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ABSTRACT design, coefficients are expressed in canonical signed digit (CSD)
In this paper, we propose an exact algorithm for the problem ofarea [7] or represented in minimum signed digit (MSD) [12].
optimization under a delay constraint in the synthesis of x[n]
multiplierless FIR filters. To the best of our knowledge, the method
presented in this paper is the only exact algorithm designed for this

h h h h h
problem. We present the results of the algorithm on real-sized filter Xh hN X iHhX2 X h1 X
instances and compare with an improved version of a recently
proposed exact algorithm designed for the minimization of area. We
show that in many cases delay can be minimized without any area (a)
penalty. Additionally, we describe two approximate algorithms that MuliplierBlock
can be applied to instances which cannot be solved, or take too long, xnJ_
with the exact algorithm. We show that these algorithms find
similar solutions to the exact algorithm in less CPU time.

Categories and Subject Descriptors i..

B.2.0 [Arithmetic and Logic Structures]: General. (b)y

General Terms: Algorithms, design. Figure 1. FIR filter structure: (a) General transposed form;
(b) Replacing coefficient multiplications by a multiplier block

Keywords: Multiple constant multiplication, multiplierless Mn loihs[,,,,21]hv enpooe omnmz
digital filter design, area optimization, delay optimization. Many algorithms [3,4,6,7,12,13] have been proposed to minimizethe number of addition/subtraction operations in the multiplier block

1.INTRODUCTION
of the filter. Most of these algorithms are heuristic, providing no

1.INTRODUCTION indication as to how far from the optimum their solution is. An
Finite impulse response (FIR) digital filters are widely used in exact algorithm for the maximal sharing of the partial terms for
digital signal processing by virtue of stability and easy more than one coefficient is given in [4]. In this algorithm, the filter
implementation. The problem of designing FIR filters has received design problem is defined as a binate covering problem, a special
a significant amount ofattention during the last decade, as the filters case of 0-1 linear integer programming (ILP) problem where every
require a large number of multiplications, leading to excessive area, constraint is interpreted as a propositional clause. The problem is
delay, and power consumption even ifimplemented in a full custom modeled as a combinational network that covers all possible partial
integrated circuit. Early works have focused on the design of filters terms that may be used to generate the set of coefficients. In this
with minimum area by replacing the multiplication operations with way, a network that consists of only AND and OR gates is
constant coefficients by addition, subtraction, and shifting computed. Then, all the conjunctive normal form (CNF) formulas
operations as shown in Figure 1. Since shifts are free in terms of for each gate output are obtained. Each clause in the CNF formula is
hardware, the design problem can be defined as the minimization of defined as a constraint by expressing each clause as a linear
the number of addition/subtraction operations to implement the inequality. Finally, an objective function to be minimized is
coefficient multiplications. Also, to reduce the complexity of the constructed. A generic SAT-based 0-1 ILP solver is used to obtain

