
Improvements to Technology Mapping for LUT-Based FPGAs

Alan Mishchenko Satrajit Chatterjee Robert Brayton

Department of EECS, University of California, Berkeley
{alanmi, satrajit, brayton}@eecs.berkeley.edu

Abstract

The paper presents several improvements to state-of-the-
art in FPGA technology mapping exemplified by a recent
advanced technology mapper DAOmap [Chen and Cong,
ICCAD `04]. Improved cut enumeration computes all K-
feasible cuts without pruning for up to 7 inputs for the
largest MCNC benchmarks. A new technique for on-the-fly
cut dropping reduces by orders of magnitude memory
needed to represent cuts for large designs. Improved area
recovery leads to mappings with area on average 7%
smaller than DAOmap, while preserving delay optimality
when starting from the same optimized netlists. Applying
mapping with structural choices derived by a synthesis
flow on average reduces delay by 7% and area by 14%,
compared to DAOmap.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1
[Integrated Circuits]: Types and Design Styles—Gate
arrays; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD)

General Terms
Algorithms

Keywords
FPGA, Technology Mapping, Cut Enumeration, Area
Recovery, Lossless Synthesis

1 Introduction
Field Programmable Gate Arrays (FPGAs) are an

attractive hardware design option, making technology
mapping for FPGAs an important EDA problem. For an
excellent overview of the classical and recent work on
FPGA technology mapping, focusing on area, delay, and
power minimization, the reader is referred to [2].

The recent advanced algorithms for FPGA mapping, such
as [2][12][16][23], focus on area minimization under delay
constraints. If delay constraints are not given, first the

optimum delay for the given logic structure is found and
then area is minimized without changing delay.

In terms of the algorithms employed, the mappers are
divided into structural and functional. Structural mappers
consider the circuit graph as a given and find a covering of
the graph with K-input subgraphs corresponding to LUTs.
The functional approaches perform Boolean decomposition
of the logic functions of the nodes into sub-functions of
limited support size realizable by individual LUTs.

Since functional mappers explore a larger solution space,
they tend to be time-consuming, which limits their use to
small designs. In practice, FPGA mapping for large designs
is done using structural mappers, whereas the functional
mappers are used for resynthesis after technology mapping.

In this paper, we consider the recent work on DAOmap
[2] as representative of the advanced structural technology
mapping for LUT-based FPGAs and refer to it as “the
previous work” and discuss several ways of improving it.
Specifically, our contributions fall into three categories:

(1) Improved cut computation
Computation of all K-feasible cuts is typically a run-time

and memory bottleneck of a structural mapper. We propose
several enhancements to the standard cut enumeration
procedure [7][22]. Specifically, we introduce cut filtering
with signatures and show that it leads to a speed-up. This
makes exhaustive cut enumeration for 6 and 7 inputs
practical for many test-cases.

Since the number of K-feasible cuts per node, for large K,
can exceed 100, storing all the computed cuts in memory is
problematic for large benchmarks. We address this
difficulty by allowing cut enumeration to “drop” the cuts at
the nodes whose fanouts have already been processed. This
allows the mapper to store only a small fraction of all K-
feasible cuts at any time, thereby reducing memory usage
for large benchmarks by an order of magnitude or more.

(2) Better, simpler, and faster area recovery
Area optimization after delay-optimum structural

mapping proceeds in several passes over the network. Each
pass assigns cuts with a better area among the ones that do
not violate the required time. The previous work relied on
several sophisticated heuristics for ranking the cuts, trying
to estimate their potential to save area. The previous work
concluded that not all the heuristics are equally useful but,
to get good area, a number of them need to be applied.

In this paper, we show that the combination of two
simple techniques is enough to ensure reasonable mapping
quality and improve on the results of the previous work by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA '06, February 22–24, 2006, Monterey, California, USA.
Copyright 2006 ACM 1-59593-292-5/06/0002...$5.00.

7% on average. The proposed combination of techniques
works well since the first one attempts heuristically to find
a global optimum, whereas, the second ensures that at least
a local optimum is reached.

It should be noted that the first heuristic (known as
effective area [7] or area flow [16]) is used in the previous
work but it is applied in a reverse topological order, while
we argue below that a direct topological order works better.

(3) Lossless synthesis
The main drawback of the structural approaches to

technology mapping is their dependence on the initial
circuit structure. If the structure is bad, neither heuristics
nor iterative recovery will improve the results of mapping.

To obtain a good structure for the network several
technology independent synthesis steps are usually
performed. An example of this is script.rugged in SIS
followed by a two-input gate decomposition. Each
synthesis step in the script is heuristic, and the subject
graph produced at the end is not necessarily optimum.
Indeed, it is possible that the initial or an intermediate
network is better in some respects than the final network.

