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Abstract 

The paper presents several improvements to state-of-the-
art in FPGA technology mapping exemplified by a recent 
advanced technology mapper DAOmap [Chen and Cong, 
ICCAD `04]. Improved cut enumeration computes all K-
feasible cuts without pruning for up to 7 inputs for the 
largest MCNC benchmarks. A new technique for on-the-fly 
cut dropping reduces by orders of magnitude memory 
needed to represent cuts for large designs. Improved area 
recovery leads to mappings with area on average 7% 
smaller than DAOmap, while preserving delay optimality 
when starting from the same optimized netlists. Applying 
mapping with structural choices derived by a synthesis 
flow on average reduces delay by 7% and area by 14%, 
compared to DAOmap.   

Categories and Subject Descriptors  
B.6.3 [Logic Design]: Design Aids—Optimization; B.7.1 
[Integrated Circuits]: Types and Design Styles—Gate 
arrays; J.6 [Computer-Aided Engineering]: Computer-
aided design (CAD) 

General Terms 
Algorithms 

Keywords 
FPGA, Technology Mapping, Cut Enumeration, Area 
Recovery, Lossless Synthesis 

1 Introduction 
Field Programmable Gate Arrays (FPGAs) are an 

attractive hardware design option, making technology 
mapping for FPGAs an important EDA problem. For an 
excellent overview of the classical and recent work on 
FPGA technology mapping, focusing on area, delay, and 
power minimization, the reader is referred to [2]. 

The recent advanced algorithms for FPGA mapping, such 
as [2][12][16][23], focus on area minimization under delay 
constraints. If delay constraints are not given, first the 

optimum delay for the given logic structure is found and 
then area is minimized without changing delay.  

In terms of the algorithms employed, the mappers are 
divided into structural and functional. Structural mappers 
consider the circuit graph as a given and find a covering of 
the graph with K-input subgraphs corresponding to LUTs. 
The functional approaches perform Boolean decomposition 
of the logic functions of the nodes into sub-functions of 
limited support size realizable by individual LUTs. 

Since functional mappers explore a larger solution space, 
they tend to be time-consuming, which limits their use to 
small designs. In practice, FPGA mapping for large designs 
is done using structural mappers, whereas the functional 
mappers are used for resynthesis after technology mapping. 

In this paper, we consider the recent work on DAOmap 
[2] as representative of the advanced structural technology 
mapping for LUT-based FPGAs and refer to it as “the 
previous work” and discuss several ways of improving it. 
Specifically, our contributions fall into three categories: 

(1) Improved cut computation  
Computation of all K-feasible cuts is typically a run-time 

and memory bottleneck of a structural mapper. We propose 
several enhancements to the standard cut enumeration 
procedure [7][22]. Specifically, we introduce cut filtering 
with signatures and show that it leads to a speed-up. This 
makes exhaustive cut enumeration for 6 and 7 inputs 
practical for many test-cases.  

Since the number of K-feasible cuts per node, for large K, 
can exceed 100, storing all the computed cuts in memory is 
problematic for large benchmarks. We address this 
difficulty by allowing cut enumeration to “drop” the cuts at 
the nodes whose fanouts have already been processed. This 
allows the mapper to store only a small fraction of all K-
feasible cuts at any time, thereby reducing memory usage 
for large benchmarks by an order of magnitude or more. 

(2) Better, simpler, and faster area recovery 
Area optimization after delay-optimum structural 

mapping proceeds in several passes over the network. Each 
pass assigns cuts with a better area among the ones that do 
not violate the required time. The previous work relied on 
several sophisticated heuristics for ranking the cuts, trying 
to estimate their potential to save area. The previous work 
concluded that not all the heuristics are equally useful but, 
to get good area, a number of them need to be applied. 

In this paper, we show that the combination of two 
simple techniques is enough to ensure reasonable mapping 
quality and improve on the results of the previous work by 
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7% on average. The proposed combination of techniques 
works well since the first one attempts heuristically to find 
a global optimum, whereas, the second ensures that at least 
a local optimum is reached.  

It should be noted that the first heuristic (known as 
effective area [7] or area flow [16]) is used in the previous 
work but it is applied in a reverse topological order, while 
we argue below that a direct topological order works better. 

(3) Lossless synthesis 
The main drawback of the structural approaches to 

technology mapping is their dependence on the initial 
circuit structure. If the structure is bad, neither heuristics 
nor iterative recovery will improve the results of mapping. 

To obtain a good structure for the network several 
technology independent synthesis steps are usually 
performed. An example of this is script.rugged in SIS 
followed by a two-input gate decomposition. Each 
synthesis step in the script is heuristic, and the subject 
graph produced at the end is not necessarily optimum. 
Indeed, it is possible that the initial or an intermediate 
network is better in some respects than the final network.  

