positive in charge, thus, creating with tledytic atomic hydrogen, released during irradiation, deactivates
nearby negative charge a dipole structure which, as a complegron acceptors in the near silicon surface region [202].
is neutral in charge and no longer paramagnetic (and, therefofae neutralization of boron by atomic hydrogen reaches a
not detectable by ESR) [187], [188]. Subsequent work at NRhaximum at 10 C [203]. Most shallow acceptor levels due
has shown that the radiation-induced slow states are causedtadioron in silicon can be neutralized by atomic hydrogen at
only by E’ centers butlso by hydrogen related centers in theemperatures between 6% and 300°C, causing a sixfold
oxide [189]. increase in resistivity [204]. It has been suggested that the low
¢) Threshold shifts due to interface state buildup and atemperature aspects of hydrogen related acceptor neutralization
nealing: Interface states, due to defect-related traps, are el@etay be associated with the transitions and reversal aspects of
tronic levels located spatially at the dielectric/silicon interfacenhanced-low-dose-rate-sensitivity (ELDRS), related to pack-
and energetically within the band gap of the active silicon [1904ging related heat treatments, burn-in, reliability screens, and
These states are electronically in communication with the séging effects [205], [206], [31], [32]. Acceptor neutralization
icon. Interface traps outside the silicon band gap are considesdfi:cts due to atomic hydrogen also have been found to occur
as fixed charge and not as interface states, since they do not céan-other acceptors in silicon, such as aluminum, gallium,
municate directly (on the time scale of the measurements) wiahd indium, but do not occur for donors (for temperatures
the silicon [101]. Interface states are amphoteric in nature, i.bgtween 100°C and 300°C) [207]. A technique to separate
when located in the upper half of the band gap they behaveimadiation-induced chargesV(: and N;) in the presence
donors (positive charge state) and when located in the lower hailf hydrogen-deactivated dopants has been published [111].
of the band gap they behave as acceptors (negative charge stég¢eiralization of acceptors causes a negative shift in the
[191]. There is charge neutrality at mid-gap only when the debapacitance—voltage (C-V) curve, just as trapped positive
sities of both types are equal. charge does [208]. Furthermore, the neutralization effect has
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been modeled to include radiolytic protoff+) drift, as well applied) can be recovered subsequently by exposure to ionizing
as atomic hydrogen [209]. Both types of radiolytic hydrogeradiation without applied bias using a phenomenon known
have been used to demonstrate that irradiation-induced positage radiation-induced charge neutralization (RICN) [217].
oxide chargd N,) can be predominantly trapped protons (ndturthermore, the total dose hardness of SRAMs can vary by
holes) and, thus, be ionic in nature [210]. more than a factor of three between laboratory irradiation dose
9) Reliability: The dominant long-term reliability problemrates of 200 rad (Si)/s and a realistic dose rate, such as 0.02 rad
with CMOS technology is related to the oxide trapping of hiSi)/s, for space applications [218]. Additional details of how
carriers. Hot carrier reliability has been found to be degradeadiation affects IC performance and reliability are discussed
by TID oxide trapping [211]. However, it was determined byelow.
the SNL workers that hot-carrier effects and hardening are notl) Speed:TID irradiation has been shown to degrade IC
independent phenomena and that modified processing usedsjseed by increasing propagation delay in logic circuits [219],
radiation hardening, in some cases, can also improve hot carfR20] and access time in memories [218]. Timing delays related
reliability [212]. This improvement in hot carrier reliability wasto internal logic-gate delays, fanout-induced drive delays, differ-

verified in radiation-hardened IC production [213]. ences in output rise, and fall times for each gate, and the effects
of transistor drive and leakage differences caused by TID and
B. IC Effects transientionization radiation environments have been simulated

o i i _ using Very High Speed Integrated Circuit Hardware Descrip-

TID radiation effects impact the MOS IC functionality, dcjon Language [221]. Note that increasing propagation delay is
and ac performance characteristics [214]. Affected dc parafjated to the threshold voltage shifts of the n- and p-channel
eters include quiescent supply current (standby-current), nojggnsistors. However, as noted above, threshold voltage shifts

margin, and output drive levels. Affected ac parameters inclufgye all but disappeared as a concern for hardening deep sub-
risetime, falltime, and propagation time. These paramet§firon |Cs.

