Reducing Multi-Valued Algebraic Operations to Binary’

Jie-Hong R. Jiang
Dept. of EECS
Univ. of California, Berkeley

jiejiangQ@eecs.berkeley.edu

ABSTRACT

Algebraic operations were developed for binary logic synthesis and
eztended later to apply to multi-valued (MV) logic. Operations in
the MV domain were considered more complex and slower. This
paper shows that MV algebraic operations are essentially as easy
as binary ones, with only a slight overhead (linear in the size
of the expression) in transformation into and out of the binary
domain. By introducing co-singleton sets as a new basis, any
MYV sum-of-products expression can be rewritten and passed to a
binary logic synthesizer for fast execution; the optimized results
can be directly interpreted in the MV domain. This process, called
EBD, reduces MV algebraic operations to binary. A pure MV
operation differs mainly from its corresponding EBD one in that
the former possesses “semi-algebraic” generality, which has not
been implemented for the binary logic. Ezperiments show that
the proposed methods are significantly faster, with little or no
loss in quality when run in comparable scripts of sequences of
logic synthesis operations.

1. INTRODUCTION

In high-level design, system descriptions are inherently
multi-valued, motivating the pursuit of optimality directly
in the MV domain. The MVSIS project [2] is an example.
To see how one can benefit from MV optimization, compare
the following two design flows:

1. MV optimization — encoding — binary optimization
2. Encoding — binary optimization

Given a design instance, suppose the same binary encoding
is applied in these two flows. Let the first flow have semi-
algebraic optimization power in the MV domain but only al-
gebraic power in the binary domain. This flow may yield re-
sults which could only correspond to the use of non-algebraic
optimization in the second flow. This is one distinction be-
tween these two flows. Another is that the encoding in the
first flow can be selected to depend on the results of the MV
optimization. In this paper we are concerned with the MV
optimization step.

Traditionally, logic synthesizers are designed for binary
optimization. Thus, to minimize MV expressions, they must
be encoded first into binary before logic synthesizers can
come into play. The disadvantages are twofold: first, the

*The first and third authors would like to thank the California
State Micro program and our industrial sponsors, Cadence and
Synplicity, as well as the sponsorship of the SRC under contract
683.004. The second author gratefully acknowledges the support
of Intel.

Alan Mishchenko
Dept. of ECE
Portland State University

alanmi@ece.pdx.edu

Robert K. Brayton
Dept. of EECS
Univ. of California, Berkeley

braytonQeecs.berkeley.edu

optimization is restricted to a particular encoding; second,
compact structures might be destroyed by the encoding,
making it more difficult to detect and extract good com-
mon expressions. Moreover, since MV optimization prob-
lems were considered to be more sophisticated than binary
ones; it was not obvious if optimization, directly in the MV
domain, could be made efficient. In this paper we overcome
all of these obstacles at once. To achieve this, without re-
sorting to binary encoding, we rewrite MV expressions in
terms of co-singleton sets, while preserving the structures of
these expressions. Thus, the new representations, which are
binary in disguise, can be processed by a binary logic syn-
thesizer. In addition, the results directly reflect optimized
structures in the MV domain.

This approach, called EBD (Execution in Binary-in-Disguise),

can be significantly faster than previous MV algebraic op-
erations. In [1, 5, 6], semi-algebraic’ operations for multi-
valued input, binary output functions have been implemented
in MVSIS for synthesizing multi-valued multi-level networks.
The methods are fairly complex and tend to be slow on large
examples, but were a significant improvement over previ-
ously known methods [8]. In contrast, their algebraic binary
counterparts are very fast. An MV algebraic method [10] has
also been defined for the multi-valued output case. It uses
the the MIN and MAX operators instead of AND and OR, and
thus is not directly comparable with our formulation.

Semi-algebraic in the binary domain refers to using the
identity zz = x. Thus it allows the following factorization
(semi-algebraic):

abd + aef + bedf + cef = (cf + a)(bd + ef).

