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Abstract1 

We discuss the simplification of non-deterministic MV 
networks and their internal nodes using internal flexibilities. 
Given the network structure and its external specification, the 
flexibility at a node is derived as a non-deterministic MV 
relation. This flexibility is used to simplify the node 
representation and enhance the effect of Boolean resubstitution. 
We show that the flexibility derived is maximum. The proposed 
approach has been implemented and tested in MVSIS [16]. 
Experimental results show that it performs well on a variety of 
MV and binary benchmarks.  

1 Introduction 

The simplification of multi-valued (MV) logic networks is an 
important step in solving problems formulated in terms of MV 
logic. These include MV logic synthesis [9], software-hardware 
co-design [6][8], asynchronous circuit synthesis [10], and data 
mining [5].  

Optimization of MV networks is achieved by applying a 
number of logic simplification and restructuring operations. One 
such method consists of deriving internal don’t-cares for the 
logic functions of the nodes based on the particular network 
structure. These don’t-cares are used to simplify the nodes’ 
representations. A version of don’t-care simplification for 
binary networks, developed in [17], uses a combination of 
satisfiability don’t-cares (SDCs) and compatible observability 
don’t-cares (CODCs). It was implemented as command 
full_simplify in SIS [1], with several improvements reported in 
[18]. Recently, it was shown that a CODC can be computed 
independently of a node’s implementation [2]. The concept of 
CODCs was generalized for MV networks and successfully 
implemented [7] (fullsimp in MVSIS) and applied to MV 
network optimization. Like SIS, MVSIS can be applied to 
sequential circuits, FSMs and automata. 

We provide a new scheme to compute the flexibility of a node 
in an MV network. The flexibility computed is complete 
(maximum) but not compatible. Hence, it must be used, to 
simplify the node, before any other nodes are changed. Because 
the flexibility is complete, it allows for a more thorough 
simplification compared to compatible or partial flexibility 
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derived by other methods, which are subsets of the complete 
flexibility.  

Although complete (or maximum) flexibility has been derived 
for Boolean networks where each node has a single binary 
output [19] and even for networks with multi-output binary 
nodes (Boolean relations) [20], no result existed for MV 
networks. 

The present work differs from [7] in the following ways: 
•  the node representation before and after simplification 

can be non-deterministic; 
•  flexibility is derived as a non-deterministic relation; 
•  maximum (not compatible) flexibilities are used; 
•  “partial cares” are used for minimization; 
•  new methods for MV-SOP minimization, including a 

minimum non-deterministic cover, are developed. 
These ideas have been implemented as a new MVSIS 

command, complete_simplify, which is more effective than 
other network simplification options in MVSIS [16], such as 
fullsimp [7].  

The rest of the paper is organized as follows. Section 2 
supplies necessary background in multi-valued logic. Section 3 
presents an algorithm to compute the complete flexibility for a 
MV node in the MV network. Section 4 discusses the 
simplification of the nodes using this flexibility. Section 4.4 
addresses fast computation of MV irredundant sums-of-product 
(MV-ISOP). Section 5 gives some experimental results. Section 
6 concludes the paper.  

2 Background  

2.1 Multi-Valued Relations 
Definition. Let the domain of a multi-valued variable ai be 

denoted as Dai. An MV relation R with MV input variables {ai} 
and an MV output variable z relates input minterms to output 
values: 

R(a1, a2,…,an, z):   Da1×Da2×…×Dan×Dz→ {0,1}. 
Definition. The set of minterms of the combined input 

domains of relation R, where the output takes only one value, 
is the care set of R. The set of minterms, where the output is the 
set of all possible values, is the don’t-care set of R. The set of 
other minterms is the partial care set of R. 

Definition. If the total domain of R is the care set, R is a 
completely specified MV function. If the total domain of R 
consists of the care set and the don’t-care set, R is an 
incompletely specified MV function. If the domain of R contains 
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as least one partial care minterm, R is a partially specified (non-
deterministic) MV relation.2  

Example. Figure 1 shows three ternary MV relations 
depending on binary variable a and ternary variable b. Relation 
R1 is completely specified; R2 is incompletely specified; R3 is 
partially specified, or non-deterministic. 