In this paper, we explore the idea of combining these
intermediate networks into a single subject graph with
choices and using that to derive the mapped netlist. The
mapper is not constrained to use any one network, but can
pick and choose the best parts of each. We call this
approach lossless synthesis, since no network seen during
the synthesis process is ever lost. By including the initial
network in the choice network, we can be sure that the
heuristic logic synthesis operations never make things
worse. We can also use multiple scripts and repeatedly go
through each accumulating more choices. We defer
discussion of related work to Section 5.3.

The rest of the paper is organized as follows. Section 2

describes the background. Sections 3-5 give details on the
three contributions of the paper listed above. Section 6
shows experimental results. Section 7 concludes the paper
and outlines future work.

2 Background
A Boolean network is a directed acyclic graph (DAG)

with nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms
network, Boolean network, and circuit are used
interchangeably in this paper.

A node has zero or more fanins, i.e. nodes that are
driving this node, and zero or more fanouts, i.e. nodes
driven by this node. The primary inputs (PIs) of the
network are nodes without fanins in the current network.
The primary outputs (POs) are a subset of nodes of the
network. If the network is sequential, the flip-flop
outputs/inputs are treated as additional PIs/POs. In the
following, it is assumed that each node has a unique integer
number called the node ID.

A network is K-bounded if the number of fanins of each
node does not exceed K. An subject graph is a K-bounded
network used for technology mapping. Any combinational
network can be represented as an AND-INV graph (AIG),
composed of two-input ANDs and inverters. Without
limiting the generality, in this paper we assume subject
graphs to be AIGs.

A cut C of node n is a set of nodes of the network, called
leaves, such that each path from a PI to n passes through at
least one leaf. A trivial cut of the node is the cut composed
of the node itself. A cut is K-feasible if the number of
nodes in it does not exceed K. A cut is said to be dominated
it there is another cut of the same node, which is contained,
set-theoretically, in the given cut.

A fanin (fanout) cone of node n is a subset of all nodes of
the network reachable through the fanin (fanout) edges
from the given node. A maximum fanout free cone (MFFC)
of node n is a subset of the fanin cone, such that every path
from a node in the subset to the POs passes through n.
Informally, the MFFC of a node contains all the logic used
only by the node. When a node is removed or substituted,
the logic in its MFFC can also be removed.

The level of a node is the length of the longest path from
any PI to the node. The node itself is counted towards the
path lengths but the PIs are not. The network depth is the
largest level of an internal node in the network. The delay
and area of FPGA mapping is measured by the depth of the
resulting LUT network and the number of LUTs in it.

A typical procedure for structural technology mapping
performs the following steps:

1. Cut computation.
2. Delay-optimum mapping.
3. Area recovery using heuristics.
4. Writing out the resulting LUT network.
For a detailed description on these steps, we refer the

reader to [2] and [16].

3 Improved cut computation
Structural technology mapping into FPGAs containing

K-input LUTs starts by computing K-feasible cuts for each
internal two-input node of the subject graph.

Of the two procedures for cut computation, the network
flow [5] and the cut enumeration [7][22], the latter is faster.
The advantage of the former is that it can be applied
incrementally to compute cuts for individual nodes.
However, at the beginning of mapping, computing cuts for
all nodes is desirable.

3.1 Cut enumeration
The result of cut enumeration is a set of all K-feasible

cuts assigned for each node. Cut enumeration starts at the
PIs and proceeds in the topological order to the POs.
Processing nodes in the topological order guarantees that
cut computation is called for an internal node after it has
completed for its fanins. For a PI, the set of cuts contains
only the trivial cut. For an internal node n with two fanins,

a and b, the set of cuts Φ(n) is computed by merging the
sets of cuts of a and b as follows:

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k}

Informally, merging two sets of cuts adds the trivial cut
of the node to the set of pair-wise unions of cuts belonging
to the fanins, while keeping only K-feasible cuts.

The resulting set of cuts, Φ(n), may contain duplicated
and dominated cuts. Removing them before computing cuts
for the next node in the order reduces the number of cut
pairs considered, without impacting the quality of mapping.
In practice, the total number of cut pairs tried greatly
exceeds the number of K-feasible cuts found. This makes
checking K-feasibility of the unions of cut pairs, and
testing duplication and dominance of individual cuts, the
performance bottle-neck of the cut computation.

3.2 Using signatures
In this paper, we propose to use signatures for testing cut

properties, such as duplication, dominance, and
K-feasibility. Conceptually, it is similar to the use of Bloom
filters for encoding sets [1] and to the use of signatures for
comparing clauses in [9]. Note that the use of signatures
only speeds up the computation; no pruning is done.