In this paper, we explore the idea of combining these 
intermediate networks into a single subject graph with 
choices and using that to derive the mapped netlist. The 
mapper is not constrained to use any one network, but can 
pick and choose the best parts of each. We call this 
approach lossless synthesis, since no network seen during 
the synthesis process is ever lost. By including the initial 
network in the choice network, we can be sure that the 
heuristic logic synthesis operations never make things 
worse. We can also use multiple scripts and repeatedly go 
through each accumulating more choices. We defer 
discussion of related work to Section 5.3. 

 
The rest of the paper is organized as follows. Section 2 

describes the background. Sections 3-5 give details on the 
three contributions of the paper listed above. Section 6 
shows experimental results. Section 7 concludes the paper 
and outlines future work. 

 

2 Background 
A Boolean network is a directed acyclic graph (DAG) 

with nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms 
network, Boolean network, and circuit are used 
interchangeably in this paper. 

A node has zero or more fanins, i.e. nodes that are 
driving this node, and zero or more fanouts, i.e. nodes 
driven by this node. The primary inputs (PIs) of the 
network are nodes without fanins in the current network. 
The primary outputs (POs) are a subset of nodes of the 
network. If the network is sequential, the flip-flop 
outputs/inputs are treated as additional PIs/POs. In the 
following, it is assumed that each node has a unique integer 
number called the node ID. 

A network is K-bounded if the number of fanins of each 
node does not exceed K. An subject graph is a K-bounded 
network used for technology mapping. Any combinational 
network can be represented as an AND-INV graph (AIG), 
composed of two-input ANDs and inverters. Without 
limiting the generality, in this paper we assume subject 
graphs to be AIGs. 

A cut C of node n is a set of nodes of the network, called 
leaves, such that each path from a PI to n passes through at 
least one leaf. A trivial cut of the node is the cut composed 
of the node itself. A cut is K-feasible if the number of 
nodes in it does not exceed K. A cut is said to be dominated 
it there is another cut of the same node, which is contained, 
set-theoretically, in the given cut. 

A fanin (fanout) cone of node n is a subset of all nodes of 
the network reachable through the fanin (fanout) edges 
from the given node. A maximum fanout free cone (MFFC) 
of node n is a subset of the fanin cone, such that every path 
from a node in the subset to the POs passes through n. 
Informally, the MFFC of a node contains all the logic used 
only by the node. When a node is removed or substituted, 
the logic in its MFFC can also be removed. 

The level of a node is the length of the longest path from 
any PI to the node. The node itself is counted towards the 
path lengths but the PIs are not. The network depth is the 
largest level of an internal node in the network. The delay 
and area of FPGA mapping is measured by the depth of the 
resulting LUT network and the number of LUTs in it.  

A typical procedure for structural technology mapping 
performs the following steps: 

1. Cut computation. 
2. Delay-optimum mapping. 
3. Area recovery using heuristics. 
4. Writing out the resulting LUT network. 
For a detailed description on these steps, we refer the 

reader to [2] and [16]. 
 

3 Improved cut computation 
Structural technology mapping into FPGAs containing 

K-input LUTs starts by computing K-feasible cuts for each 
internal two-input node of the subject graph.  

Of the two procedures for cut computation, the network 
flow [5] and the cut enumeration [7][22], the latter is faster. 
The advantage of the former is that it can be applied 
incrementally to compute cuts for individual nodes. 
However, at the beginning of mapping, computing cuts for 
all nodes is desirable. 

3.1 Cut enumeration 
The result of cut enumeration is a set of all K-feasible 

cuts assigned for each node. Cut enumeration starts at the 
PIs and proceeds in the topological order to the POs. 
Processing nodes in the topological order guarantees that 
cut computation is called for an internal node after it has 
completed for its fanins. For a PI, the set of cuts contains 
only the trivial cut. For an internal node n with two fanins, 



a and b, the set of cuts Φ(n) is computed by merging the 
sets of cuts of a and b as follows: 

Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(a), u ∈ Φ(b), |u ∪ v| ≤ k} 

Informally, merging two sets of cuts adds the trivial cut 
of the node to the set of pair-wise unions of cuts belonging 
to the fanins, while keeping only K-feasible cuts.  

The resulting set of cuts, Φ(n), may contain duplicated 
and dominated cuts. Removing them before computing cuts 
for the next node in the order reduces the number of cut 
pairs considered, without impacting the quality of mapping. 
In practice, the total number of cut pairs tried greatly 
exceeds the number of K-feasible cuts found. This makes 
checking K-feasibility of the unions of cut pairs, and 
testing duplication and dominance of individual cuts, the 
performance bottle-neck of the cut computation.  

 

3.2 Using signatures 
In this paper, we propose to use signatures for testing cut 

properties, such as duplication, dominance, and 
K-feasibility. Conceptually, it is similar to the use of Bloom 
filters for encoding sets [1] and to the use of signatures for 
comparing clauses in [9]. Note that the use of signatures 
only speeds up the computation; no pruning is done. 