changes can cause a significant degradation in MOS IC pery) rynctional Failure: Functional failure of CMOS ICs due
formance. Each of the above parameters is affected by factRysrip exposure at dose rates greater than 5 rad (Si)/s usually
such as: dose, dose rate, device design, operating temperaidigieceded by a rapid increase in standby current, [222] due to
and postradiation anneal time, all of which contribute to th&iqe trapped holes. However, at dose rates typical of space en-
complexities associated with understanding and predictiggonments 0.1 rad (Si)/s) failure occurs at a different dose,
performance. For instance, because MOS radiation dama@g 1o radiation-induced interface traps after the oxide-trapped
effects have a strong bias dependence, nonuniform changggs have annealed out of vulnerable regions such as the field
in circuit performance can occur, depending on different bigg;iqe [223]. Differences in failure dose due to static versus dy-
conditions, cell types\OR VErsusNAND), operating conditions hamic biasing during low dose-rate TID irradiation were ob-
(static versus dynamic), sensitivity to leakage current, circWbred by SNL [224]. The radiation-induced parametric char-
race margins, and output levels. o acteristics of memory ICs also are sensitive to the electrical pat-
The principal causes of radiation-induced circuit failure havgrns stored in memory during irradiation [214], [225]; and, in
been reported as: 1) an inability to switch from one state {0 aflsme cases, these patterns are burned into the memory after irra-
otherand 2) increases in standby power [215]. Four distinct rafiiation [226]. The SNL workers have set forth a simple method
ation-induced failure modes are responsible for CMOS IC p&g determine the radiation and annealing biases that produce the
formance [216]: worst case CMOS SRAM postradiation response [227].
1) power-related failure due to leakage current increasing
standby power> limit;
2) static failure, where increased N-channel leakage current/. PARAMETERS INFLUENCING MOS RADIATION EFFECTS
combined with decreased P-channel drive generates . )
nodes in indeterminate logic states; A. Material Properties

3) dynamic failure where delays along a signal path are t00The particular materials used for gate electrodes, dielectric
large for synchronous operation; film regions, and substrates for MOS structures, as well as
4) dynamic failure where increases in P-channel threshql¢k associated defects and impurities, impact TID radiation
voltage inhibit switching. effects and hardening methodologies. A valuable resource for
Since the basic causes of degradation and failure are iaights into radiation effects for silicon dioxide is the literature
related to trapped oxide and interfacial charges (as discusseglarding radiation effects in bulk glass and optical fibers
above) it can be understood how the IC damage effects wo(®28], [229], [100], [230]-[233].
depend on many operating parameters, such as: irradiatiodl) Gate Electrode Material:Polysilicon (poly) gate struc-
dose, dose-rate, temperature, electrical biases and clockingiuass are usually more radiation sensitive than aluminum gate
well as postradiation time. As an example, a circuit staticaltjevices, probably due to the elevated temperature of processing
biased 100% of the time during irradiation usually is moreequired for deposition and doping of the polysilicon films
radiation sensitive than one cycled, which is usually mof&04], [234]. However, HAC was able to develop a silicon gate
sensitive than one that is off 100% of the time during irradiatigprocess that is just as hard as an Al gate process [70]. Some
[215]. It has been shown that selected circuits (irradiated angbrkers have found that™ poly gate structures are harder to
degraded by exposure to ionizing radiation with electrical biddD thannt poly gate devices [235].
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Low resistivity metal silicides are used over polysilicon in 3) Silicon substrate crystal orientationEarly studies of the
order to reduce interconnect losses for high-speed performarsikcon orientation dependence of TID effects were flawed. First,
However, depending on the choice of metal silicide and tleestudy by HAC did not consider the thickness dependence of
thickness of the underlying polysilicon, dose enhancement m&{D effects. Since the oxide growth rate is greater (@m1)
affect the TID response. For example, tungsten over 150 rihan(100) samples (which were oxidized together for the same
of polysilicon produces nearly two times the dose enhancemamount of time), devices with different oxide thickness were
caused by TiSiover the same thickness of polysilicon [236]. compared, 129 versus 103 nm [64]. Using the oxide thickness-

Refractory gate materials, such as molybdenum (Mo) ardbed(3) relationship [65] of threshold voltage shift, it can
tungsten (W), have been found to provide less radiation-ihe seen that the saturated values of radiation-induced threshold
duced shift than aluminum gate structures over the same oxigésft can be reconciled by these thickness differences. Secondly,
[237], [238]. Because its work function can be controlled bg silicon orientation study by RCA [258] used nonstandard pro-
nitrogen implantation, Mo gate material is now being pursuestssing (RF-heating and helium annealing) that is known to
as a single-metal dual-work function technology to replaite make a difference in oxide trapping [43], [259].
and n*t polysilicon [239]. Other materials, such as Ag, Sn, Subsequent to the aforementioned studies, it was found that
In, and Pb (used as MOS gates) cause more radiation-induséiton orientation does make a difference in radiation-induced
trapped charge than Al [240], [19]. These results have beemerface trap transformation [260] and in the energy distribu-
correlated to differences in interfacial strain caused by thien of interface state annealing [261]. The precursors (for dan-
different gate materials [240]. gling-bond type interfacial defects) responsible for the radia-

2) Dielectric films: Radiation-induced threshold voltagetion-induced interfacial trapped charge have been identified by
shifts vary for different gate dielectric materials, e.qg., silicoBSR asP,, andP,; for (100) orientation silicon (depending on
nitride over silicon dioxide [241]P.O5 over silicon dioxide the back-bonding), and &3, on (111) silicon [262].