the exact solution.
Permission to make digital or hard copies of all or part of this work for However, all these algorithms do not consider the delay of the filter,
personal or classroom use is granted without fee provided that copies are the most important design parameter for high performance systems.
not made or distributed for profit or commercial advantage and that copies Dept th lag nubr of aloitm prpoe fr miiu*ra
bear this notice and the full citation on the first page. To copy otherwise, or thraeafwmtod[289tatelwihbhaeandeay
republish, to post on servers or to redistribute to lists, requires prior Iner[9], intalyfwmtheonmbeof,,9tatddaitio/sbtaionh opreationsisay
specific permnission and/or a fee. [9 ntal,tenmeofadin/urcinopainss
DAC2006, July 24-28, 2006, San Francisco, California, USA. reduced and then, a set of transformations in anl iterative loop is
Copyright 2006 ACM 1-59593-381-6/06/0007...$5.00.
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used to reduce the delay. In [2,8], while minimizing area, delay is satisfied in the formula, 11+... +k, k < n, can be interpreted as a
also considered in the selection critenon. linear inequality, l +....+k . 1, and the complement of variable xj
Although these algorithms take delay into account when they can be represented by 1- xj.
minimize the area, they are heuristic. In this work, we propose an The Canonical Signed Digit (CSD) representation is a signed digit
exact algorithm for the problem of optimizing area under a delay system with the digit set {1,0,2} where 2 denotes -1. The CSD
constraint. We start by improving the exact algorithm of [4] by representation is unique and has two main properties: (i) the number
changing the structure of the network given to the 0-1 ILP solver, of non-zero digits is minimal, (ii) two non-zero digits are not
lowering significantly the computation time and permitting its adjacent. Hardware requirements are reduced because the numerical
applicability to larger filter instances. Then, we implement an exact values are represented with a maximal number of zero digits. This
algorithm for the problem of area optimization under a delay representation is widely used in multiplierless implementations,
constraint. In this algorithm, we add extra constraints to the 0-1 LP because it reduces the number of non-zero digits by 33%, on
problem to ensure that the solution to be obtained by the improved average compared with the binary representation [5].
exact algorithm designed for minimum area has the minimum delay.
Also, we present two approximate algorithms that are able to The Minimum Signed Digit (MSD) representation is obtained by
compute good solutions for larger filter instances in reasonable CPU dropping the second property of the CSD representation. Thus, a
time. The first approximate algorithm is based on the exact constant can have several MSD representations, but all with a
algorithm, but deletes some operations that can increase the minimum number of non-zero digits. For example, the value 6 is
minimum delay of the network, thus reducing the search space to be represented using 4 digits in CSD as 1020, but both 1020 and 0110
explored. The second algorithm reduces the delay in the found arevalidrepresentationsinMSD.
minimum area solution by replacing the operations that present a The problem ofoptimizing area under a delay constraint [8] can be
higher delay with operations that meet the desired delay, in a post- defined as the minimization of the number of adders/subtracters
processing phase. This is similar to [9] except that we start from an such that a user-specified delay is not exceeded. As the delay is
exact minimum area solution. dependent on several implementation issues, such as circuit

The rest of the paper is organized as follows. In Section 2, technology, placement, and routing, we consider the delay as the
definitions used throughout the paper are given. In Section 3, the number of adder-steps, which denotes the maximal number of
implementation of the exact algorithm for the minimization of area adders/subtracters in series to produce any multiplication as given in
and the structure of the network constructed by the algorithm are [9]. Since the definition of adder-steps is identical to the definition
presented. An exact algorithm for the problem of optimization of of level in combinational circuits, we use both definitions
area under a delay constraint is described in Section 4 and the two interchangeably in this paper.
approximate algorithms for this problem are presented in Section 5.
Experimental results are given in Section 6. Finally, the paper 3. AN EXACT ALGORITHM FOR
concludes in Section 7. MINIMUM AREA

In this section, we present the implementation of the exact
2. DEFINITIONS algorithm designed for the minimization of area and describe the
An instance C of a covering problem is defined as follows: improvements we have made. The basic model description of the

n algorithm can be found in [4]. The implemented algorithm can be
Minimize E c .x (I) used for any type of coefficient representation: binary, CSD or

j=l J J MSD. However, using the MSD representation results in a more
general algorithm, because several representations may exist for the

subject to A.x . b, x E {0, 1 }n (Lf) same value. We will describe first, the MSD implementation of the

where cj is a nonnegative integer cost value associated with variable algorithm and then, we summarize the changes for binary or CSD
xj, 1 ..< n, in the objective function (I) and A.x . b, denotes the set representations.
ofm linear constraints (ID. If every entry in the mxn matrix A is in
the set {0,1} and bi = 1, 1 < i < m, then C is an instance of the unate 3.1 The Implementation
covering problem. Moreover, if the entries aij ofA belong to {-1, 0, In the preprocessing phase of the algorithm, all coefficients are
1 } and bi = 1 - {aaj: aij = -1, 1 .j< n} I, then C is an instance of the converted to positive and then, made odd by successive divisions by
binate covering problem. Observe that, if C is an instance of the 2, i.e., we shift all coefficients to the right so that zero bits on the
binate covering problem, then each constraint can be interpreted as right are eliminated. Each new resulting coefficient is added to a set
a propositional clause. called Iset. This set represents the minimum number of coefficients