A signature, sign(C), of cut C is an M-bit integer whose
bit-wise representation contains 1s in the positions
corresponding to the node IDs. The signature is computed
by the bitwise addition of integers as follows:

sign(C) = ID() mod2
n C

n M

∈
∑ .

Testing cut properties with signatures is much faster than
testing them by directly comparing leaves. The following
propositions state the necessary conditions for duplication,
dominance, and K-feasibility of cuts. The contrapositives
of the propositions are the sufficient conditions for the cuts
to be non-duplicated, non-dominated, and not K-feasible.

Proposition 1: If cuts C1 and C2 are equal, so are their
signatures. (Thus, if the signatures of C1 and C2 are not
equal, neither are the cuts.)

Proposition 2: If cut C1 dominates cut C2, the 1s of
sign(C1) are contained in the 1s of sign(C2). (Thus, if 1s of
sign(C1) are not contained in the 1s of sign(C2), then cut C1
does not dominate cut C2.)

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) +
sign(C2)| ≤ K. (Thus, if |sign(C1) + sign(C2)| > K, then C1 ∪
C2 is not a K-feasible cut.) Here |n| denotes the number of
ones in the binary representation of n, and addition is done
modulo M.

Our current implementation uses one machine word
(composed of 32 bits on a 32-bit machine) to represent the
signature of a cut i.e. M = 32. As a result, most of the
checks are performed using several bit-wise machine
operations, and only if the signatures fail to disprove a
property, the actual comparison of leaves is performed.

3.3 Practical observations
In the literature on technology mapping, the 4-input and

5-input cuts are typically computed exhaustively, whereas
computation of cuts with more inputs is considered time-
consuming because of the large number of these cuts.
Different heuristics have been investigated in the literature
[7] to rank and prune cuts to reduce the run-time. We
experimented with these heuristics and found that they
work for area but lead to sub-optimal delay.

In order to preserve delay optimality, we focus on
perfecting the cut computation and computing all cuts
whenever possible. Pruning is done only if the number of
cuts at a node exceeds a predefined limit set to 1000 in our
experiments. When computing K-feasible cuts with
4 ≤ K ≤ 7 for the largest MCNC benchmarks, the limit was
never reached, and no pruning was performed, meaning
that the cuts were computed exhaustively. Due to the use of
signatures, the run-time for 4 ≤ K ≤ 7 was also quite
affordable, as evidenced by the experiments. However, for
8-input cuts, pruning was required for some benchmarks.

3.4 Reducing memory for cut representation
The number of K-feasible cuts for K > 5 can be large. The

average number of exhaustively computed 7-input cuts in
the largest MCNC benchmarks is around 95 cuts per node.
In large industrial designs, the total number of cuts could
be of the order of tens of millions. Therefore, once the
speed of cut enumeration is improved, memory usage for
the cut representation becomes the next pressing issue.

To address this issue, we modified the cut enumeration
algorithm to free the cuts as soon as they are not needed for
the subsequent enumeration steps. This idea is based on the
observation that the cuts of the nodes, whose fanouts have
already been processed, can be deallocated without
impacting cut enumeration. It should be noted that if
technology mapping is performed in several topological
passes over the subject graph, the cuts are re-computed in
each pass. However, given the speed of the improved cut
computation, this does not seem to be a problem.

Experimental results (presented in Table 2) show that by
enabling cut dropping, as explained above, the memory
usage for the cut representation is reduced by an order of
magnitude for MCNC benchmarks. We see that for larger
benchmarks, the reduction in memory is even more
substantial.

It is possible to reduce the run-time of the repeated cut
computation by recording the “cut enumeration trace”,
which is saved during the first pass of cut enumeration and
used in the subsequent passes. The idea is based on the
observation that, even when signatures are used, the most
time-consuming part of the cut enumeration is determining
what cut pairs lead to non-duplicated, non-dominated,
K-feasible cuts at each node. The number of such cut pairs
is very small, compared to the total number of cut pairs at
each node. The cut enumeration trace recorded in the first
pass compactly stores information about all such pairs and

the order of merging them to produce all the K-feasible cuts
at each node. The trace serves as an oracle for the
subsequent cut enumeration passes, which can now skip
checking all cut pairs and immediately derive useful cuts.

This option was implemented and tested in our cut
enumeration package but it was not used in the
experimental results because the benchmarks allowed for
storing all the cuts in memory at the same time. We
mention this option here because we expect it to be useful
for industrial mappers working on very large designs.

4 Improved area recovery
Exact area minimization during technology mapping for

DAGs is NP-hard [10] and hence not tractable for large
circuits. Various heuristics for approximate area
minimization during mapping have shown good results
[2][12][16][23].