[45], aluminum oxide [47], as well as for silicon dioxide from 4) Oxide impurities: Cleaning the oxidation furnaces with
different suppliers [242], aluminum implanted silicon dioxideHCI before gate oxide growth was shown to improve TID
and chromium doped silicon dioxide [19], [58], [243]. hardness; however, HCI and trichloroethane (both cleaning

Except for niche applications, like radiation-hardened cry@agents)—when present during oxide growth (due to residual
genic MOS [244] and nonvolatile memory [245] (where duathlorine remaining in the oxide)—degrade hardness, especially
dielectric films of silicon nitride over silicon dioxide are used)by enhancing the growth of deleterious radiation-induced
nearly all generations of MOS technology use silicon dioxideterface states [59], [61], [263]. However, if the concentra-
gate dielectric films. However, for MOS technology with subtion of trichloroethane in the oxygen during oxide growth is
micron gate length devices where dual poly gajeséndn™ maintained at a low enough level, radiation hardness can be
doping) are used, silicon nitride/silicon dioxide structures amnhanced [264]. The particular impurities removed by the
incorporated. Silicon nitride blocks the diffusion of boron frontleaning processes have never been identified and correlated
penetrating into the channel region, preventing unintentiongiantitatively to TID damage, even though it is known that HCI
threshold voltage shifts. A’ 5 nm nitrided oxide has been sudeaning reduces heavy metals and sodium.
cessfully produced by Honeywell for 0.2Bn radiation hard-  Studies of sodium profiles by secondary-ion-mass-spec-
ened CMOS/SOI technology [246]. troscopy (SIMS) and bias-temperature stressing on rad-hard

For dielectric films, other than thermally grown oxides (suchnd rad-soft oxides show that (during the surface charging
as deposited and buried oxide films), shallow [247], as wetiherent to the SIMS measurement) more sodium drifts to the
as deep [248] electron and hole traps need to be consideglicon dioxide/silicon interface for soft oxides than for hard
As noted previously, the observed trapped charge builduparides [26], [27]. It was not known at the time of these studies,
these films is the net difference between the trapped positivethe early 1970s, that soft oxides are less dense and thus have
and negative charges. The electron and hole traps in diellrger open structural rings that foster greater sodium transport.
tric films can be measured separately by various techniques, emonstrating further that hole trapping is related to more than
cluding: avalanche injection [25], [249], [250], photo-injectiorjust oxygen vacancy point defects [265], [266] and is possibly
[251]-[253], and thermally stimulated current (TSC) measureelated to the transport of radiolytic hydrogen [210] which is
ments [254], [120], [255]-[257]. The actual radiation-inducednhanced by larger ring structure in less dense silicon dioxide
threshold voltage shift due W, is basically the difference be- films [267].
tween the effects of trapping holes and electrons. Processing afNitrogen incorporated during growth into oxides and inter-
fects both in complex ways. faces degrades TID radiation hardness; whereas, devices with