Although semi-algebraic methods have been proposed for
the binary domain, they have not been implemented because
they might slow down the algebraic operations significantly.
Thus, in this paper, all algebraic operations in the binary
domain are restricted to purely algebraic. In the rest of
this paper, if the term algebraic is used in referring to the
MYV domain it means the more general, semi-algebraic, and
when used in the binary domain, means purely algebraic
rather than semi-algebraic.

We show how all MV semi-algebraic operations can be
mapped into operations on purely binary-input functions us-
ing co-singletons to rewrite each multi-valued literal. Then

In logic synthesis it is common to refer to algebraic as those op-
erations which manipulate expressions like polynomials. In the
MYV domain, because purely algebraic operations yield very lim-
ited optimality, the generalization to semi-algebraic was made to
include the absorption rules.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

the binary algebraic operations of extraction, factoring, de-
composition, and algebraic division can be applied. After
the result is obtained, the answer is translated back into the
original MV domain. This set of MV operations are referred
to as the EBD operations.

Although the binary execution of the EBD operations do
not have semi-algebraic equivalents, they have no obvious
loss of quality; there are results that can be obtained using
a multi-valued method, which cannot be obtained using the
corresponding EBD method and vice versa. However often
they only differ in how the flexibility available during the
algebraic division process is used in the MV domain, each
result representing opposite extremes.

The rest of this paper is organized as follows. In Sec-
tion 2, we define our representations for MV logic. Section 3
introduces the co-singleton transform with an EBD factor-
ization example. For each algebraic operation, the pure MV
method and its corresponding EBD method are compared in
Section 4. We then extend the discussion to non-algebraic
operations in Section 5. Experimental results and conclu-
sions are given in Sections 6 and 7.

2. PRELIMINARIES

As a generalization of Boolean functions, we define:

DEFINITION 1. A multi-valued function F(a,b,...) is a
function F : AXBX---+— T, wherea, b, ... are multi-valued
variables taking on values from sets A, B, ... respectively,
and T is the co-domain of F.

In particular, we consider finite sets with size > 2. (In this
paper we use natural numbers to represent elements of a set.
An n-element set has elements 0,1,...,n — 1; no ordering
among the elements is implied.) Like Boolean functions,
MV functions can be expressed in sum-of-products (SOP)
forms. For example,

f{T}:(aSabSb,,.)+(a5;bsl’7...)+... ,

where 0 C S,, S,,...CA, 0CS,S;,...CB, ..., andT €T.
Also we define a co-singleton as follows.

DEFINITION 2. Given a set U (with size > 2) and a single
element set (a singleton) S C U, the co-singleton of S is the
complement set of S with respect to U.

It is immediate that:

PROPOSITION 1. Given a set U (with size > 2), any sub-
set S C U has a unique representation in the form of a
conjunction of co-singletons C U.

3. THE CO-SINGLETON TRANSFORM

Consider the following problem. Given an arbitrary multi-
valued SOP expression £ and an oracle 2 which optimally
factors a binary SOP input, can we take advantage of {2 to
factor £ optimally? If yes, how?

To achieve this, we must have two criteria:

1. Transform & into &' which“looks like” binary, and

2. Transform the resultant output of Q, £”, back to an ex-
pression that “directly” reflects an optimally factored
form of €.

Figure 1: The Hasse diagram of the power set of X =
{0,1,2}: For an MV variable z taking on values from
X, all of its literals can be expressed by products of
co-singletons. The new expressions are listed under
the corresponding literals.

Obviously any binary encoding, which associates a value
of an MYV wariable with a distinct code of a wvector of bi-
nary variables, satisfies the first criterion. However, none
satisfies the second for all possible £. For example, 1-hot
codes [3], complemented 1-hot codes [4] and all logarithmic
codes fail. Historically, there have been many instances of
encoding multi-valued applications into binary. For exam-
ple, the initial version of ESPRESSO [3] was binary. It used
the idea of treating the multiple outputs of a PLA as a single
multi-valued input. These were coded with a 1-hot repre-
sentation, and don’t cares were added to indicate that two
or more values are present at the same time or all values are
absent. Also, most MDD implementations [7] are simply
wrappers under which MV variables are encoded with some
logarithmic code and then a regular BDD package is used.