 R1  R2  R3  
 b\a 0 1  b\a 0 1  b\a 0 1  
 0 0 2  0 0,1,2 2  0 0,1 1,2  
 1 0 0  1 0 0  1 0,1 0  
 2 1 0  2 0,1,2 0  2 0,1,2 0,1  

Figure 1. Example illustrating types of MV relations. 

Definition. The i-th on-set (called i-set) of MV relation R is 
the MV-input binary-output function Fj defined over the input 
domain of R and taking value 1 for those minterms where the 
set of output values of R contains value i. The essential i-set 
consists of those minterms where the output value set consists 
of only value i. 

Note that the i-sets of a completely specified MV function are 
pair-wise disjoint. The i-sets of an incompletely specified 
relation or partially specified relation can overlap. The essential 
i-sets are always disjoint. 

Definition. MV relation R1 is contained in (or implies) MV 
relation R2 (denoted R1 ⇒ R2) if they have the same input 
domain and for each such minterm, the output values of R1 are a 
subset of the output values of R2. 

Example. In Figure 1, R1 ⇒ R3 is true, but R2 ⇒ R3 does not 
hold because for the minterm (0,0), the value set of R2, {0,1,2}, 
is not a subset of the value set of R3, {0,1}. 

Definition. A multi-valued sum-of-products (MV-SOP) is a 
representation of an MV function, in which each i-set of the MV 
function is represented by a set of MV cubes.  

To reduce the total number of cubes needed to represent the 
MV-SOP, one i-set is selected as the default one and is not 
stored but is computed on demand by complementing the sum 
of the cubes belonging to the other i-sets.3 
2.2 Multi-Valued Networks 

Definition. An MV network N is a directed acyclic graph with 
nodes represented by MV relations.4 The sources of the graph 
are the primary inputs of the network. There is one dummy sink 
whose inputs are the primary outputs.  

Typically, the nodes and their output signals are named the 
same. The output of a node may be an input to other nodes 
called its fanouts. The inputs of a node are called its fanins.  

Definition. An MV network is non-deterministic if any of its 
outputs is non-deterministic as a function of the primary inputs. 
If all internal nodes are deterministic, then the network is 
deterministic. 

Actually, there are two notions of what constitutes a non-
deterministic function of the primary inputs of a network. The 
first is what can be simulated when a ND node randomly selects 
one of a possible set of output values. Then, a network is ND if 

                                                 
2 In the binary domain, incompletely and partially specified are the same. 
3 In general, to be able to represent non-determinism at a node, all i-sets have to 
be represented.  
4 Normally, a network is represented by functions at the internal nodes. 

there exists a primary input minterm, which can cause different 
output values at one of the outputs. The second notion is similar, 
except at each internal node, the set of all possible values are 
propagated to its fanouts. In effect, on a fanout net, different 
values can propagate to different fanouts at the same time. This 
is similar to what is done in 3-valued simulation.  

We use this second notion in this paper. The set of global 
relations obtained at the outputs is called the behavior of the 
network. The first notion is not used because it is not invariant 
under node elimination and collapsing. For example, if a non-
deterministic node has several fanouts, and it is eliminated, the 
effect is as if several copies are made and then each is inserted 
into a fanout. After this there is no correlation between the 
values that these copies produce. 

Definition. The Cartesian product of the MV domains of the 
fanin variables is the local space of a node. The MV relations of 
the nodes expressed in the local space are the local relations. 
The Cartesian product of the MV domains of the primary input 
variables is the primary input space. The MV relations of the 
nodes expressed in the primary input space are the global 
relations.  

To compute the global relations, the network is traversed in a 
depth-first order and each local relation of a node is composed 
with the global relations of its fanins. The global relation of a 
primary input is the single-variable function of that input.5 

Example. Consider the network given by the i-sets of its 
nodes: 

x{0} = a{0}b{0}  
x{1} = a{1}b{1} + a{0}b{1}  
x{2} = a{1}b{1} + a{1}b{0}  
m{0} = x{0}  
m{1} = x{1}  
m{2} = x{2}  
n{0} = x{0}  
n{1} = x{1}  
n{2} = x{2}  
{y}{0} = m{0}n{1,2}  + m{0,1}n{2} + m{2}n{0,1}  + m{1,2}n{0} 
{y}{1} = m{0}n{0}  + m{1}n{1} + m{2}n{2} 