Because of continuous scaling, thermal oxides have beaxides grown in partial pressures of argon, instead of nitrogen,
thinned to the point< 2 nm) where increasing tunnel currents apeo not realize degradation in TID hardness [24]. Postoxidation
pear to limit further evolution in technology feature size withounneal (POA) at 1000C in nitrogen degrades TID hardness
changing gate dielectric material. High dielectric constant (highore than POA performed at 100@ in an argon ambient
k) materials are now being considered for gate dielectric ug25]. In addition to nitrogen related hole traps [268], the POA
Such as with the higher dielectric constant of aluminum oxideat treatments concomitantly create oxygen vacancy type hole
(k = 9) compared to that of silicon dioxidé: = 3.8), foran traps [269], it is thought, through the reduction of the oxide
equivalent electrical capacitance, aluminum oxide films will beaused by the silicon’s gettering of oxygen [270]. Of course,
thicker and thus can be more robust [50], [51]. the role played by the nitrogen will depend on how and where
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it is bonded; i.e., in the oxide, back-bonded to oxygen, or at tdensity (as measured optically by spectroscopic ellipsometry)
interface back-bonded to silicon. of thermally grown and buried silicon dioxide films, and the
Researchers at Yale University found that fluorine dopindensity depends on film growth and annealing conditions
of gate and field oxides provides improved radiation hardneg87], [265]. In corroboration, it has been shown recently,
[271], [272]; whereas, boron doping of gate oxides (10-25 nusing grazing incidence X-ray reflectivity techniques, that
in thickness) through the use pf poly gates or by boron im- thermal annealing in argon (at 100C for 30 min) of silicon
plantation of the oxide was found to reduce radiation-inducelioxide films on silicon, indeed, causes a density decrease due
positive charge trapping [235]. to swelling [288]. This finding agrees with the swelling of
Work at SNL demonstrated that water contamination in dignnealed oxides observed earlier using spectroscopic ellipsom-
process tubes (used for oxidation, anneal, and sintering) @¢ry [289]. The growth rate of thermal oxides depends on the
graded hardness [61]. However, studies at RCA found that tracansport of Q through the oxide and is enhanced by structural
water levels—ranging from 16 to 50 000 ppm during nine difthannels formed during oxide growth [290]. Channels through
ferent runs of dry oxidations at the same temperature as the Sk oxide, as manifested by enhanced oxide growth rate, are
oxidations—had no influence on hardness [107]. The reasathanced further by annealing and contribute to reduced den-
for these differences were never resolved. sity, which correlates to greater radiation sensitivity. Using the
Subsequent work at SNL determined that hydrogen intrpermeability of hydrogen as a density probe, NRL found that an
duced into thermally grown dry oxides during high temperatuiacrease in density near the oxide/silicon interface suggesting
annealq~850°C) increased the number of radiation-induced smaller Si-O ring size near the interface [267]. Positron
trapped oxide charges and prompt (1 ms to 10 s) interface staasihilation spectroscopy also has been used to determine the
[273]. However, when the hydrogen content was measured dgnsity profile of the oxide in a nondestructive manner and
nuclear reaction analysis (NRA) techniques [274], [275], it wdsas confirmed that thermally grown oxide does, indeed, have a
observed that the samples with greater hydrogen content luahsity increase near the silicon/silicon dioxide interface [291].
less radiation-induced oxide charge and interface states [27/8Jrthermore, irradiation of silicon dioxide by neutrons, X-rays,
The cited NRA results are for the total amount of hydrogegamma rays, electrons, and ions also causes permanent oxide
whichincludes hydrogen that is tightly bound in the oxide struclensity changes [292], [293].
ture. Perhaps future studies will explore whether the radiation
s_ensit?vity can be correlated to the mobile hydrogen conter, Ejactric Field
since it has been shown thAt" may account for much of the
observed radiation-induced,; [277]. Every MOS hardening effort should consider the details of
5) Oxide defects:Radiation-induced oxide hole trapping,device and integrated circuit electric field configurations. Fortu-
which usually causes a net positive space charge in the varioasely, computer simulation and computer-aided design (CAD)
oxides of MOS devices, is one of the two dominant damagapabilities have made this task less difficult than it was decades
mechanisms of MOS TID radiation effects. (The other danago.
aging mechanism is radiation-induced interface states.) HoleThe polarity [294], [62] and magnitude of applied electrical
traps have been modeled as being related to defects foundimses (dc and ac) during and after irradiation have a major affect
an oxygen deficient oxide-transition layer possessing excesstrapped bulk and interfacial charges because the following
silicon near the Si/Si@interface. This layer is believed to beTID mechanisms depend on electric field: 1) radiation-induced
caused by incomplete oxidation of the silicon [278]-[282kharge yield; 2) the transport of radiation-induced electrons,
Excess silicon near the Si/SiGnterface is due to oxygen holes, and radiolytic hydrogen; and, 3) the capture cross sec-
vacancies in the noncrystalline silicon oxide structural netwotlons for trapping and detrapping of radiation-induced electrons
manifested as Si—Si bonds, the precursor of the deep hole trapd holes. Therefore, for hardening purposes, design and layout
The hole trap is formed after the Si—Si bond is broken durirgf MOS devices and circuits should include managing and con-
the capture of a radiation-induced hole. The defect complextislling electric fields, especially fringing fields. Fringing fields
detectable using ESR as &I center (the portion of the defectextending into oxide isolation regions, [137] such as those at the
complex containing an unpaired electron) [54], [283], [230torners of shallow trenches, [89] need to be controlled. Further-
The other half of the defect complex, a positively chargemiore, drain engineering with LDDs has been found to reduce
silicon atom back-bonded to three oxygen atoms in the oxid¢D effects associated with fringing electric fields extending
network, has been considered (for more than 15 yeartf)eas into oxide spacers [213], [295].
irradiation-induced trapped positive charge due to trapped holed) High fields(>10° V/cm), as in gate oxide regionsOxide
[81], [56]. However, some authors believe trapped protom®le trapping at electric field strengtid’) greater than 1
(H™) also play a role in irradiation-induced positive trappeV/cm decreases with increasing [296]. This decreasing
charge in silicon dioxide [210], [284], [277], [285]. Evenrelationship is caused by ali—'/? dependence of hole trap-
though new sensitive diagnostics have recently shown that fhiag cross sections [297], [298]. A rate equation for charge
thermally grown oxide/silicon interface is very abrupt (less thavsuildup which includes carrier drift, geminate recombination,
1-2 monolayers thick) [286] the existence of oxygen vacancibele/electron trapping, and effects of internal electric fields has
(as suggested by ESR results) cannot be disproven. been published [299].
6) Oxide structure: Radiation-induced positive charge trap- Interface trapping dependence on electric field is more
ping was found by NRL to be correlated directly to the massomplicated: showing an increase with increasing field for alu-
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minum-gate MOS devices [258] and a decrease with increasing?2) And:

field for polysilicon-gate devices [300]. a) adjaceniV* source/drain regions should not be al-
2) Low fields(<10° V/cm), due to fringing fields in isola- lowed without an intervening channel stop™),

tion oxides: For low applied electric fields, space charge ef- b) source/drain implants should be nested inside the

fects [208] and reduced charge yields, as well as changes in thin oxide region,

charge transport and trapping, need to be considered. For in- c) edgeless (sometimes called re-entrant) N-channel

stance, HDL found that the radiation-induced interface state transistors should be used.

buildup takes place primarily through a “prompt” process where gqgeless-transistor and channel-stop approaches essentially
the interface states appear immediately after irradiation Wigdeoff component density and performance for radiation hard-
little further buildup with time, and the magnitude of the buildupess. Nevertheless, RCA, in the late 1970s, produced radia-
is only weakly dependent upon applied bias [301]. Hole trangon hardened (300-500 krad)8n silicon-gateC2L (closed
port times for low electric fields are extended many orders @fos/MO$ [312], CMOS processors (CD 1802) [313], 1 Kb
magnitude over that observed for the high field case associajgf 4 Kb SRAMs, and 8 Kb ROMs using edgeless transistors
with gate oxides. In some cases, the transport is so slow thaih a radiation-hardened, silicon dioxide gate-dielectric [49],
hole trapping occurs in the interior or bulk regions of the oxidg14), [315].
[302]. For such a case with the centroid of radiation-induced The aforementioned hardening approach, using edgeless
trapped holes farther from the silicon/silicon dioxide interfac?vansistors, coupled with guardbanding, is again being imple-
MOS device and IC characteristics are less degraded. mented in order to have commercial unhardened semiconductor
In some cases, as in thick isolation oxides, hole and electryyngries fabricate radiation-tolerant (100 krad) circuits in
trapping is controlled by internal electric fields (due to oxidgyyanced (0.25:m) CMOS technologies [316]. Hardening
space charge) at high radiation doged Mrad) [303] and low  ,y gesign (HBD) can produce radiation tolerant ICs that rival
electric fields [304], [305], [11]. the best commercial devices in terms of speed and power.
The drawbacks of HBD become evident when manufacturing
very complex high density ICs. Changes required in design
and layout compromise device density and, to a lesser degree,
Radiation hardening of MOS technologies and ICs requirdsvice performance. With even more robust design enhance-
special procedures in design, layout, and/or processing opargents (with the concomitant performance tradeoffs), HBD
tions. In addition, special testing operations (collectively knowean be used to fabricate VLSI circuits hardened to 1 Mrad(Si)
as hardness assurance testing) [67] are required to assure thgdBthé& and 100 Mrad(Si) using commercial foundries [318]. The
finished IC device meets the specified criteria for hardness in ggle largest challenge (and perhaps cost) is the front-end work

VI. MOS HARDENING TECHNOLOGY

intended radiation environment. to customize the design tools to use commercial semiconductor
foundries for radiation hardening.
A. Design and Layout Additional specific device design and layout procedures for