To illustrate multi-valued factoring, consider the following
MYV expression with two 4-valued variables a and b,

a{233p{00} | 031012} | ({12350} | {01}p(23}

For 251252 = 251752 it can be factored as
(@l0331p(01.2) | (01215023}
(a{1235(013} | {01,3}p{1.2.3})

Observe that, unlike binary SOP expressions, multi-valued
ones still have, in effect, disjunctive operations (due to MV
literals) in each product term. They are a restricted form
of 3-level expressions. To eliminate such disjunctive op-
erations, we need to re-express each MV literal in a pure
product form. Also we require a bijection between the new
expressions and the original MV literals. More importantly,
after factorization, we should be able to recover MV literals.

Here is one solution, called the co-singleton transform. Let
z be a variable taking on values from X = {0,...,n—1}. In
the rest of this paper, we use z; to denote z{%~#~1:#+1,-,n—1}
(i-e. the literal with co-singleton set {0, ...,7—1,i+1,...,n—
1}), and use Z; to denote z{*} (i.e. the literal with singleton
set {i}). Notice that Z; is equivalent to the product term
Lo+ Ti—1Zi+1 - Tn—1. From Proposition 1, we know that
any literal of £ can be uniquely expressed as a product of
some co-singleton literals. Figure 1 illustrates the case for

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

n = 3. With this convention, the previous example can be
rewritten as

ao0a1babs + a1a2bobs + aoasbibs + azasbobs.

With no excuse for rejecting wrong formats, Q2 factors this
expression in the binary domain, yielding

= (a1bs + asb1)(aob2 + azbo).

One can check that in this case the (EBD) factorization gives
the same result as the optimum MYV factorization. However,
in general, the two factorizations may lead to different but
related results as discussed in Section 4. Notice that, even
for non-algebraic factorizations, we can still transform back
to the MV domain since all set operations are legal. More
discussion on this can be found in Section 5.

As one might expect from the previous example, the pro-
cedure of the co-singleton transform is as follows. Given
an MV SOP expression, for each literal z° we replace it
with [], ¢s Ti- To perform the inverse transform, we replace
[Licr zi with x{I1IE€TY,

This answers the questions raised at the beginning of this
section. However, one might be still curious whether the
co-singleton transform is the most compact way.

PROPOSITION 2. To represent 2™ possible literals of an n-
valued variable, any feasible binary coding has length at least
n, i.e. requires at least n binary variables.

Since the co-singleton transform uses exactly n “bits” in
this case, it is optimally compact. However, for a particular
expression, it is possible that one can rewrite the literals of
an n-valued variable with fewer bits than n.

On the other hand, one might ask whether purely alge-
braic and semi-algebraic operations are closed under the co-
singleton transform. This question can be analyzed as fol-
lows. Let F be a factored form of an MV SOP expression
£, and F' and &' be the co-singleton transformed versions
of F and & respectively. Then

THEOREM 1. If F is a purely algebraic factorization of £,
then F' is a purely algebraic factorization of £'.

PROOF. Since F is a purely algebraic factorization of £,
variables in any two product clauses of F are disjoint by
definition. Also as the co-singleton transform is a bijective
mapping, “variables” in two different clauses of F’' must be
disjoint as well. Hence F' is purely algebraic. [

However, the converse is not true. Even if F' is purely
algebraic, F is not necessarily purely algebraic. In fact, it
can be derived from £ using only semi-algebraic operations.
This can be seen from the previous example. Thus purely
algebraic operations are not closed under the co-singleton
transform. On the other hand,

THEOREM 2. If F is a semi-algebraic factorization of £,
then F' can be derived from E' wusing only semi-algebraic
operations.