A signature, sign(C), of cut C is an M-bit integer whose 
bit-wise representation contains 1s in the positions 
corresponding to the node IDs. The signature is computed 
by the bitwise addition of integers as follows:   

sign(C) = ID( ) mod2
n C

n M

∈
∑ . 

Testing cut properties with signatures is much faster than 
testing them by directly comparing leaves. The following 
propositions state the necessary conditions for duplication, 
dominance, and K-feasibility of cuts. The contrapositives 
of the propositions are the sufficient conditions for the cuts 
to be non-duplicated, non-dominated, and not K-feasible.  

Proposition 1: If cuts C1 and C2 are equal, so are their 
signatures. (Thus, if the signatures of C1 and C2 are not 
equal, neither are the cuts.) 

Proposition 2: If cut C1 dominates cut C2, the 1s of 
sign(C1) are contained in the 1s of sign(C2). (Thus, if 1s of 
sign(C1) are not contained in the 1s of sign(C2), then cut C1 
does not dominate cut C2.) 

Proposition 3: If C1 ∪ C2 is a K-feasible cut, |sign(C1) + 
sign(C2)| ≤ K. (Thus, if |sign(C1) + sign(C2)| > K, then C1 ∪ 
C2 is not a K-feasible cut.) Here |n| denotes the number of 
ones in the binary representation of n, and addition is done 
modulo M.  

Our current implementation uses one machine word 
(composed of 32 bits on a 32-bit machine) to represent the 
signature of a cut i.e. M = 32. As a result, most of the 
checks are performed using several bit-wise machine 
operations, and only if the signatures fail to disprove a 
property, the actual comparison of leaves is performed. 

3.3 Practical observations 
In the literature on technology mapping, the 4-input and 

5-input cuts are typically computed exhaustively, whereas 
computation of cuts with more inputs is considered time-
consuming because of the large number of these cuts. 
Different heuristics have been investigated in the literature 
[7] to rank and prune cuts to reduce the run-time. We 
experimented with these heuristics and found that they 
work for area but lead to sub-optimal delay.  

In order to preserve delay optimality, we focus on 
perfecting the cut computation and computing all cuts 
whenever possible. Pruning is done only if the number of 
cuts at a node exceeds a predefined limit set to 1000 in our 
experiments. When computing K-feasible cuts with 
4 ≤ K ≤ 7 for the largest MCNC benchmarks, the limit was 
never reached, and no pruning was performed, meaning 
that the cuts were computed exhaustively. Due to the use of 
signatures, the run-time for 4 ≤ K ≤ 7 was also quite 
affordable, as evidenced by the experiments. However, for 
8-input cuts, pruning was required for some benchmarks.  

3.4 Reducing memory for cut representation 
The number of K-feasible cuts for K > 5 can be large. The 

average number of exhaustively computed 7-input cuts in 
the largest MCNC benchmarks is around 95 cuts per node. 
In large industrial designs, the total number of cuts could 
be of the order of tens of millions. Therefore, once the 
speed of cut enumeration is improved, memory usage for 
the cut representation becomes the next pressing issue. 

To address this issue, we modified the cut enumeration 
algorithm to free the cuts as soon as they are not needed for 
the subsequent enumeration steps. This idea is based on the 
observation that the cuts of the nodes, whose fanouts have 
already been processed, can be deallocated without 
impacting cut enumeration. It should be noted that if 
technology mapping is performed in several topological 
passes over the subject graph, the cuts are re-computed in 
each pass. However, given the speed of the improved cut 
computation, this does not seem to be a problem. 

Experimental results (presented in Table 2) show that by 
enabling cut dropping, as explained above, the memory 
usage for the cut representation is reduced by an order of 
magnitude for MCNC benchmarks. We see that for larger 
benchmarks, the reduction in memory is even more 
substantial. 

It is possible to reduce the run-time of the repeated cut 
computation by recording the “cut enumeration trace”, 
which is saved during the first pass of cut enumeration and 
used in the subsequent passes. The idea is based on the 
observation that, even when signatures are used, the most 
time-consuming part of the cut enumeration is determining 
what cut pairs lead to non-duplicated, non-dominated, 
K-feasible cuts at each node. The number of such cut pairs 
is very small, compared to the total number of cut pairs at 
each node. The cut enumeration trace recorded in the first 
pass compactly stores information about all such pairs and 



the order of merging them to produce all the K-feasible cuts 
at each node. The trace serves as an oracle for the 
subsequent cut enumeration passes, which can now skip 
checking all cut pairs and immediately derive useful cuts.  

This option was implemented and tested in our cut 
enumeration package but it was not used in the 
experimental results because the benchmarks allowed for 
storing all the cuts in memory at the same time. We 
mention this option here because we expect it to be useful 
for industrial mappers working on very large designs. 

4 Improved area recovery 
Exact area minimization during technology mapping for 

DAGs is NP-hard [10] and hence not tractable for large 
circuits. Various heuristics for approximate area 
minimization during mapping have shown good results 
[2][12][16][23].  