Special desi di ) derati ¢ " hardening are available:
ecial design and layout considerations frequently are
b g y qUenty are 4y metal gate CMOS [65];

needed for MOS device and circuit hardening. Such concerns .
: ; - 2) silicon-gate bulk CMOS [300], [319]-[321];
extend from the basic device design and layout as far as the 3) silicon-gate bulk CMOS hardened cell family [322]:

details of chip architecture for various macro cells. . S
L . . : 4) silicon-gate CMOS/SOS standard-cell circuits[323];
Parasitic field oxide (FOX) transistors using unhardened 5) SRAM circuits [324].

commercial field oxides usually limit hardness to between 10 6) microprocessor circuits [325];
and 50 krads (possibly to 100 krads for very low TID dose 7) nonvoFI)atiIe memory[326]; '
rates) due to field inversion effects. Large increases in quiescent 8) power MOSFETSs [227] [’328]'
supply current with radiation dose are indicative of field inver- 9) ?:CDS [329]: ' '
sion problems. For LOCOS lateral isolation, the region where 10) ASIC technt’)lo ies [316];

the thick field oxide thins down to the thin gate oxide (known 9is o

as the bird’s beak region) is high in mechanical stress, causingll) CMOS APS (active pixel sensors) [330], [331].

it to be very radiation sensitive [306], [307]. Fringing fields )

from the source to drain bias coupled with the polysilicon gafé Processing

bias cause a h|gh field situation [308], [137] The electric fields In generaL all oxide regions of th|cknesslo nm, not

in the lateral isolation region can be controlled for hardeninggrdened by design, need to be processed to minimize the
purposes (attaining hardness levels of 50 to 100 Mrad) uUsiRgmber of hole traps and/or, judiciously, use deep electron
an additional polysilicon electrode called a field shield [309}yaps and recombination centers to produce as little net posi-
[310]. When a radiation-hardened field oxide is not availablgye charge as possible. Furthermore, techniques such as ion
and standard commercial lateral isolation techniques are usgghlantation and layered films controlling the location of
the following procedures have been shown to provide hardngggyped charges also are effective in radiation hardening oxide