PRrOOF. Since F is a semi-algebraic factorization of &,
there exists some variable z that appears in two product
clauses C; and C; of F. Assume, without loss of generality,
that 5! and 252 are the two literals in C; and C, respec-
tively. Then in F', the corresponding two clauses C; and
C) are non-disjoint in x; if and only if i ¢ S1 U Ss. If there
exists such z;, then F’ is a semi-algebraic factorization of £’.
Otherwise, F' is a purely algebraic factorization of £&'. [

THEOREM 3. If F' is a semi-algebraic factorization of £',
then F is a semi-algebraic factorization of £.

PROOF. Because F' is a semi-algebraic derivation from
&', there exists some “binary variable” x; that appears in
two product clauses. This implies that in F, variable z
appears in the corresponding clauses. Therefore F must be
a semi-algebraic derivation from £ [

From Theorems 2 and 3, we know that semi-algebraic op-
erations, which stem from the factorization procedure, are
closed under the co-singleton transform. It follows that bi-
nary semi-algebraic operations can always be used to simu-
late MV semi-algebraic operations through the co-singleton
transform.

Binary encoding is the process of associating each value of
an MV variable with some distinct® minterm(s) in the space
spanned by some binary variables. The x; that have been
introduced can be interpreted this way. For example, the
value 7 can be expressed as

ToT1 - Ti—1TiTit1 " Tn—1-

Thus the z; variables are simply the complement of the “1-
hot” variables that have been used in the past. However,
placing z; explicitly in the expression makes the comple-
mented 1-hot coding unsuitable for the EBD operations. In
fact, the co-singleton transform is more than just binary
encoding because it implicitly incorporates don’t care min-
imization and thus can map a minterm to different values.
A better way to think of the transformed expression is still
as a multi-valued expression, but it is restricted to only co-
singleton literals. If we think of an MV literal as an OR of
some values, then an MV SOP is like a 3-level expression.
The co-singleton transform makes this into a two-level ex-
pression with the same number of cubes but more literals.
Hence a co-singleton transformed expression reflects a direct
PLA implementation of an MV SOP, where values of each
variable are input as 1-hot signals. These are immediately
inverted and appropriate connections are made to form the
cubes. Since a PLA is usually implemented as a NOR-NOR,
in fact no inverters are really needed. The PLA AND-plane
has n columns for an n-valued variable. This is similar to
what is done with “bit-pairing” some of the binary inputs.
For example, combining two binary variables creates a 4-
valued signal. This has 4 columns associated with it. After
MYV minimization, the MV SOP obtained, if represented in
“positional” notation, indicates which connections to make

in the PLA.

4. ALGEBRAIC OPERATIONS

4.1 Factorization and Decomposition

One difference between the current MV algebraic opera-
tions and the binary ones is the set of divisors used. In the
MYV algebraic case, only divisors with no “common cube”
are considered. An expression has a common cube if there
is a literal of some cube that contains all other literals of
that variable appearing in the other cubes of the expression.
In that case, the dominating literal can be factored out to
obtain a factored expression with no increase in literals.

2
Here we separate the notion of encoding and don’t care mini-
mization with respect to unused minterms.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

EXAMPLE 1. The following expression has a common cube.

G018} | (18} (1) _ (018} (2} | {131}y

In contrast, the notion of being “cube-free” is that, for each
variable, the supercube (literal) of all literals of that variable
appearing in that expression is computed. If the supercube
is 1 (the universe literal containing all values for that vari-
able) for all variables appearing in the expression, then the
expression is cube-free. Making an expression cube-free by
factoring out the supercube literals is likely to increase the
number of literals in the factored form of the expression.

EXAMPLE 2.
al0hpizt 4 o {133{1}
— a{0,1,3}b{1,2}(a{O,l,Z}b{O,Z,S} + a{1,2,3}b{0,1,3})

The expression in the parenthesis has been made cube-free.