In this study, we use a combination of two heuristics, 
which work well in practice. The order of applying the 
heuristics is important since they are complementary. The 
first heuristic has a global view and selects logic cones with 
more shared logic. The second heuristic provides a missing 
local view by minimizing the area exactly at each node.  

4.1 Global view heuristic 
Area flow [16] (effective area [7]) is a useful extension of 

the notion of area. It can be computed in one pass over the 
network from the PIs to the POs. Area flow for the PIs is 
set to 0. Area flow at a node n is:  

AF(n) = [Area(n) + ΣiAF(Leafi(n))] / NumFanouts(n), 
where Area(n) is the area of the LUT used to map the 
current best cut of node n, Leafi(n) is the i-th leaf of the 
best cut at n, and NumFanouts(n) is the number of fanouts 
of node n in the currently selected mapping. If a node is not 
used in the current mapping, for the purposes of area flow 
computation, its fanout count is assumed to be 1. 

If nodes are processed from the PIs to the POs, 
computing area flow is fast. The advantage of area flow 
over exact area is that area flow gives a global view of how 
useful is logic in the cone for the current mapping. Area 
flow estimates sharing between cones without the need to 
re-traverse them, which would be required if the exact area 
were computed. 

In our mapper, as in the previous work [2] and in [16], 
area flow is the tie-breaker used in the first pass when a 
delay-optimum mapping is computed. In the first stage of 
area recovery, area flow is the primary cost function used 
to choose among the cuts, whose arrival times do not 
exceed the required times.  

4.2 Local view heuristic 
The second heuristic providing a local view for area 

recovery in our mapper is not used in the previous work. 
This heuristic looks at the exact area to be gained by 
locally updating the best cut at each node when nodes are 
processed in the topological order. The exact area of a cut 
is defined as the sum of areas of the LUTs in the MFFC of 

the cut, i.e. the LUTs to be added to the mapping if the cut 
is selected as the best one. Thus, minimizing exact area at 
each node is a helpful heuristic to minimize the total area of 
the mapping, which still remains NP hard. 

 
The exact area of a cut is computed using a fast local 

DFS traversal of the subject graph starting from the root 
node. This traversal is similar to the recursive 
dereferencing of BDD nodes performed in a BDD package. 
The reference counter of a node in the subject graph is 
equal to the number of times it is used in the current 
mapping, i.e. the number of times it appears as a leaf of the 
best cut at some other node, or as a PO. Some internal 
nodes may have a zero reference counter, meaning that 
they are not used in the current mapping. 

The exact area computation procedure is called for a cut. 
It adds the cut area to the local area being computed, 
dereferences the cut leaves, and recursively call itself for 
the best cuts of the leaves whose reference counters are 
zero. This procedure recurs as many times as there are 
LUTs in the MFFC of the cut, for which it is called. This 
number is typically small, which explains why computing 
the exact area is reasonably quick. Once the exact area is 
computed, a similar recursive referencing is performed to 
reset the reference counters to their initial values, before 
computing the exact area for other cuts. 

We note here that MFFCs have been used in mapping 
previously [6]. Decomposition of the network into MFFCs 
was used for duplication-free mapping, which was 
alternated with depth relaxation for area minimization. 
Although both our method and [6] use MFFCs, the 
heuristics are different. In particular, our work employs 
reference counting for efficient computation and evaluation 
of MFFCs with duplication, which facilitates logic sharing. 

 
Experimentally we found that, after computing a delay-

optimum mapping, two passes of area recovery are enough 
to produce a good quality mapping. The first pass uses the 
area flow; the second one uses the exact area. Iterating area 
recovery using both of the heuristics additionally saves up 
to 2% of the total area of mapping, which may or may not 
justify the extra run-time. 

It is interesting to observe that the previous work 
recovers area at each node in the reverse topological order, 
whereas our mapper works in the direct topological order. 
We argue that our approach works better for incremental 
area recovery since it allows most of the slack to be used 
on non-critical paths closer to the PIs where logic is denser 
and, therefore, optimization opportunities are more 
abundant. This argument is based on an observation that 
many circuits are wider on the PI side than on the PO side. 

5 Lossless synthesis 
The idea behind lossless logic synthesis is to “remember” 

some or all networks seen during a logic synthesis flow (or 
a set of flows) and to select the best parts of each network 
during technology mapping. This is useful for two reasons. 



First, technology-independent synthesis algorithms are 
usually heuristic, and so there is no guarantee that the final 
network is optimum. When only the final network is used 
for mapping, the mapper may miss a better result that could 
be obtained from an intermediate network in the flow. 

Second, synthesis operations usually apply to the network 
as a whole. So a flow to optimize delay may significantly 
increase area, since the whole network is optimized for 
delay. By combining such a delay-optimized network with 
another network that has been optimized for area, it is 
possible to get the best of both. On the critical path, the 
mapper can choose from the delay-optimized network, 
whereas off the critical path, the mapper chooses from the 
area-optimized network. 