of 100 krad [311]. regions. The actual recipes for process hardening, especially
1) Polysilicon should not extend over the well- to-substrafer field oxides, usually are proprietary in nature. In addition
boundary; to the general process-related and geometry considerations
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for radiation-induced threshold voltage shifts (previouslgtion hardening purposes. Recent work at NRL demonstrated
presented in Section IV-Al), it is important to review the relahat hydrogen transport can be reduced by using ion implanted
tionships of both electron and hole traps to processing detailenoclusters [284].
Radiation-induced charge is trapped at pre-existing oxide and®2) Processing Dependencies of Electron Trafsectron
interfacial defects and at defects caused by the transport araps selectively located in appropriate oxide regions can be
trapping of radiation-induced charges and radiolytic hydrogem important aspect of radiation hardening. The trapping of
[332], [266], [98], [258], [62]. After having been transportectlectrons in energetically deep stable electron traps can be used
close to the oxide/silicon interface, a fraction of the holes ate charge compensate the radiation-induced positive charge due
trapped in deep hole traps. The trapped holes then creatto &rapped holes. For a radiation-hardened 45 nm oxide, SNL
positive space charge that usually is located within 300 A of tieund that the density of deeply trapped electrons exceeded
silicon/silicon dioxide interface (with a centroid of 50-100 Ahe density of electrons in shallow traps by a factor~of3
from the interface) for thermally grown oxides [279], [333]. Foafter radiation exposure, and up to a factor of ten during biased
many years, the accepted model for creation of the precursomealing [159].
defects responsible for trapping the irradiation-induced holesShallow electron traps detected in thermally grown oxides can
has been attributed to oxygen vacancies near the oxide/silidmdue to sodium impurities [342] and various water related com-
interface [334]. However, in the 1990s, efforts in Europe arplexes [343], [344]. Such electron traps can be eliminated by ul-
at NRL have attributed a portion of the trapped positive chargiaclean technology and high temperature (100Pnitrogen an-
to be due to hole trapping at hydrogen related defects (straimeshling[345]aswellasbyrapidthermalannealingfor10sinargon
silicon-oxygen bonds near the interface that trap both holes amhitrogenambientsat60C to80(° C[338]. The densityofsuch
radiolytic hydrogen) [332], [266], [98]. electrontrapsalsocanbereducedbylowtemperaturé (25800
1) Processing Dependencies of Hole Trapss we dis- °C)annealsinforming gas (nitrogerl0% hydrogen) [346] but
cussed above, the radiation response of oxides as a functimt by high temperature (100€) anneals in forming gas (FG)
of processing is complex. Hole trapping (as measured by tf827]. Furthermore, in cases where these processes are not con-
flat-band voltage shifts of capacitance-voltage (CV) curvémolled precisely, the oxide TID effects will vary.
caused by vacuum ultra violet (VUV) optical injection of holes) Deep electron traps have been observed (using avalanche-in-
varies inversely with dry-oxygen growth temperature (withogéction techniques) in dry-oxygen grown oxides that did not
POA) over the range of 90TC to 1200°C. POA in argon—at have a high temperature POA. A POA in nitrogen—at or greater
a temperature equal to or greater than the growth tempetiaan the growth temperature—has been shown to reduce deep
ture—increases hole trapping [335]. However, hole trappingédectron traps by 18 [348], [349]. Since nearly all commer-
reduced when thermally grown oxides are annealed in ambieaial thermally grown oxides have been subjected to a POA in
(such as nitrogen or argon) containing sufficient oxygen for thétrogen at growth temperature during the furnace pull operation
partial pressure of oxygen to exceed the SiO vapor pressure(tayreduce the initial flat-band voltage), very few deep electron
at least one order of magnitude. In the converse, hole trappingps will be found. Therefore, in order to radiation harden ther-
increases for oxides annealed in vacuum [336]. mally grown oxides, the nitrogen POA needs to be eliminated or
In general, POA in oxygen decreases the number of hole traggsformed at temperatures below the growth temperature to pro-
in thermal oxides [337]. Hole trapping can be reduced in som@le the benefit of deep negatively charged electron traps [101].
thermal oxides by rapid thermal annealing (RTA) in oxygen dthese techniques of reducing the time/temperature budget of ni-
1000°C, 100 s as the observed optimal time [338]. Attempts toogen POAs were demonstrated by researchers at SNL [24] and
reduce hole trapping in buried oxide material by adding oxygevere used throughout the 1970s to radiation harden metal-gate
to reduce the number of oxygen vacancies have not been sGB40S integrated circuits.
cessful. Using supplemental oxygen implantation or internal ox- Neutral electron traps have been observed in oxides that have
idation (ITOX) to add oxygen to the buried oxide was found ndieen exposed to large doses of ionizing radiation (such as from
to reduce hole trapping, [339] but to reduce the capture crasdeam and X-ray lithography, plasma-assisted etching and de-
section for electron trapping in the buried oxide [340]. position, e-beam metallization, and plasma-assisted oxidation)
NRL has used optically assisted hole injection techniquesd then processed through postradiation high temperature an-
to demonstrate that hole trapping in thermally grown sikealing. The positive charge from the radiation dose is removed
icon dioxide films can be reduced by ion implantation [284by annealing but the electron trap remains in its neutral state
Workers at the University of Leuven (Belgium) have shown thaintil it traps an electron [350]—[352]. High pressure forming gas
annealing in pure helium can reduce the hole trap generati®G) anneals have been shown by IBM workers to remove the
during high temperature annealing as compared to annealimgptral electron traps [353].
in vacuum [341]. Performing an unbiased X-ray exposure of MOS transistors,
In spite of convincing evidence that hydrogen is deleterioutswas found that radiation-induced neutral electron trap densi-
to radiation hardness of MOS structures, little effort has beérs [354] (a problem for hot-electron reliability) vary inversely
made to derive processes reducing hydrogen content in oxigigh oxidation growth temperature (80C to 1000°C) for both
regions. Looking to the future, where single wafer processimgy-O, and dry/wet/dry oxidations [405], [355]. Neutral elec-
may be practical for low volume fabrication, possibly the clustéron traps also are generated in $iBy the ion implantation
tools used for single wafer processing could be designed to oé-silicon (10'® cm~2), [356] as well as oxyge(10*® cm~2)
duce and control oxide impurities, such as hydrogen, for radd57].
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Electron traps for radiation hardening purposes can be imles(h) are trapped at defect centers starting as oxygen va-
corporated into oxides by ion implantation [358], [359], [284]cancy precursors [81]
Electron trapping in buried oxides has been enhanced using sil- e i g4 et o
icon implantation [360]. Unlike the defects related to X-ray and =SISI= +h" —=SiT e SI= @)
electronirradiation, neutral electron traps created by the implagnere= Sit o Si = is the E/ center,= Sit is the trapped
tation of silicon (at a dose of 10 cm~2) were not removed by positive chargg N.;), and= Si indicates that the Si atom is
employing the conventional postmetal annealing conditions jipnded to three O atoms. The precursor of the hole trap (the two
FG at 400°C for times up to 60 min [356]. weakly bonded Si atoms) results mainly from imperfect oxide
Large numbers of deep electron traps can be found in Qﬁ’bwth. This variant of thet” center is called ai’, .., type
posited oxides, such as those generated by phosphorus in dqlggq].
oxides [76], carbon contamination in TEOS oxides [90], and sil- other types of2’ centers can result from the interaction of
icon nitride [361], [362] films, as well as in buried oxide regiongadiation-induced holegh ™) with SiH groups present in the