Node y is the PO; a and b are the PIs. Node x is non-
deterministic. Two buffers, m and n, create two equivalent 
copies of the output of node x. The buffers feed into an 
equivalence detector y. Under the first notion of a non-
deterministic network, the network is deterministic, since x=1 
and x=2 have an identical effect on the output y if only one of 
them occurs at any time. However, collapsing the network in 
depth-first order gives: 

{y}{0} = a{1}b{1} 
{y}{1} = a{1}b{1}+ a{1}b{0} + a{0}b{1} + a{0}b{0} 

which is non-deterministic. The reason is that during collapsing 
we substituted two independent copies of node x into node y, 
which allow for x=1 and x=2 to occur at the same time. 

Definition. A transformation changes the functionality of the 
MV network if the global relation of at least one primary output 
is not contained in the original specification. Note that this 
definition does allow the set of behaviors represented by the 
network to decrease, as long as all the behaviors of the new 
network are contained in the original set of behaviors. 

                                                 
5 This procedure computes all behaviours of the network as defined by the 
second notion of non-deterministic networks. 
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In this paper, transformations are not allowed to change the 
functionality of the network. In general, it would be possible to 
consider transformations that do change the functionality if later 
they are followed by a transformation, which brings the network 
back into conformity, but this is not considered in this paper. 
2.3 Flexibility at a Node 

Definition. A flexibility at node y of an MV network N is an 
MV relation Rf

y such that replacing the current relation Ry of 
node y by any deterministic relation contained in Rf

y does not 
change the functionality of N. A flexibility Rf

y at a node y is 
complete if it is impossible to add another output value to any 
input minterm while preserving the flexibility property of Rf

y. 
Definition. A set of flexibilities at a set of nodes is compatible 

if performing simultaneous replacement of the node relations by 
any set of relations contained in the respective flexibilities does 
not change the functionality of the network.  

Any compatible flexibility at a node is a subset of the 
complete flexibility at that node. The flexibilities introduced and 
computed in [7] are compatible. They can be pre-computed and 
used independently at each node, but they are not complete and 
therefore may result in sub-optimal networks. 

3 Flexibility Computations 

The function at a node can be changed without adding to the 
behavior of the network by deriving the node’s complete 
flexibility (CF) and replacing the current relation at the node by 
any deterministic function contained in this flexibility.  

The computation of CF is done in two steps: first the CF is 
computed as a relation, R(X,y), between the PI and the output of 
the node; second, it is computed as a relation between the inputs 
of the node, Y, and the output of the node, � ( , )R Y y . 

Theorem 1. Let N be a MV network and yN be N clipped at 
node y. Let ( , )i

jR X y  be the global function of the i-set i of the 
primary output j, 1 ≤ j ≤ m, of network yN , expressed in terms 
of the PI  X and the additional primary input y. Let ( )i

jR X  be 
the global function of i-set i at primary output j as derived from 
the initial specification of N, and let Dj be the domain of output 
j. The flexibility at node y in network N, 

 
1

( , ) [ ( , ) ( )]
j

m
i i
j j

j i D
R X y R X y R X

= ∈

= ⇒∏∏ 6, 

where the additional primary input y plays the role of the output 
variable of node y, is maximum. 
Theorem 2. Given the maximum flexibility, R(X, y), at node y 
computed in the primary input space, and relation M(X, Y) 
relating the primary input space to the local input space of y,7 
the flexibility in the local space, 
 � ( , ) [ ( , ) ( , )]XR Y y M X Y R X y= ∀ ⇒  
is maximum. 

                                                 
6 This formula could be written in terms of relations instead of i-set functions 
using the correspondence 

( , , ) [ ( , ) ( )]
j

i
j j j

i D
R X y z R X y z i

∈
= ⇒ =∑  

but the use of i-set functions seems simpler. 
7 It is important that M(X, Y) be computed by eliminating internal nodes in 
topological order. 

( , )R X y  is called the observability partial care (OPC). ( , )CR Y y  
adds satisfiability don’t cares to this. ( , )M X Y  can be computed 
by an image computation using output co-factoring [7]. 
3.1 Resubstitution 

Resubstitution is used to optimize an MV network by re-
expressing a node’s MV relation using additional inputs. The 
new representation of the node is accepted if the cost function of 
the node is reduced. As a result, the support size of F can 
change. Nodes that only fanned out to F but no longer do so, 
can be completely eliminated from the network.  