Section 5.1 gives an overview of constructing the choice 
network efficiently. Section 5.2 extends the cut 
computation to handle choices. 

5.1 Constructing the choice network 
The choice network is constructed from a collection of 

networks that are functionally equivalent. The key idea is 
to use recent advances in equivalence checking that are 
based on identifying functionally equivalent internal points 
in the networks being checked [13][15].  

Conceptually the procedure is as follows: one can 
imagine each network to be decomposed into AND gates 
and inverters to form an AIG. Now for every node in the 
network the global function is computed, say, by building 
BDDs. All those nodes which have the same global 
function are collected in equivalence classes. Thus, the 
choice network is an AIG which has multiple functionally 
equivalent points collected in equivalence classes. 

However, for large circuits computing global BDDs is 
not feasible. One can use random simulation to identify 
potentially equivalent nodes, and then use a SAT engine to 
verify equivalence and construct the equivalence classes. 
To this end, we implemented a package called FRAIG 
(Functionally Reduced And-Inverter Graphs) that exposes 
the APIs comparable to those of a BDD package but 
internally uses simulation and SAT. More details about 
FRAIGs may be found in the technical report [17]. 

Example. Figures 1 and 2 illustrate construction of a 
network with choices. Networks 1 and 2 in Figure 1 show 
the subject graphs obtained from two networks that are 
functionally equivalent but structurally different. The nodes 
x1 and x2 in the two subject graphs are functionally 
equivalent (up to complementation). They are combined in 
an equivalence class in the choice network, and an arbitrary 
member (x1 in this case) is set as the class representative. 
Node p does not lead to a choice because p is structurally 
the same in both networks. Note also that there is no choice 
corresponding to the output node o since the procedure 
detects the maximal commonality of the two networks. 

A different way of generating choices is by iteratively 
applying the Λ- and ∆-transformations [14]. Given an AIG, 
we use the associativity of the AND operation to locally re-
write the graph (the Λ-transformation), i.e. whenever the 

structure AND(AND(x1, x2), x3) is seen in the AIG, it is 
replaced by the equivalent structures AND(AND(x1, x3), x2) 
and AND(x1, AND(x2, x3)). If this process is done until no 
new AND nodes are created, it is equivalent to identifying 
the maximal multi-input AND-gates in the AIG and adding 
all possible tree decompositions of these gates. Similarly, 
the distributivity of AND over OR (the ∆-transformation) 
provides another source of choices. 

Using structural choices leads to a new way of thinking 
about logic synthesis: rather than trying to come up with a 
good final netlist used as an input to mapping, one can 
accumulate choices by applying arbitrary transformations, 
which lead to improvement in some sense. The best 
combination of these choices is selected during mapping.  

5.2 Cut enumeration with choices 
The cut-based structural FPGA mapping procedure can 

be extended naturally to handle equivalence classes of 
nodes. It is remarkable that only the cut enumeration step 
needs modification. 

Given a node n, let N denote the equivalence class it 
belongs to. Let Φ(N) denote the set of cuts of the 

Figure 1. Equivalent networks before choicing. 

Figure 2. The choice network. 



equivalence class N. Then, Φ(N) = ( )
n N

n
∈

Φ∪ , where, if a and 

b are the two inputs of n belonging to equivalence classes A 
and B, respectively,  
Φ(n) ={{n}} ∪ {u ∪ v | u ∈ Φ(A), u ∈ Φ(B), |u ∪ v| ≤ k}. 
This expression for Φ(n) is a slight modification of the 

one used in Section 3 to compute the cuts without choices. 
The cuts of n are obtained from the cuts of the equivalence 
classes of its fanins (instead of the cuts of its fanins). In the 
absence of choices (which corresponds to the situation 
when each equivalence class has only one node) this 
computation is the same as the one presented in Section 3. 
As before, the cut enumeration is done in one topological 
pass from the PIs to the POs. 

Example. Consider the computation of the 3-feasible cuts 
of the equivalence class {o} in Figure 2. Let X represent 
the equivalence class {x1, x2}. Now, Φ(X) = Φ(x1) ∪ Φ(x2) 
= {{x1}, {x2}, {q, r}, {p, s}, {q, p, e}, {p, d, r}, {p, d, e}, 
{b, c, s}}. We have Φ({o}) = Φ(o) = {{o}} ∪ {u ∪ v | u ∈ 
Φ({a}), u ∈ Φ({x1}), |u ∪ v| ≤ 3}.  

Since Φ({a}) = Φ(a) = {a} and Φ({x1}) = Φ(X), we get 
Φ({o}) = {{o}, {a, x1}, {a, x2}, {a, q, r}, {a, p, s}}. 
Observe that the set of cuts of o involves nodes from the 
two choices x1 and x2, i.e. o may be implemented using 
either of the two structures. 