In this study, we use a combination of two heuristics,
which work well in practice. The order of applying the
heuristics is important since they are complementary. The
first heuristic has a global view and selects logic cones with
more shared logic. The second heuristic provides a missing
local view by minimizing the area exactly at each node.

4.1 Global view heuristic
Area flow [16] (effective area [7]) is a useful extension of

the notion of area. It can be computed in one pass over the
network from the PIs to the POs. Area flow for the PIs is
set to 0. Area flow at a node n is:

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n),
where Area(n) is the area of the LUT used to map the
current best cut of node n, Leafi(n) is the i-th leaf of the
best cut at n, and NumFanouts(n) is the number of fanouts
of node n in the currently selected mapping. If a node is not
used in the current mapping, for the purposes of area flow
computation, its fanout count is assumed to be 1.

If nodes are processed from the PIs to the POs,
computing area flow is fast. The advantage of area flow
over exact area is that area flow gives a global view of how
useful is logic in the cone for the current mapping. Area
flow estimates sharing between cones without the need to
re-traverse them, which would be required if the exact area
were computed.

In our mapper, as in the previous work [2] and in [16],
area flow is the tie-breaker used in the first pass when a
delay-optimum mapping is computed. In the first stage of
area recovery, area flow is the primary cost function used
to choose among the cuts, whose arrival times do not
exceed the required times.

4.2 Local view heuristic
The second heuristic providing a local view for area

recovery in our mapper is not used in the previous work.
This heuristic looks at the exact area to be gained by
locally updating the best cut at each node when nodes are
processed in the topological order. The exact area of a cut
is defined as the sum of areas of the LUTs in the MFFC of

the cut, i.e. the LUTs to be added to the mapping if the cut
is selected as the best one. Thus, minimizing exact area at
each node is a helpful heuristic to minimize the total area of
the mapping, which still remains NP hard.

The exact area of a cut is computed using a fast local

DFS traversal of the subject graph starting from the root
node. This traversal is similar to the recursive
dereferencing of BDD nodes performed in a BDD package.
The reference counter of a node in the subject graph is
equal to the number of times it is used in the current
mapping, i.e. the number of times it appears as a leaf of the
best cut at some other node, or as a PO. Some internal
nodes may have a zero reference counter, meaning that
they are not used in the current mapping.

The exact area computation procedure is called for a cut.
It adds the cut area to the local area being computed,
dereferences the cut leaves, and recursively call itself for
the best cuts of the leaves whose reference counters are
zero. This procedure recurs as many times as there are
LUTs in the MFFC of the cut, for which it is called. This
number is typically small, which explains why computing
the exact area is reasonably quick. Once the exact area is
computed, a similar recursive referencing is performed to
reset the reference counters to their initial values, before
computing the exact area for other cuts.

We note here that MFFCs have been used in mapping
previously [6]. Decomposition of the network into MFFCs
was used for duplication-free mapping, which was
alternated with depth relaxation for area minimization.
Although both our method and [6] use MFFCs, the
heuristics are different. In particular, our work employs
reference counting for efficient computation and evaluation
of MFFCs with duplication, which facilitates logic sharing.

Experimentally we found that, after computing a delay-

optimum mapping, two passes of area recovery are enough
to produce a good quality mapping. The first pass uses the
area flow; the second one uses the exact area. Iterating area
recovery using both of the heuristics additionally saves up
to 2% of the total area of mapping, which may or may not
justify the extra run-time.

It is interesting to observe that the previous work
recovers area at each node in the reverse topological order,
whereas our mapper works in the direct topological order.
We argue that our approach works better for incremental
area recovery since it allows most of the slack to be used
on non-critical paths closer to the PIs where logic is denser
and, therefore, optimization opportunities are more
abundant. This argument is based on an observation that
many circuits are wider on the PI side than on the PO side.

5 Lossless synthesis
The idea behind lossless logic synthesis is to “remember”

some or all networks seen during a logic synthesis flow (or
a set of flows) and to select the best parts of each network
during technology mapping. This is useful for two reasons.

First, technology-independent synthesis algorithms are
usually heuristic, and so there is no guarantee that the final
network is optimum. When only the final network is used
for mapping, the mapper may miss a better result that could
be obtained from an intermediate network in the flow.

Second, synthesis operations usually apply to the network
as a whole. So a flow to optimize delay may significantly
increase area, since the whole network is optimized for
delay. By combining such a delay-optimized network with
another network that has been optimized for area, it is
possible to get the best of both. On the critical path, the
mapper can choose from the delay-optimized network,
whereas off the critical path, the mapper chooses from the
area-optimized network.

Section 5.1 gives an overview of constructing the choice
network efficiently. Section 5.2 extends the cut
computation to handle choices.