necessary to be synthesized. For each element i in the Iset, all MSD
A propositional formula (p in CNF denotes a Boolean function representations are determined using Flog2(i)l + 1 bits and inserted
f:{0,l}In {0,l }. The CNF formula (p consists of a conjunction of in the Cset. Therefore, the Cset begins with all the MSD
propositional clauses where each clause w is a disjunction of literals representations of the coefficients as in [12]. However, during the
and a literal Ij is either a variable xj or its complement -xj. If a literal execution of our algorithm the Cset will be augmented with MSD
assumes value 1, then the clause is satisfied. If all literals of a clause representations of partial terms. Then, we enter in the main
assume value 0, then the clause is unsatisfied. The CNF formula of algorithm loop where an element c, removed from Cset and
a combinational network is the conjunction of the CNF formulas for representing a number i, is processed to determine its covers: 1)
each gate output, where the CNF formula of each gate denotes the compute all non-symmetric partial term pairs that covers the
valid input-output assignments to the gate. The derivation of CNF element c; 2) convert to positive and make odd each element of the
formulas of the basic gates can be found in [10]. A clause wto be cover pair; 3) add each cover pair to the corresponding set of covers
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of the element being processed, Aseti; 4) add the MSD is obtained. This reduction in the number of primary inputs also
representations of each cover to the Cset, if the representation has accelerates the preprocessing phase of the 0-1 ILP solver [11] where
not been processed yet and it is not already in the set. Covers with detection of necessary assignments and simplification techniques
only one non-zero digit are skipped. This loop is repeated until there are used. In the design of the algorithms for optimization of area
are no more elements in the Cset. The pair ofelements in each Aset, under a delay constraint, the improved exact algorithm for
represents all possible altematives of partial termns for a value i minimum area, MAA, is used.
based on its MSD representations.

The final 0-1 ILP optimization model is generated in three steps: 1) O p
for each pair element in Aseti, generate the corresponding AND PT, 7
gate, with an additional input that represents an optimization «2 5 IOP
variable for the AND gate. Generate an OR gate for the value i with IPT2 P
the outputs of all the ANDs resulting from Aseti; 2) identify all the 3
OR outputs that represent a coefficient (values belonging to Ise) F
and force their outputs to be 1; 3) generate the objective function to 4 4l2
be minimized. The objective function is a linear combination of the
optimization variables at inputs of the AND gates. <0

Note that this algorithm can be easily adapted to obtain the 0-1 ILP oT3 on8
optimization model with different coefficient representations. When

3 ;5
the MSD representation of a coefficient or partial term is
determined, one needs only to compute a binary or CSD o o
representation instead. Moreover, mixed representations, i.e., binary l <<3 13l o

and CSD or binary and MSD, can also be computed and added to OPT1 OP
the Cset. J v
The algorithm designed for minimization of area, which we refer to ox, °ptl
as Minimum Area Algorithm (MAA), is implemented by taking the
cost value of each optimnization variable, representing an Figure2.Thenetworkgeneratedforthecoefficient15in
adder/subtracter, in the objective function as 1. To obtain an exact binary.
solution, we use an efficient SAT-based solver [ 1] that
incorporates several advanced optimization techniques and has been 4. AN EXACT ALGORITHM FOR
applied to several classes ofproblems. OPTIMIZATION OF AREA UNDER A

DELAY CONSTRAINT
3.2 The Network In this section, we describe the exact algorithm designed for the
The combinational network constructed by the algorithm only optimization of area under a delay constraint. The exact algorithm
includes AND and OR gates. In this network, an AND gate can find a solution with either the minimum delay of the network or
represents an addition/subtraction operation and an OR gate a maximum user-specified delay constraint. In this paper, by using
combines the possible ways of implementation of a partial term. as constraint the minimum delay of the network, the proposed
The primary inputs of the network represent the filter input or its algorithm is also an exact algorithm for minimum delay.
shifted versions. The primary outputs of the network are the OR
gate outputs that generate the coefficients of the filter, which are Note that a partval term in the network Fan be implemented with
forced to evaluate to 1. The number of inputs for each AND gate is operations that have different adder-steps. For a partial term with N
three: two are either primary inputs or OR gate outputs (partial non-zero digits, the minimum latency implementation of a partial
terms), the third is an optimization variable. The inputs of an OR term has Flog2Nl adder-steps and the maximum latency
gatearethe outputs ofpAND gatesassociated withthepartial ten. implementation of a partial term has N-1 adder-steps. In the
As an example, assume that the value 15 (in binary, 1111) is the network, an OR gate associated with the partial term gathers all ofAsan ofathe, assmer thatbestheszlued (In binary,I2,Iisthe these operations. So, a partial term can be generated with thecoefficient of the filter to be synthesized. In Figure 2, the network number of adder-steps ranging from its minimum to maximum
generated by the algorithm is given with the elimination of 1-input latency implementations. As can be seen from Figure 2, theOR gates for 3, 5, and 9 partial terms. coefficient 15 can be implemented using an operation with OPT12