Example. Let a, b, and c be ternary variables. Consider 
ternary functions F and G represented by MV-SOPs of their i-
sets:   

F0 = a{0,1}b{2}c{2}+ a{2}c{2}; F1 = a{0}b{0}; F2= default 
G0 = a{0,1}b{2}; G1 = a{2}; G2 = default. 

The representation of F can be modified without changing its 
functionality by incorporating G into the support of F: 

F0 = G{0,1}c{2}; F1 = a{0}b{0}; F2= default. 
Even though the support of F has increased as a result of this 
resubstitution, the number of MV cubes and literals in the MV-
SOP are both reduced.  

To limit the amount of computation required for re-
substitution at a node, we only consider those nodes, whose 
fanins are a subset of the fanins of the given node (subset 
support filter). In the above example, the support of G, is a 
subset of the support of F, and thus G is a candidate for re-
substitution into F. 

Resubstitution can be performed as an independent 
transformation without using flexibility due to the network 
structure. However, if a flexibility is available, the chances of 
finding improvement during re-substitution are enhanced. 
Therefore, in our implementation, similarly to [19], 
resubstitution is built into the node simplification process. 

Theorem 3. Let F and G be nodes with supports Y and B 
where B is contained in A. Let a flexibility of F in its local space 
be � ( , )FR Y y , and the relation at node G in its local space 
be � ( , )GR B g , where g is the MV variable of the output of G. The 
flexibility of F in the extended space, Yg = Y ∪  g, is: 

 � � �( , ) ( , ) ( , )= +F F GgR Y y R Y y R B g  
Theorem 3 is stated for one node, G, but for several nodes the 

flexibility is extended by summing the complements of the 
relations of these nodes.  

After node simplification using the extended flexibility, the 
resulting MV relation may not depend on some of the input 
variables but may depend on some of the re-substituted 
variables. The choice to preserve or remove the dependence on 
a particular node is given to the node simplification procedure, 
which can make decisions motivated by the optimization 
criteria.  

4 Node Simplification 

We measure an MV-SOP by the total number of cubes in all 
of its i-sets. We present algorithms for computing small 
deterministic and non-deterministic MV-SOPs of an ND 
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relation and a method for computing the exact minimum non-
deterministic MV-SOP of an ND relation. 
4.1 Deterministic MV-SOP Minimization 

The computation starts by ordering the i-sets heuristically. 
Typically, the current default value is ordered first. Then for 
each i, we extract the remaining minterms of its i-set not yet 
covered by i-set covers already computed. The minimized SOP 
for the i-set is computed by a call to an SOP minimizer using 
the remaining minterms that can’t be covered by subsequent i-
sets as the on-set and the rest of the remaining uncovered terms 
in the i-set as the don’t-care set.  

Since the remaining i-sets computed in each step do not 
overlap with the covers selected for the previous i-sets, the 
resulting MV-SOP is disjoint and, therefore, deterministic.  
4.2 Heuristic ND MV-SOP Minimization 

The computation proceeds in two steps. First, the essential 
part of each i-set is minimized using the rest of that i-set as 
don’t-care. Computed this way, the i-sets are allowed to overlap 
resulting in a non-deterministic cover. This cover cannot be 
larger than the deterministic cover if we use the same ordering 
of the i-sets. 

If at this point, all minterms are covered, the algorithm has 
computed the exact minimum cover (provided that the MV-
input binary-output covers for each i-set have been minimized 
exactly). Surprisingly, in our experience, this is the case for 
about 90% of MV-SOP minimization problems that arise in the 
simplification of non-deterministic networks.  

If there are remaining uncovered minterms, each must be 
associated with more than one output value. At this point, the 
algorithm determines if there is at least one output value 
common to all remaining minterms. In this case, all these are 
added to the common value, and if this i-set has the largest 
cover, it is made the default. This situation occurs in about 9% 
of the cases, leaving only about 1% to be processed further. 