5.1 Constructing the choice network
The choice network is constructed from a collection of

networks that are functionally equivalent. The key idea is
to use recent advances in equivalence checking that are
based on identifying functionally equivalent internal points
in the networks being checked [13][15].

Conceptually the procedure is as follows: one can
imagine each network to be decomposed into AND gates
and inverters to form an AIG. Now for every node in the
network the global function is computed, say, by building
BDDs. All those nodes which have the same global
function are collected in equivalence classes. Thus, the
choice network is an AIG which has multiple functionally
equivalent points collected in equivalence classes.

However, for large circuits computing global BDDs is
not feasible. One can use random simulation to identify
potentially equivalent nodes, and then use a SAT engine to
verify equivalence and construct the equivalence classes.
To this end, we implemented a package called FRAIG
(Functionally Reduced And-Inverter Graphs) that exposes
the APIs comparable to those of a BDD package but
internally uses simulation and SAT. More details about
FRAIGs may be found in the technical report [17].

Example. Figures 1 and 2 illustrate construction of a
network with choices. Networks 1 and 2 in Figure 1 show
the subject graphs obtained from two networks that are
functionally equivalent but structurally different. The nodes
x1 and x2 in the two subject graphs are functionally
equivalent (up to complementation). They are combined in
an equivalence class in the choice network, and an arbitrary
member (x1 in this case) is set as the class representative.
Node p does not lead to a choice because p is structurally
the same in both networks. Note also that there is no choice
corresponding to the output node o since the procedure
detects the maximal commonality of the two networks.

A different way of generating choices is by iteratively
applying the Λ- and ∆-transformations [14]. Given an AIG,
we use the associativity of the AND operation to locally re-
write the graph (the Λ-transformation), i.e. whenever the

structure AND(AND(x1, x2), x3) is seen in the AIG, it is
replaced by the equivalent structures AND(AND(x1, x3), x2)
and AND(x1, AND(x2, x3)). If this process is done until no
new AND nodes are created, it is equivalent to identifying
the maximal multi-input AND-gates in the AIG and adding
all possible tree decompositions of these gates. Similarly,
the distributivity of AND over OR (the ∆-transformation)
provides another source of choices.

Using structural choices leads to a new way of thinking
about logic synthesis: rather than trying to come up with a
good final netlist used as an input to mapping, one can
accumulate choices by applying arbitrary transformations,
which lead to improvement in some sense. The best
combination of these choices is selected during mapping.

5.2 Cut enumeration with choices
The cut-based structural FPGA mapping procedure can

be extended naturally to handle equivalence classes of
nodes. It is remarkable that only the cut enumeration step
needs modification.

Given a node n, let N denote the equivalence class it
belongs to. Let Φ(N) denote the set of cuts of the

Figure 1. Equivalent networks before choicing.

Figure 2. The choice network.

equivalence class N. Then, Φ(N) = ()
n N

n
∈

Φ∪ , where, if a and

b are the two inputs of n belonging to equivalence classes A
and B, respectively,
Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}.
This expression for Φ(n) is a slight modification of the

one used in Section 3 to compute the cuts without choices.
The cuts of n are obtained from the cuts of the equivalence
classes of its fanins (instead of the cuts of its fanins). In the
absence of choices (which corresponds to the situation
when each equivalence class has only one node) this
computation is the same as the one presented in Section 3.
As before, the cut enumeration is done in one topological
pass from the PIs to the POs.

Example. Consider the computation of the 3-feasible cuts
of the equivalence class {o} in Figure 2. Let X represent
the equivalence class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2)
= {{x1}, {x2}, {q, r}, {p, s}, {q, p, e}, {p, d, r}, {p, d, e},
{b, c, s}}. We have Φ({o}) = Φ(o) = {{o}} ∪ {u ∪ v | u ∈
Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get
Φ({o}) = {{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}.
Observe that the set of cuts of o involves nodes from the
two choices x1 and x2, i.e. o may be implemented using
either of the two structures.

The subsequent steps of the mapping process (computing
delay-optimum mapping and performing area recovery)
remain unchanged, except that now the additional cuts can
be used for mapping at each node.

5.3 Related Work

Technology mapping over a network that encodes
different decompositions originated in the context of
standard cell mapping in the work of Lehman et al. [14].
Chen and Cong adapted some aspects of this method for
FPGAs in their work on SLDMap [4]. To be specific, they
identified large (5- to 8-input) AND gates in the subject
graph, and added choices corresponding to the different
decompositions of the large AND gates into 2-input AND
gates. They used BDDs to find globally equivalent points.
This limited the scalability of the approach.