The subsequent steps of the mapping process (computing 
delay-optimum mapping and performing area recovery) 
remain unchanged, except that now the additional cuts can 
be used for mapping at each node. 

5.3 Related Work 

Technology mapping over a network that encodes 
different decompositions originated in the context of 
standard cell mapping in the work of Lehman et al. [14]. 
Chen and Cong adapted some aspects of this method for 
FPGAs in their work on SLDMap [4]. To be specific, they 
identified large (5- to 8-input) AND gates in the subject 
graph, and added choices corresponding to the different 
decompositions of the large AND gates into 2-input AND 
gates. They used BDDs to find globally equivalent points. 
This limited the scalability of the approach. 

The present work is an extension of our work in standard 
cells [3] to FPGA mapping. This approach differs from 
SLDMap in two ways. First, the use of structural 
equivalence checking instead of BDDs makes the choice 
detection scalable and robust. Second, instead of adding a 
dense set of algebraic choices by brute-force, we add a 
sparse set of (possibly Boolean) choices obtained from 
synthesis. The expectation is that most of the algebraic 
choices that are added are not useful, but increase run-time. 
In contrast the choices added from synthesis are expected 
to be better, since they are a result of optimization. This is 
supported by experiments on standard cells [3] and we 
expect similar results to hold for FPGAs. 

 

6 Experimental results 
The proposed improvements to FPGA technology 

mapping are currently implemented in MVSIS [20] as 
command fpga. The cut enumeration is implemented in 
ABC [21] as command cut. (Since the first version of this 
paper, command fpga was improved and ported to ABC, 
making ABC our main tool for future experiments.)  

6.1 Improved cut computation (run-time) 

Table 1 shows the results of cut computation for the 
largest MCNC benchmarks. To derive AIGs required for 
cut enumeration in ABC, the benchmarks were structurally 
hashed and balanced using command balance in ABC. 

The experiment was performed for computing K-feasible 
cuts for 4 ≤ K ≤ 8. Column N gives the number of AND 
nodes in the AIG for each benchmark. Columns C/N give 
the average number of cuts per node, including trivial cuts 
composed of the nodes themselves. Columns T give the 
run-time in seconds on an IBM ThinkPad laptop with 
1.6GHz CPU and 1GB of RAM. The final column L/N lists 
the percentage of nodes, for which the number of 8-input 
cuts exceeded the predefined limit, set to 1000 for 
benchmarks. In computing cuts for 4 ≤ K ≤ 7, the number 
of cuts never exceeded the limit and, as a result, the cuts 
are computed exhaustively.  

In summary, although the number of cuts and their 
computation time are exponential in the number of cut 
inputs (K), all the cuts can be computed for up to 7 inputs 
for most benchmarks in reasonable run-time, resulting in 
over 100 cuts per node.  

6.2 Improved cut computation (memory) 

The second experiment presented in Table 2 addresses 
the issue of memory requirements for the cut 
representation, by showing the reduction in the peak 
memory with and without cut dropping. The amount of 
memory used for a K-feasible cut in the ABC data structure 
is (12+4*K) bytes. 

Columns labeled Total list memory usage (in megabytes) 
for all the non-dominated, K-feasible cuts at all nodes. 
Columns labeled Drop list the peak memory usage (in 
megabytes) for the cuts at any moment in the process of cut 
enumeration, when the nodes are visited in the topological 
order and the cuts at a node are dropped as soon as the cuts 
at all the fanouts are computed.  

In summary, dropping cuts at the internal nodes after 
they are computed and used reduces memory requirements 
for the mapper by an order of magnitude on the largest 
MCNC benchmarks, and by more then two orders of 
magnitude on the large industrial benchmarks, such as [11]. 

6.3 Improved area recovery 

Sections DAOmap and MVSIS-baseline of Table 3 
compare the FPGA mapping results for 5-input LUTs using 
DAOmap [2][1] and our mapper with improved area 
recovery. Both DAOmap and MVSIS were run on a 4 CPU 



3.00GHz computer with 510Mb RAM under Linux. The 
benchmarks are pre-optimized using script.algebraic in SIS 
followed by decomposition into two-input gates using 
command dmig in the RASP package [8]. To ensure 
identical starting logic structures, the pre-optimized circuits 
from [2][1] were used in this experiment. All the resulting 
netlists have been verified by a SAT-based equivalence 
checker in MVSIS. 

Columns 2 and 5 give the number of logic levels of LUT 
networks after technology mapping. The values in these 
columns are equal in all but two cases. This supports the 
claim that both mappers perform delay-optimum mapping 
for the given logic structure. Differences may be explained 
by minor variations in the manipulation of the subject 
graph, such as AIG balancing performed by MVSIS. 