Finally, a simple greedy approach is taken. Considering values 
one by one in some heuristic order, as many minterms as 
possible are added to each of the successive i-sets. 
4.3 Exact ND MV-SOP Minimization 

Surprisingly, it is relatively easy to obtain an exact non-
deterministic minimum cover. We first consider the case where 
there is no default value and the goal is to find a set of covers 
for all the i-sets which has the minimum total number of cubes. 
A minimum cover of a relation can be found as follows.  

For each i-set, generate its set of primes. Form a global unate 
covering problem with the minterms to be covered being the 
entire input space and the union of all primes of all i-sets as the 
covering cubes. Solve for a minimum cover. Each prime chosen 
in the minimum cover is put into its appropriate i-set to form the 
minimum i-set covers. 

Theorem 4: The above procedure gives a set of i-set covers 
which has the minimum number of cubes. Each i-set cover is 
prime and irredundant. 

Note that the new relation is never larger than the current one. 

When the default i-set is used, it is never represented since it 
can be obtained by complementing all other i-sets.8 The 
minimization problem is to choose the default in such a way that 
the remaining i-sets can be covered with the minimum number 
of cubes. This can be solved exactly as follows.  

For each i, solve the covering problem as in Theorem 4 
defined for all minterms of the input space that do not have 
value i in their value set. The measure of the solution obtained is 
the number of cubes in the cover, which does not contain the i-
th set. Do this for each i and choose the solution that has the 
smallest measure. 

Theorem 5:  The above procedure leads to the minimum set 
of covers when the default cover is not counted. 

4.4 Minimization Based on MV-ISOP 
Runtime considerations in the first two algorithms (the exact 

algorithm has not been implemented yet) led us to experiment 
with other heuristic minimization options. A promising 
alternative was found in the Irredundant Sums-of-Product 
(ISOP) method of Minato-Morreale [14] using ZDDs [15].  

This computation is applied to a binary-encoded MDD when 
an i-set is minimized with its don’t-care. The result of the ISOP 
computation is the ZDD representation of the binary cover, 
which can be decoded back into MV cubes. This algorithm is 
fast but may not result in a prime or irredundant cover. For 
example, if one or more input variables have an odd number of 
values, then the binary ISOP is not prime and irredundant in the 
MV domain. 

Binary ISOP can be used also as a preprocessing step to 
reduce the cube covers used in initial calls to Espresso-MV. Fast 
binary ISOP computation proved to be helpful when the initial 
specification had many cubes. 

5 Experimental Results  

The flexibility computation and simplification algorithms 
(except for the exact algorithm of Section 4.3) have been 
implemented in the MVSIS environment as the command 
complete_simplify. The comparison of complete_simplify with 
fullsimp [7] on the MV benchmarks was done on a 933MHz 
Pentium III PC under MS Windows 2000. MVSIS used less 
than 30Mb of RAM. 

Benchmark in out lat node ival oval BDD
4-arbit-cell.mv 4 3 5 190 2.4 2.3 158 
bakery-proc.mv 9 3 3 258 2.8 3.5 219 

coherence-cch.mv 10 4 6 240 2.4 2.8 399 
coh-dir.mv 6 8 11 653 2.5 2.2 327 
comp.mv 4 2 0 11 2.0 2.0 53 

ele-ctr-det.mv 14 4 12 1446 2.0 2.0 276 
eisenberg-proc.mv 5 2 2 284 4.3 5.8 206 

matmul.mv 8 4 0 4 3.0 3.0 117 
slider-nsf.mv 9 9 0 316 9.0 9.0 526 

sort.mv 8 8 0 24 3.0 3.0 304 

Table 1. Benchmark statistics. 

                                                 
8 In binary logic synthesis, we usually only implement the onset of a node; if the 
offset is required, it is produced by an invertor. 
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Table 1 lists statistics of the benchmarks tested. The columns 
“in”, “out”, “lat”, and “node” list the number of primary inputs, 
primary outputs, latches, and nodes in the network. Columns 
“ival” and “oval” give the average number of values in the 
domains of the primary input and output variables (including 
also the latch inputs and outputs). Column “BDD” shows the 
number of BDD nodes in the shared BEMDD computed for all 
nodes in the network after reading in the benchmark, building 
all global functions, and performing BDD variable reordering. 