The present work is an extension of our work in standard
cells [3] to FPGA mapping. This approach differs from
SLDMap in two ways. First, the use of structural
equivalence checking instead of BDDs makes the choice
detection scalable and robust. Second, instead of adding a
dense set of algebraic choices by brute-force, we add a
sparse set of (possibly Boolean) choices obtained from
synthesis. The expectation is that most of the algebraic
choices that are added are not useful, but increase run-time.
In contrast the choices added from synthesis are expected
to be better, since they are a result of optimization. This is
supported by experiments on standard cells [3] and we
expect similar results to hold for FPGAs.

6 Experimental results
The proposed improvements to FPGA technology

mapping are currently implemented in MVSIS [20] as
command fpga. The cut enumeration is implemented in
ABC [21] as command cut. (Since the first version of this
paper, command fpga was improved and ported to ABC,
making ABC our main tool for future experiments.)

6.1 Improved cut computation (run-time)

Table 1 shows the results of cut computation for the
largest MCNC benchmarks. To derive AIGs required for
cut enumeration in ABC, the benchmarks were structurally
hashed and balanced using command balance in ABC.

The experiment was performed for computing K-feasible
cuts for 4 ≤ K ≤ 8. Column N gives the number of AND
nodes in the AIG for each benchmark. Columns C/N give
the average number of cuts per node, including trivial cuts
composed of the nodes themselves. Columns T give the
run-time in seconds on an IBM ThinkPad laptop with
1.6GHz CPU and 1GB of RAM. The final column L/N lists
the percentage of nodes, for which the number of 8-input
cuts exceeded the predefined limit, set to 1000 for
benchmarks. In computing cuts for 4 ≤ K ≤ 7, the number
of cuts never exceeded the limit and, as a result, the cuts
are computed exhaustively.

In summary, although the number of cuts and their
computation time are exponential in the number of cut
inputs (K), all the cuts can be computed for up to 7 inputs
for most benchmarks in reasonable run-time, resulting in
over 100 cuts per node.

6.2 Improved cut computation (memory)

The second experiment presented in Table 2 addresses
the issue of memory requirements for the cut
representation, by showing the reduction in the peak
memory with and without cut dropping. The amount of
memory used for a K-feasible cut in the ABC data structure
is (12+4*K) bytes.

Columns labeled Total list memory usage (in megabytes)
for all the non-dominated, K-feasible cuts at all nodes.
Columns labeled Drop list the peak memory usage (in
megabytes) for the cuts at any moment in the process of cut
enumeration, when the nodes are visited in the topological
order and the cuts at a node are dropped as soon as the cuts
at all the fanouts are computed.

In summary, dropping cuts at the internal nodes after
they are computed and used reduces memory requirements
for the mapper by an order of magnitude on the largest
MCNC benchmarks, and by more then two orders of
magnitude on the large industrial benchmarks, such as [11].

6.3 Improved area recovery

Sections DAOmap and MVSIS-baseline of Table 3
compare the FPGA mapping results for 5-input LUTs using
DAOmap [2][1] and our mapper with improved area
recovery. Both DAOmap and MVSIS were run on a 4 CPU

3.00GHz computer with 510Mb RAM under Linux. The
benchmarks are pre-optimized using script.algebraic in SIS
followed by decomposition into two-input gates using
command dmig in the RASP package [8]. To ensure
identical starting logic structures, the pre-optimized circuits
from [2][1] were used in this experiment. All the resulting
netlists have been verified by a SAT-based equivalence
checker in MVSIS.

Columns 2 and 5 give the number of logic levels of LUT
networks after technology mapping. The values in these
columns are equal in all but two cases. This supports the
claim that both mappers perform delay-optimum mapping
for the given logic structure. Differences may be explained
by minor variations in the manipulation of the subject
graph, such as AIG balancing performed by MVSIS.

Columns 3 and 6 show the number of LUTs after
technology mapping. The difference between the results
produced by the two mappers reflects the fact that they use
different area recovery heuristics and, possibly, that
MVSIS-baseline performs area recovery in a topological
order, whereas DAOmap uses a reverse topological order.

Columns 4 and 7 report the run-times in seconds. These
include the time for constructing the subject graph and
perform technology mapping with area recovery but not the
time for reading the input BLIF file. For smaller
benchmarks, the differences in run-times might be
explained by the differences in the basic data structures.
The increased run-time advantages of MVSIS on larger
benchmarks may be due to better scalability and filtering
heuristics employed by the MVSIS mapper.

In summary, Table 3 demonstrates that the mapper in
MVSIS designed using the proposed heuristics for area
recovery outperforms DAOmap in area and run-time.

The run-time of FPGA mapping is dominated by the
K-feasible cut computation. The results for MVSIS
reported in Table 3 use an old implementation of cut
enumeration, which is several times slower than that
reported in Table 1. We expect the run-time of the
proposed mapper to improve after integrating the new cut
computation.