optimization variable yielding a maximum of 3 adders-steps or
3.3 Improvements to the Algorithm using an operation with OPTI5 optimization variable yielding a
In [4], an optimization variable in the objective fumction is used to minimum of 2 adder-steps. Hence, the coefficient 15 has minimum
represent a partial term with an additional AND gate and by doing 2 and maximum 3 adder-steps implementations. In the
so, a reduction in the number of variables and clauses is aimed. In preprocessing phase of the algorithm, we find the minimum and
the MAA, an optimization variable represents an operation to maximum level ofeach operation and partial term in the network by
handle the delay constraints. Also, this is a more adequate traversing from primary inputs to primary outputs. Then, we find
representation of a 0-I ILP problem that is generated for minimum the minimum delay of the network, min_delay, by computing the
area. Besides, in [4], the primary inputs are represented with maximum value ofthe minimum levels ofthe primary outputs.
different variables even if they represent the same shifted version of
the filter input. In the MAA, all primary inputs are represented with An exact algorithm can be designed using this information by
the nulmber 1 and a 0-1 ILP problem with less number of variables finding the paths in the network that exceed min_delay. We add

these paths as constraints to the 0-1 lLP problem preventing them
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from being selected for the final solution. In this algorithm, which After all paths are found, for each path a delay constraint, -OPT, -
we call Minimum Area with Minimum Delay Algorithm OPT2 - ... - OPTm > 1 - m, where OPTj, 1 < j < m, denotes the
(MAMDA), initially, partial terms whose maximum levels are optimization variable of an operation in the path and m is the
higher than min_delay are determined and stored in a set called number of operations in the path, is added to the 0-1 ILP problem.
Pset. Then, for each element in the Pset, Pset(i), if each operation This constraint expresses that the operations in the path must not be
that implements Pset(i) has minimum level higher than min_delay included in the solution altogether, by guaranteeing that the solution
and Pset(i) is not used to implement other partial terms, then this to be found by the 0-1 ILP solver has the minimum delay and
operation is deleted from the network. Otherwise, if each operation allowing the possible sharing of partial terms that are inputs of the
has maximum level higher than min_delay, then this operation is operations in the path with other partial terms. Then, the network
added to a new set called pathj as an initial node. Also, this with the delay constraints is given to the 0-1ILP solver to find a
operation is added to a set called Oset with a target level, solution with minimum area.
min delay-1, and the associated path identifier, j. The paths and
Oset are formed, when all elements in the Pset are considered. In 5. APPROXIMATE ALGORITHMS
the MAMDA, the paths are constructed in a breadth-first manner as In this section, we present two approximate algorithms for
follows. In an iterative loop, an operation with its target level, optimization of area under a delay constraint that are more efficient
level(i), and the associated path identifier is removed from the Oset. in terms ofCPU time than the proposed exact algorithm.
For each input of the operation (a partial term), if each operation
that implements the partial term has minimum level higher than
level(i), then the associated path is constructed, i.e., the terminal 5.1 Minimum Area with Minimum Delay
node of the associated path is found. Otherwise, if each operation Heuristic
has maximum level higher than level(i), then this operation is added This algorithm, which we refer to as Minimum Area with Minimum
to the associated path and inserted into the Oset with its associated Delay Heuristic (MAMDH), deletes the operations that can cause
target level, level(i)-l, and path identifier. This loop iterates until the network to be implemented with a delay higher than the
there is no element left in the Oset. minimum delay of the network, thus reducing the search space to be

Suppose that a situation given in Figure 3 is encountered when explored. This algorithm removes the operations from the network
finding the paths that exceed min-delay. In this figure, operations that are the terminal nodes ofthe paths constructed in the MAMDA.
and partial terms are labeled with letters inside the gates. The As an example, the operation K given in Figure 3 is removed from
minimum and maximum levels of operations are given with a-b pair the network in the MAMDH. Then, this network is given to the 0-1
above the gates respectively. path, includes the operations that ILP solver to find a solution with minimum area. The MAMDH is
exceed min-delay determined so far to the operation G. Also, not exact because when it deletes an operation from the network, it
operations are shown without optimization variables for the sake of also deletes the possible sharing of partial terms even if the possible
clarity in this figure. sharing does not increase the minimum delay of the network.