Table 2 illustrates the performance of complete_simplify on 
the benchmarks. Column “orig” lists the number of literals in 
the SOP after sweeping. Columns “fs”, “mfsi”, and “mfs” give 
the number of literals in the SOP after running, respectively, 
fullsimp [7], complete_simplify using ISOP, and 
complete_simplify using Espresso-MV as the MV-SOP 
minimizers. The runtimes compare fullsimp and 
complete_simplify, when both programs use Espresso-MV. The 
non-deterministic option in complete_simplify is used. In light 
of these observations, the runtime is surprisingly small. 
Although Espresso always gives better results than ISOP when 
minimizing a node, the overall minimization with ISOP is more 
efficient because ESPRESSO times out more often. 

Literal count in SOP Runtime, sBenchmark 
orig fs mfsi mfs fs mfs 

4-arbit-cell.mv 136 82 86 84 0.2 0.4 
bakery-proc.mv 540 256 231 234 0.9 1.5 

coherence-cch.mv 755 356 302 291 0.9 1.9 
coh-dir.mv 774 368 335 371 0.8 1.6 
comp.mv 289 18 8 8 0.2 0.1 

ele-ctr-det.mv 664 231 243 238 0.9 1.2 
eisenberg-proc.mv 746 462 286 322 7.7 6.0 

matmut.mv 480 320 320 320 0.1 0.1 
slider-nsf.mv 312 312 306 306 0.3 1.0 

sort.mv 2296 174 174 174 6.6 1.3 
Total 6992 2579 2291 2348 18.6 15.1

Ratio, % 100 36.9 32.8 33.6   

Table 2. Literal count and runtime comparison. 

Literal count in SOP Runtime, s Benchmark 
orig ss ssmi ssm ss ssmi ssm

4-arbit-cell.mv 136 54 55 57 0.9 1.5 1.8 
bakery-proc.mv 540 160 154 157 38.2 4.6 10.3

coherence-cch.mv 755 152 141 139 2.4 2.9 8.3 
coh-dir.mv 774 211 176 171 5.6 7.6 9.1 
comp.mv 289 8 6 6 2.1 0.6 0.6 

ele-ctr-det.mv 664 188 179 181 10.1 10.0 10.4
eisenberg-proc.mv 746 126 141 141 8.0 1.4 8.3 

matmut.mv 480 96 112 112 0.4 0.7 0.7 
slider-nsf.mv 312 216 222 222 5.1 1.6 2.9 

sort.mv 2296 - 202 202 - 7.2 11.8
Total 6992 1211 1186 1186 72.8 30.9 52.4

Ratio, % 100 17.3 16.9 16.9    

Table 3. Comparison as part of optimization script. 

Table 3 compares the performance (in terms of runtime and 
literal count) of fullsimp, complete_simplify with the ISOP 
option, and complete_simplify with the Espresso-MV option 
when these are used as part of an MVSIS optimization script 
script.mvsis [16] similar to script.rugged used with SIS. Column 

“orig” shows the original number of SOP literals after 
sweeping. Columns “ss”, “ssmi”, and “ssm” show the number 
of literals after running the script with fullsimp, 
complete_simplify using ISOP, and complete_simplify using 
Espresso-MV as MV-SOP minimization procedures. The dash 
in Table 3 indicates the script did not complete in five minutes. 
The average parameters have been computed without 
considering the last line. All final results were formally verified 
by comparing against the original circuits. 

Table 2 shows that using complete flexibilities compared to 
CODCs (complete_simplify vs. fullsimp) enhances the quality of 
the final result. However, Table 3 shows this advantage is 
diminished when run inside a standard script. On the other hand, 
runtimes are improved by using complete flexibilities, and this 
seems to lead to a more rugged script. The runtime reduction is 
possibly explained by complete_simplify achieving a significant 
reduction early, allowing later procedures to run faster. 

Table 4 shows the relative amount of flexibility due to SDC, 
CODC and CF measured as follows: 

 100%
( 1)

T MP
M V

−= ×
−

, 

where T is the sum total of the numbers of output values for all 
the input minterms of the relation, M is the number of the input 
minterms, and V is the number of values in the output range. 
The amount of flexibility is equal to 0% for completely 
specified functions and 100% for relations that can take all 
values for any minterm. 

To illustrate how the amount of flexibility is measured 
consider Figure 1, where M = 6 and V = 3. The ternary function 
on the left has T = 6, which yields P = 0%. The relation in the 
center and on the right have T = 10 and T = 12, which yields the 
amount of flexibility P = 33% and P = 50%, respectively.  