[363], [364], [248], [365]-[368], [247]. oxide [395]-[397]
3) Hardened ProcessingHardening process details are
available for the following devices and structures: =Si-H+ ht —=Sie +H*. (2)
1) metal-gate PMOS [64]; Another possibility for the radiation-induced dissociation of
2) metal-gate CMOS [48], [24], [108], [62]; SiH groups results in n&’ center (therefore, not observed by
3) deposited oxides [369]; ESR) [273]
4) field oxides [75], [76], [272], [370];
5) silicon-gate bulk CMOS [73], [300], [371]; =Si-H+ ht —=Sit +H 3
6) LOCOS [372], [373], [116]; o _ .
7) trench isolation [89], [374]; WhereE_Sl_mdlcates_thgt the Siatomis p_onded tothree O atoms,
8) nitride-oxide structures [375]-[379]; and= Si* is the radiation-induced positive char@¥,;). Such
9) SOS [69], [70], [380]-[382]; hydroge_n related processes may contribute to the difficulties in
10) CCDs [383]-[386]; correlating some deyu;e and ES_R_ data.
11) linear CMOS circuits [103], [387]; _ Furthermore, radlatlor_l sensitivity relatec_i to oxygen-vacan-
12) power MOSFETSs [388], [389]. cies (defects in MOS devices generated during oxide growth and

thought to be responsible for radiation-induced trapped positive
- charge), as detected by ESR, [80] is enhanced by nearly two
C. TID Hardness Prediction by ESR orders of magnitude ibulkamorphous silica that has been den-

ESR has been used as a tool to help predict the total igHfied by only 3% [293]. However, in the amorphous silica films
izing dose hardness for processes under development [390], PFJ]MOS devices an equal increase in mass density causes a de-
[391]. ESR can detect point defects in dielectric films by sensirgiease in radiation-induced positive charge trapping [266].
unpaired Spinsy thus the detection is Charge state dependen-f_he lack of a general correlation between radiation-induced
ESR spectroscopy has played an important role in the field 6®#pped charge and ESR also occurs for the SIMOX. Hydrogen
MOS radiation effects and hardening in spite of some major c@neal processing at 108C increases thé&” signal by 10x
relation difficulties. ESR, coupled with modeling, has helped teut the trapped positive charge increases only by 10% [398];
determine some of the particular atomic level defects respdhe £’ signal does not saturate with radiation dose (studied up to
sible for a portion of the radiation-induced charge in oxide ar@P0 Mrad), but the trapped positive charge saturates by 10 Mrad
interfacial regions of MOS devices [392], [393]. It also has bedR99], [400]. It has also been shown that in silicon implanted
used to predict the influence of particular oxide processing op&iermally grown oxides th&”’ center can be related to an elec-
ations on the concentrations of such defects and, thus, on o trap, as well as to a hole trap [401]. In cases where deep
radiation hardness. However, major obstacles were discovefdgctron traps are incorporated to compensate electrically for the
when ESR measurements were applied to fully processed cdifileterious trapped holes, and thus harden the oxide, the associ-
mercial oxides. It was found that in some cases the usual &ted ESRE’ signal is not useful in controlling or optimizing the
companying process-related microcontamination from ion irgrocess. These findings appear to preclude, for now, the general
plantation and elsewhere in the production environment cow@plicability of this technique to fully processed devices; how-
modify the electrical to ESR relationships [390]. Such a sit@ver, for the development of radiation-hardened unit processes,
ation, where the trapped radiation-induced oxide charge do@duable insights can be gained. However, caution needs to be
not track the ESR data, was observed for various oxide implagxercised when considering ESR data that has been obtained
tations [284]. In addition to the macroscopic structural diffetising corona-charging type “noncontact” methods, since it has
ences of hard and soft oxides detected by optical means, s@egn recently shown not to be noninvasive [407].
as by spectroscopic ellipsometry [287], microscopic point de-
fects detected by ESR have been related to total dose radiafbn
hardness. The prevailing model for radiation-induced TID pos- In order to meet requirements for radiation hardened parts
itive charge buildup in oxides is based on fiepoint defect as not available through commercial suppliers, SNL established a
measured by ESR spectroscopy. According to the most widelgmplete design and fabrication capability with a Class-1 (less
used model for radiation-inducdd centers, radiation-inducedthan 1 particle per ) processing facility to produce hardened

Sources for Hardened MOS Parts
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