Columns 3 and 6 show the number of LUTs after 
technology mapping. The difference between the results 
produced by the two mappers reflects the fact that they use 
different area recovery heuristics and, possibly, that 
MVSIS-baseline performs area recovery in a topological 
order, whereas DAOmap uses a reverse topological order.  

Columns 4 and 7 report the run-times in seconds. These 
include the time for constructing the subject graph and 
perform technology mapping with area recovery but not the 
time for reading the input BLIF file. For smaller 
benchmarks, the differences in run-times might be 
explained by the differences in the basic data structures. 
The increased run-time advantages of MVSIS on larger 
benchmarks may be due to better scalability and filtering 
heuristics employed by the MVSIS mapper.  

In summary, Table 3 demonstrates that the mapper in 
MVSIS designed using the proposed heuristics for area 
recovery outperforms DAOmap in area and run-time.  

The run-time of FPGA mapping is dominated by the 
K-feasible cut computation. The results for MVSIS 
reported in Table 3 use an old implementation of cut 
enumeration, which is several times slower than that 
reported in Table 1. We expect the run-time of the 
proposed mapper to improve after integrating the new cut 
computation. 

6.4 Lossless synthesis 

Section MVSIS-choices of Table 3 gives mapping results 
for the same benchmarks when lossless synthesis is 
applied. The alternative logic structures were generated in 
MVSIS by applying choice.script given in [3]. This script 
is similar to script.rugged in SIS. The difference is that the 
original network and five intermediate networks are 
combined into one choice network while detecting 
functionally equivalent nodes, as shown in Section 5. The 
mapping run-time listed in Table 3 does not include the 
run-time of choicing. This run-time was smaller than the 
run-time of intermediate transformations of technology 
independent synthesis (such as eliminate, fast_extract, 
sweep etc). 

Section MVSIS-choices 2x shows the results of repeated 
application of mapping with choices. For this, the netlist 

mapped into LUTs by the first mapping with choices was 
decomposed into an AIG by factoring logic functions of the 
LUTs, and subjected again to lossless synthesis followed 
by mapping with choices. The last column shows the run-
time, in seconds, taken by the second iteration of mapping 
with choices. As before, this run-time does not include the 
run-time of logic optimization and choice generation 
resulting from applying choice.script. 

In summary, the above experiments demonstrate that 
lossless synthesis has a potential for substantially reducing 
delay and area of the mapped netlists, both as a stand-alone 
mapping procedure and as a post-processing step applied to 
the already computed FPGA mapping. 

7 Conclusions 
The paper presented several improvements to the state-

of-the-art in technology mapping for LUT-based FPGAs. 
The improvements are: (1) reduction in run-time and 
memory requirements for cut enumeration; (2) improved 
area recovery through combined use of global-view and 
local-view heuristics; and (3) improved delay and area 
through the use of multiple circuit structures to mitigate 
structural bias during technology mapping.  

The experimental results confirm that the improved area 
recovery procedure leads, on average, to a 3x improvement 
in run-time and a 7% smaller area, compared to DAOmap, 
while preserving the optimum delay when starting from the 
same logic structure. When multiple logic structures are 
used in lossless synthesis, the proposed mapper leads to 7% 
improvement in delay along with a 14% reduction in area 
with a slight increase in run-time, compared to DAOmap. 

The next step is integrating the efficient cut enumeration 
package into the FPGA mapper (currently the mapper uses 
simple cut enumeration without cut dropping). The future 
work will also extend the FPGA mapping to perform 
integrated sequential optimization, which consists of logic 
restructuring, mapping, and retiming, as presented in [19]. 
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Table 1. Performance of improved K-feasible cut computation (see Section 6.1). 