However, it may greatly simplify the 0-1 IELP problem to be solved
Assume that the operation G with its target level, level(G)=4, and as shown in Section 6.
associated path identifier, n, is removed from the Oset considering
the partial term H as the input of G. The algorithm finds a terminal 5.2 Post Process for Minimum Delay
node, K, for the path, and constructs the path. Also, it adds a new Optmization of area under a minmum delay can be realized in a
path as pathn+i by inserting the operation I to the path. Since the
maximum level of the operation Iis higherthe ()patheSisceahe post-processing phase as used in logic synthesis systems [1] after amaximum level of the operation I is higher than level(G)there is a solution with minimum area is found. This method called Postpath(s) that exceeds min_delay. So, the operation I with its target Process for Minimum Delay (PPMD) is applied after a solution with
level, level(I)=level(G)-l, and associated path identifier, n+], sis . I
added to the Oset. In Figure 3, the paths that can increase the minmu arai bandbh A .In th prpoesigpaeadded.to.theOset.InFigure3thepathsthatcanincreasewe find the minimum level of each operation and partial term in theminimum delay are highlighted. network given to the 0-1 ILP solver. Then, we find the minimum

Pthl - [... GI] delay ofthe network. In the post-processing phase, each partial term
bklQ)=3 in the exact solution that increase the minimum delay of the

_.t_IA &Z
network is implemented by an operation selected among the set of
possible implementations of the partial term that meets the desired
delay. These possible implementations are the operations that

54M Y 4 | -7 t ensure the minimum delay of the network. PPMD uses a greedy
method in the selection of operations. In this method, the operations
whose inputs are the partial terms already existing in the solution

5-6 path= [(.. G] are favored.
4 } lsel(k"G) - 4

6. EXPERIMENTAL RESULTS
pahr= [. OK] In this section, we present the results of the algorithms described in

Fgr3Anthe paths that
this paper. Also, we give the results of a heuristic method [12]

increase the minimum delay of the network designed for minimum area in order to compare with the exact
algorithm, MAA. Since [2,9] use different models to obtain the
partial terms and [8] represents the coefficients of filters with 24
digits precision that is hard for the exact algorithm, we could not
compare the MAMDA with these heuristic methods.
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Table 1. Characteristics of the FIR filters and 0-1 ILP problem sizes of the algorithms

Filter Filter Specification 4MAAA MAMA__ MAMDH
__ pass_ stop I #tap Fwidth vars ] clauses J optv vars [ clauses I optv vars j clauses I optv
1 0.20 0.25 120 8 417 996 190 331 781 147 331 781 147
2 0.10 0.25 100 10 920 2208 424 920 2332 424 800 1908 364
3 0.15 0.25 40 12 1931 4671 909 1931 5386 909 1453 3476 670
4 0.20 0.25 80 12 2940 7161 1398 2940 8346 1398 2184 5271 1020
5 0.24 0.25 120 12 1717 4150 800 1717 4470 800 1397 3350 640
6 0.15 0.25 60 14 6653 16317 3215 6499 18469 3138 5165 12597 2471
7 0.15 0.20 60 14 2810 6789 1317 2810 7460 1317 2188 5234 1006
8 0.15 0.20 100 16 37370 92277 18289 36038 97895 17623 31280 77052 15244
9 0.10 0.15 60 14 5106 12426 2431 5106 14798 243 1 3710 8936 1733
10 0.10 0.15 100 16 41177 101557 20112 39825 109799 19436 33629 82687 16338

Avg. || -|-|-] - ||100% | 100% 100%I97.1% 1 108.5% | 97% |j81.3%] 81% 180.7%
Table 2. Results of the algorithms on the given filters in MSD representation

Filter1 NL& MAMDA || MANMDH || PPNMD ll[12]
|JAdders Steps I CPU 1Adders | Steps [ CPU 1Adders [Steps CPU jAdders|Steps Adders St2ps |CPU