Global space, % Local space, % Benchmark 
CODC CF SDC SDC 

+CODC
CF 

4-arbit-cell.mv 7 38 7 7 15 
bakery-proc.mv 12 68 17 20 36 

coherence-cch.mv 6 64 17 17 26 
coh-dir.mv 2 61 18 18 31 
comp.mv 0 3 17 17 19 

ele-ctr-det.mv 12 42 7 7 15 
eisenberg-proc.mv 1 57 38 38 53 

matmul.mv 0 0 0 0 0 
slider-nsf.mv 0 2 0 0 0 

sort.mv 0 0 49 49 49 
Total 40 335 170 173 244 

Ratio, % 12 100 70 71 100 

Table 4. Comparison of the amount of flexibility. 

The numbers in Table 4 are averaged over all nodes in the MV 
network. Note that SDCs can only be measured in the local 
space. All initial circuits are deterministic, so the initial 
flexibilities are zero. Table 4 shows CODCs give little 
additional flexibility in the local space compared to SDCs, 
while the complete flexibility (CF) contributes 29% on top of 
SDCs + CODCs. It is not clear why CODCs adds so little 
compared to SDCs. The contribution of CODCs is different for 
binary benchmarks [11]. 
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Table 5 compares full_simplify in SIS (columns “FS”) with 
complete_simplify re-implemented in the SIS environment 
(columns “CS”) using MCNC benchmarks. Column 
“Benchmark” gives the benchmark name. Column “Statistics” 
gives the number of inputs and outputs. Performance is 
measured using the sum of literals in all factored forms as 
reported by SIS. Column “Orig” gives the literals in the original 
benchmarks. Runtime in seconds is reported in the last section. 
Since SIS timed out for “alu4.blif”, this was not included in the 
rows “Total” and “Ratio” of the table. 

Table 5 shows that complete_simplify yields 11% less literals 
compared to full_simplify in SIS, while the runtime of  the SIS-
based re-implementation of complete_simplify is comparable to 
that of full_simplify in SIS. We are currently working on 
specialized techniques to speed-up the most time-consuming 
part of complete_simplify: repeated computation of the global 
BDDs. Preliminary experiments show that the new 
implementation will be approximately three times faster than 
the one reported in Table 5. This will make it applicable to 
circuits beyond the scope of SIS. 

Statistics Literals in FF Runtime 
Benchmark Ins Outs Orig FS CS FS CS 
9symml.blif 9 1 277 270 190 1.2 1.8 

alu2.blif 10 6 453 374 415 1.9 2.4 
alu4.blif 14 8 855 t/o 796 t/o 6.4 
dalu.blif 75 16 3067 2331 1701 145.9 4.5 
des.blif 256 245 6101 5677 4676 16.2 110.9
frg2.blif 143 139 2010 1522 1396 9.5 11.0 
pair.blif 173 137 2420 2203 2131 6.5 25.9 

c1908.blif 33 25 1497 1406 761 68.1 96.7 
c432.blif 36 7 372 335 288 4.6 3.7 
c880.blif 60 26 703 687 624 2.3 3.6 

Total   16900 14805 12978 256 266.9
Ratio, %   100 88 77 100 104 

Table 5. Comparison of full_simplify and complete_simplify. 

We have not given the results where complete_simplify forces 
each MV-SOP to be deterministic since this option leads to 
significantly inferior quality. This is not a problem in binary 
networks; all relations are deterministic since at each node, only 
one i-set is represented, while the other is implied as the 
complement of the first. 

6 Conclusions  

The main distinctive aspect of this work is the use of full 
flexibility in minimizing nodes in an MV network. 
Experimental results demonstrate that the new approach is 
practical and produces compact representations when compared 
with other methods. Used as part of a standard MV logic 
optimization script, the new complete_simplify procedure leads 
to faster and more rugged processing. In general, our experience 
is that the use of MV networks helps reveal alternatives and 
generalizations, allowing for better understanding, even in the 
case of binary networks [12]. 

These methods are based on computing global BDDs. Beyond 
that, a possibility is to use partitioning so that only a part of the 
circuit is optimized at any one time [4]. Future work will try 
partitioning in the context of MV networks. 
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