 
  K = 4 K = 5 K = 6 K = 7 K = 8 

Name N C/N T, s C/N T, s C/N T, s C/N T, s C/N T, s L/N, %
alu4 2642 6.7 0.00 12.3 0.01 23.1 0.04 45.5 0.18 94.7 1.02 0.00
apex2 2940 7.2 0.01 14.2 0.02 29.2 0.07 62.6 0.32 139.7 1.90 0.00
apex4 2017 8.5 0.00 19.5 0.03 47.0 0.10 116.3 0.62 293.5 4.49 0.10
bigkey 3080 6.6 0.01 12.1 0.02 24.2 0.05 50.1 0.20 99.7 0.84 0.00
clma 11869 8.1 0.04 18.2 0.11 44.4 0.51 114.9 3.01 306.3 20.99 1.64
des 3020 8.0 0.01 17.0 0.03 38.7 0.12 92.0 0.69 218.0 4.80 4.37
diffeq 2566 6.5 0.01 12.3 0.01 26.6 0.07 65.0 0.50 155.9 2.80 3.66
dsip 2521 6.2 0.01 10.7 0.01 20.7 0.03 42.0 0.10 86.7 0.44 0.00
elliptic 5502 6.4 0.01 10.6 0.03 18.5 0.07 36.9 0.33 83.4 2.12 0.20
ex1010 7652 9.2 0.02 23.3 0.11 61.8 0.61 165.8 4.01 438.2 30.43 1.99
ex5p 1719 9.4 0.01 24.1 0.02 66.2 0.17 188.2 1.30 514.8 10.50 14.14
frisc 5905 7.1 0.01 14.4 0.04 32.3 0.16 79.8 0.88 209.0 6.30 1.24
misex3 2441 7.7 0.01 15.7 0.02 33.3 0.08 73.7 0.38 170.7 2.48 0.00
pdc 7527 9.4 0.03 24.8 0.12 67.4 0.68 183.7 4.41 489.4 31.71 4.40
s298 2514 7.9 0.00 17.5 0.02 44.0 0.13 121.9 0.94 346.5 7.10 7.56
s38417 12867 6.6 0.03 13.5 0.10 32.0 0.46 83.1 3.24 225.9 23.72 3.38
s38584.1 11074 6.1 0.03 11.4 0.06 22.4 0.20 46.7 0.98 101.5 5.81 0.86
seq 2761 7.5 0.00 15.2 0.02 31.7 0.08 68.6 0.37 153.3 2.25 0.04
spla 6556 9.6 0.03 25.8 0.11 73.9 0.69 215.5 4.98 561.4 31.14 13.83
tseng 1920 6.5 0.01 11.8 0.01 23.5 0.04 50.6 0.21 112.7 1.32 1.35
Average 4954.

65 
7.56 0.01 16.22 0.05 38.05 0.22 95.15 1.38 240.0

7 
9.61 2.94

 
 
 

Table 2. Peak memory requirements, in megabytes, for the cuts with and without dropping (see Section 6.2). 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 K = 4 K = 5 K = 6 K = 7 K = 8 
Name Total Drop Total Drop Total Drop Total Drop Total Drop 

clma 2.56 0.10 6.60 0.22 18.09 0.54 52.03 1.47 152.55 4.07
ex1010 1.87 0.37 5.45 0.97 16.25 2.27 48.40 4.68 140.70 8.38
pdc 1.90 0.27 5.69 0.75 17.42 2.00 52.75 4.98 154.56 11.83
s38417 2.28 0.15 5.28 0.37 14.12 1.10 40.80 3.55 121.98 10.25
s38584.1 1.80 0.11 3.86 0.20 8.52 0.40 19.72 0.86 47.15 1.94
spla 1.68 0.21 5.15 0.59 16.63 1.65 53.88 4.34 154.44 10.04
Ratio 1.00 0.11 1.00 0.10 1.00 0.08 1.00 0.07 1.00 0.06



Table 3. Comparing FPGA mapper with improvements with DAOmap [2] (see Section 6.3). 
 

DAOmap MVSIS-baseline MVSIS-choices MVSIS-choices 2x Example 
Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s Depth LUTs T, s 

alu4 6 1065 0.5 6 992 0.34 6 972 0.64 6 949 +0.84
apex2 7 1352 0.6 7 1200 0.36 7 1249 0.95 7 1191 +1.34
apex4 6 931 0.7 6 891 0.24 6 895 0.74 6 894 +1.47
bigkey 3 1245 0.6 3 797 0.34 3 797 0.75 3 684 +1.07
clma 13 5425 5.9 13 4426 1.50 11 3883 4.30 11 3453 +5.20
des 5 965 0.8 5 1024 0.36 5 947 0.93 5 1104 +1.87
diffeq 10 817 0.6 10 844 0.30 9 745 0.46 9 736 +0.43
dsip 3 686 0.5 3 686 0.23 3 685 0.19 3 684 +0.36
elliptic 12 1965 2.0 12 2017 0.61 12 2005 0.72 12 2022 +1.25
ex1010 7 3564 4.0 7 3258 1.15 7 3305 3.39 7 3302 +5.80
ex5p 6 778 1.0 6 744 0.36 5 724 1.17 5 675 +1.40
frisc 16 1999 1.9 15 2009 0.76 14 1875 1.54 13 1867 +1.58
misex3 6 980 0.8 6 957 0.26 6 926 0.73 6 861 +0.94
pdc 7 3222 4.6 8 2920 1.13 7 2738 4.73 7 2692 +5.59
s298 13 1258 2.4 13 826 0.30 12 863 4.07 11 826 +1.49
s38417 9 3815 3.8 9 3864 1.46 8 2989 4.04 7 2729 +2.76
s38584 7 2987 27.0 7 2844 1.11 7 2497 2.58 6 2470 +1.69
seq 6 1188 0.8 6 1109 0.30 5 1136 0.79 6 1016 +1.38
spla 7 2734 4.0 7 2535 1.03 7 2319 4.68 7 2224 +4.79
tseng 10 706 0.6 10 752 0.25 8 719 0.39 8 705 +0.31
Ratio 1.00 1.00 1.00 1.00 0.93 0.37 0.95 0.89 0.95 0.93 0.86 1.46

 