1 10 3 0.2 10 2 0.1 10 2 0.4 10 2 10 3 0.0
2 18 3 1.3 18 3 1.0 18 3 0.6 18 3 18 4 0.6
3 1 16 3 13.1 16 3 7.3 16 3 9.0 16 3 118 4 1.6
4 29 4 14.8 29 3 20.9 29 3 9.5 29 3 29 4 1.4
5 34 3 4.9 34 3 5.9 34 3 2.6 34 3 34 3 0.7
6 22 4 79.8 22 3 130.2 22 3 75.8 23 3 1 22 4 1.3
7 34 3 20.7 34 3 27.5 34 3 7.3 34 3 35 3 92.5
8 47 4 3604.7 47 3 3829.6 47 3 12209.5 47 3 52 5 629.9
9 33 4 320.2 33 3 1293.8 33 3 56.6 33 r 3 37 4 1 21.1
10 49 4 7200.1 50 3 7200.1 50 3 7200.1 50 3 50 5 76.2

Avg. || 100% 1120.7%1 90% I[l100.3%I|l100%[ 100% 11100.3%[ 100%] 76.5%I1100.7%1 100%11104.5%1134.5%1 6.6%

The results of the algorithms described in this paper are based on Table 2, the italic results indicate the non-optimal solutions found
filter instances where the coefficients were computed with in the allowed CPU time. Note that most of the filter instances
MATLAB using the remez algorithm. The specifications of filters are solved in a very small period of CPU time.
and the problem sizes of the algorithms are given in Table 1
where: pass and stop are normalized frequencies that define the In this experiment, we observe that the MAMDA finds the

passband and stopbandrespe;s te nrominimum delay for each filter and minimizes the number ofpasbn an stpbn repciey taris the numbr of oerations under this constraint with no area overhead withcoefficients; and width is the bit-width of the coefficients. The rperato th is crt with no e ad with
next three sets of three columns indicate the size of the 0-1 ILP respect to the MAA, except Filter 10. Since additional delay
problems for the MAA, MAMDA, and MAMDH in terms of the constraints are added by the MAMDA, the required time to find a
number of variables, clauses and optimization variables. Note that solui s e tn the MAA Sinc tothe MA Aproble mthe problems generated by the MAMDA include more constraints iz
than the MAA, since delay constraints are added to find a solution size, this results in a significant reduction of CPU time. Also, the
with minimum area under a delay constraint. Also, the MAMDA MAMDH finds identical solutions with respect to the MAMDA.
can represent a problem using fewer variables as a consequence of Besides, although the PPMD is implemented as a post-processing
operation eliminations. On the other hand, the sizes of problems phase after a solution with minimum area is obtained by the MAA
generated by the MAMDH are much smaller than the MAMDA, and is a greedy method, the results of the PPMD are promising.
because some operations are deleted to guarantee the miinimum Note that the CPU time for this algorithm is not given because it is
delay. practically the same as the MAA, since the post-processing phase

is negligible with respect to the 0-1 IELP solver time. Also, all
The results of the algorithms described in this paper and the algorithms proposed for the problem of optimizing area under a
heuristic method [12] on the filter instances in MSD delay constraint give better results on the average number of
representation are given in Table 2. In this table, Adders denotes adders than the heuristic algorithm designed for the minimization
the number of adders/subtracters required to implement the filter, of area. This is because all these algorithms use the exact
Steps denotes the maximum depth in terms of adder-steps for all algorithm designed for minimum area. One interesting result of
coefficients, and CPU is the CPU time in seconds that is used by this work is that we can actually obtain exact results for real-sized
the 0-1 lIP solver to compute the exact solutions on a PC with filter instances. However, there are still those for which only a
dual Pentium Xeon at 2.4GHz, with 4GB of main memory, heuristic algorithm is able to run.
running Linux. The allowed CPU time was 7200 seconds. In
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In a different experiment, coefficients with 10-digits precision exact algorithms presented in this paper to different types of filters
were generated randomly. The number of coefficients ranges and the exploration of more general representations for the
between 10 and 70 and each of them includes 30 instances. The coefficients.
results of the algorithms on the randomly generated instances are
given in Figure 4. Average numbers of adder-steps in the solutions 8. ACKNOWLEDGMENTS
found by the proposed algorithms are presented in Figure 4(a).
Observe that a great improvement in delay with respect to the resear w o poun
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