6.4 Lossless synthesis

Section MVSIS-choices of Table 3 gives mapping results
for the same benchmarks when lossless synthesis is
applied. The alternative logic structures were generated in
MVSIS by applying choice.script given in [3]. This script
is similar to script.rugged in SIS. The difference is that the
original network and five intermediate networks are
combined into one choice network while detecting
functionally equivalent nodes, as shown in Section 5. The
mapping run-time listed in Table 3 does not include the
run-time of choicing. This run-time was smaller than the
run-time of intermediate transformations of technology
independent synthesis (such as eliminate, fast_extract,
sweep etc).

Section MVSIS-choices 2x shows the results of repeated
application of mapping with choices. For this, the netlist

mapped into LUTs by the first mapping with choices was
decomposed into an AIG by factoring logic functions of the
LUTs, and subjected again to lossless synthesis followed
by mapping with choices. The last column shows the run-
time, in seconds, taken by the second iteration of mapping
with choices. As before, this run-time does not include the
run-time of logic optimization and choice generation
resulting from applying choice.script.

In summary, the above experiments demonstrate that
lossless synthesis has a potential for substantially reducing
delay and area of the mapped netlists, both as a stand-alone
mapping procedure and as a post-processing step applied to
the already computed FPGA mapping.

7 Conclusions
The paper presented several improvements to the state-

of-the-art in technology mapping for LUT-based FPGAs.
The improvements are: (1) reduction in run-time and
memory requirements for cut enumeration; (2) improved
area recovery through combined use of global-view and
local-view heuristics; and (3) improved delay and area
through the use of multiple circuit structures to mitigate
structural bias during technology mapping.

The experimental results confirm that the improved area
recovery procedure leads, on average, to a 3x improvement
in run-time and a 7% smaller area, compared to DAOmap,
while preserving the optimum delay when starting from the
same logic structure. When multiple logic structures are
used in lossless synthesis, the proposed mapper leads to 7%
improvement in delay along with a 14% reduction in area
with a slight increase in run-time, compared to DAOmap.

The next step is integrating the efficient cut enumeration
package into the FPGA mapper (currently the mapper uses
simple cut enumeration without cut dropping). The future
work will also extend the FPGA mapping to perform
integrated sequential optimization, which consists of logic
restructuring, mapping, and retiming, as presented in [19].

Acknowledgment
 This research was supported in part by NSF contract,

CCR-0312676, by the MARCO Focus Center for Circuit
System Solution under contract 2003-CT-888 and by the
California Micro program with our industrial sponsors,
Intel, Magma, and Synplicity.

The authors are grateful to Jason Cong and Deming Chen
for providing the set of pre-optimized benchmarks from
[2], which allowed for a comparison with DAOmap in
Table 3.

References
[1] B. Bloom. “Space/time tradeoffs in hash coding with allowable

errors,” Comm. of the ACM 13:7 (1970), pp. 422-426.
[2] D. Chen, J. Cong. “DAOmap: A depth-optimal area optimization

mapping algorithm for FPGA designs,” Proc. ICCAD ’04, pp. 752-
757.

[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
"Reducing structural bias in technology mapping", Proc. ICCAD '05,

pp. 519-526. http://www.eecs.berkeley.edu/~alanmi/
publications/2005/iccad05_map.pdf

[4] G. Chen and J. Cong, “Simultaneous logic decomposition with
technology mapping in FPGA designs,” Proc. FPGA `01, pp 48-55.

[5] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, Vol.13(1), Jan. 1994, pp. 1-12.

[6] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Trans. VLSI, Vol 2(2), Jun. 1994, pp
137-148.

[7] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99, pp.
29-36.

[8] J. Cong et al, RASP: FPGA/CPLD Technology Mapping and
Synthesis Package.
http://ballade.cs.ucla.edu/software_release/rasp/htdocs/

[9] N. Eén, A. Biere “Effective preprocessing in SAT through variable
and clause elimination,” Proc. SAT’05.

[10] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, vol. 13 (11), 1994, pp. 1319-1332.

[11] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[12] C.-C. Kao, Y.-T. Lai, “An efficient algorithm for finding minimum-

area FPGA technology mapping". ACM TODAES, vol. 10(1), Jan.
2005, pp. 168-186.

[13] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification," IEEE Trans. CAD, Vol. 21(12), 2002, pp. 1377-1394.

[14] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, vol.
16(8), 1997, pp. 813-833.

[15] F. Lu, L. Wang, K. Cheng, J. Moondanos and Z. Hanna, “A signal
correlation guided ATPG solver and its applications for solving
difficult industrial cases," Proc. DAC `03, pp. 668-673.

[16] V. Manohara-rajah, S. D. Brown, Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” Proc.
IWLS ’04, pp. 14-21.

[17] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton, "FRAIGs: A
unifying representation for logic synthesis and verification," ERL
Technical Report, EECS Dept., UC Berkeley, March 2005.

[18] A. Mishchenko, S. Chatterjee, R. Brayton, and M. Ciesielski, "An
integrated technology mapping environment," Proc. IWLS '05, pp.
383-390. http://www.eecs.berkeley.edu/~alanmi/publications/2005/
iwls05_env.pdf

[19] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, "Integrating
logic synthesis, technology mapping, and retiming", Proc. IWLS '05,
pp. 383-390. Also, submitted to DAC '06. http://www.eecs.berkeley.
edu/~alanmi/publications/2006/dac06_int.pdf

[20] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC
Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/

[21] Berkeley Logic Synthesis and Verification Group, ABC: A System
for Sequential Synthesis and Verification, Release 50905.
http://www.eecs.berkeley.edu/~alanmi/abc/

[22] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[23] M. Teslenko and E. Dubrova, “Hermes: LUT FPGA technology
mapping algorithm for area minimization with optimum depth,”
Proc. ICCAD ’04, pp. 748-751.

Table 1. Performance of improved K-feasible cut computation (see Section 6.1).

 K = 4 K = 5 K = 6 K = 7 K = 8

Name N C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %
alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584.1 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954.

65
7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.0

7
9.61 2.94

Table 2. Peak memory requirements, in megabytes, for the cuts with and without dropping (see Section 6.2).

 K = 4 K = 5 K = 6 K = 7 K = 8
Name Total Drop Total Drop Total Drop Total Drop Total Drop

clma 2.56 0.10 6.60 0.22 18.09 0.54 52.03 1.47 152.55 4.07
ex1010 1.87 0.37 5.45 0.97 16.25 2.27 48.40 4.68 140.70 8.38
pdc 1.90 0.27 5.69 0.75 17.42 2.00 52.75 4.98 154.56 11.83
s38417 2.28 0.15 5.28 0.37 14.12 1.10 40.80 3.55 121.98 10.25
s38584.1 1.80 0.11 3.86 0.20 8.52 0.40 19.72 0.86 47.15 1.94
spla 1.68 0.21 5.15 0.59 16.63 1.65 53.88 4.34 154.44 10.04
Ratio 1.00 0.11 1.00 0.10 1.00 0.08 1.00 0.07 1.00 0.06

Table 3. Comparing FPGA mapper with improvements with DAOmap [2] (see Section 6.3).

DAOmap MVSIS-baseline MVSIS-choices MVSIS-choices 2x Example
Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s

alu4 6 1065 0.5 6 992 0.34 6 972 0.64 6 949 +0.84
apex2 7 1352 0.6 7 1200 0.36 7 1249 0.95 7 1191 +1.34
apex4 6 931 0.7 6 891 0.24 6 895 0.74 6 894 +1.47
bigkey 3 1245 0.6 3 797 0.34 3 797 0.75 3 684 +1.07
clma 13 5425 5.9 13 4426 1.50 11 3883 4.30 11 3453 +5.20
des 5 965 0.8 5 1024 0.36 5 947 0.93 5 1104 +1.87
diffeq 10 817 0.6 10 844 0.30 9 745 0.46 9 736 +0.43
dsip 3 686 0.5 3 686 0.23 3 685 0.19 3 684 +0.36
elliptic 12 1965 2.0 12 2017 0.61 12 2005 0.72 12 2022 +1.25
ex1010 7 3564 4.0 7 3258 1.15 7 3305 3.39 7 3302 +5.80
ex5p 6 778 1.0 6 744 0.36 5 724 1.17 5 675 +1.40
frisc 16 1999 1.9 15 2009 0.76 14 1875 1.54 13 1867 +1.58
misex3 6 980 0.8 6 957 0.26 6 926 0.73 6 861 +0.94
pdc 7 3222 4.6 8 2920 1.13 7 2738 4.73 7 2692 +5.59
s298 13 1258 2.4 13 826 0.30 12 863 4.07 11 826 +1.49
s38417 9 3815 3.8 9 3864 1.46 8 2989 4.04 7 2729 +2.76
s38584 7 2987 27.0 7 2844 1.11 7 2497 2.58 6 2470 +1.69
seq 6 1188 0.8 6 1109 0.30 5 1136 0.79 6 1016 +1.38
spla 7 2734 4.0 7 2535 1.03 7 2319 4.68 7 2224 +4.79
tseng 10 706 0.6 10 752 0.25 8 719 0.39 8 705 +0.31
Ratio 1.00 1.00 1.00 1.00 0.93 0.37 0.95 0.89 0.95 0.93 0.86 1.46