Thus in the MV domain the notion of common-cube free
replaced the notion of cube-free (used in the binary domain)
for algebraic operations®. However, making an expression
cube-free moves it “nearer” to being prime (which may be
good in some sense) since the maximum number of values
for each variable is inserted into the expression.

EXAMPLE 3. The ezpression al® 612} 4 {1301} pog no
common cube in the MV domain and so would be a candidate
divisor. However, mapping these two cubes into binary using
the co-singleton transform, yields

az2a3bob1b3 + agazbobabs = azbobs(asbl + aobz)
— a{0,1,3}b{1,2}(a{O,l,Z}b{O,Z,B} + a{1,2,3}b{0,1,3})

Thus the corresponding cube-free divisor is

asbr + aoby = a{®12p{023} | 411:2:3},{0,1.3}

EXAMPLE 4. Consider a slightly different example,
O3 | 01301} (013 ({03512} | 1)),

Thus, the associated common-cube free divisor is a{o*l}b{z}—}—
pit}. Howewver, the co-singleton transformed expression is

aza3bob1bs + azbobabs = azbobs(asby + b2)
— {01312} ({01,214 02,3) | p{013})

Thus, the associated MV cube-free divisor is
asby + by = (0121023} 4 p{0,1,3}

The difference between these two results is that for the cube-
free notion associated with the binary case, the divisor has
been “lifted” to have the most values possible. Thus since
al®3} has been factored out, the value 2 for a can be in-
serted everywhere in the cube-free factor. Similarly, the
values 0 and 3 can be inserted everywhere for b. By doing
this lifting, we can transform the common-cube free divisor
into the cube-free divisor:

o101 pi2} + pi1} N 101,23 {0,2,3} + p10:1,3} 4

31n the binary domain, cube-free and common-cube free are equiv-
alent definitions.

4To understand that this is cube free, note that literals with
all values are suppressed by convention, e.g. al%1:23} = 1 s
suppressed in this expression.

In the MV algebraic case, the divisor values are “lowered” as
much as possible. Thus the two methods are incomparable.
In general it is not clear which divisor is preferable. In
fact, there are other divisors between these two extremes
(obtained by inserting some of the values allowed); one of
these may be preferred, since it may coincide with a divisor
of another expression. Thus the most general method would
be to find all divisors when looking for common divisors.
Unfortunately, doing this appears to be too expensive.

EXAMPLE 5.
at2ptt} +a{1}b{3} +a{0}b{1’2} +a{0’1}b{2}
— (a{0’2}b{1’2} + a{o’l}b{“})(a{l’Z}b{l’s} + a{O,l}b{lﬂ})

which translated to the binary domain (and factored further)
s

= (a1bs + a2b1)(aob2 + a2bs)asbo

Note that this is a semi-algebraic factorization. On the other
hand, EBD factorization yields:

apai1aszbobabs + apazasbobibe + a1azasbobs + az2asbobibs

= asbo(azbz(a1 + b1) + aoba(a1bs + azby1))
— glon2}{1,2,3} (a{o,l,s}b{o,1,2}(a{o,z,s} n b{o,z,s}) n

atb2:31p10,1,3} (a{012:3}b{011,2} + a{0>1:3}b{0:2:3}))

Thus the EBD factorization is different for two reasons.
First, no semi-algebraic factorization is done in the EBD
method. Second, the EBD result has been lifted to include
as many values as possible. The values in the EBD result
can be lowered to make it more comparable, by multiplying
out the cubes on the outside of the parenthesized expressions
(which has the effect of removing values).

It is possible using simple rules to modify one result to be
closer to the other. For example, the following rule can be
used to convert a binary factorization into one that is more
similar to the MV factorization result.

1. In the factorization tree, at a node that is factored as

a product of expressions, if a binary literal, z;, has
been factored out and one of the expressions has asso-
ciated literals z; everywhere, then multiply z; into all
expressions everywhere but leave terms in any expres-
sion with no z; untouched. Remove z; as a factor.

2. Otherwise leave x; as a factor, but in any expression
where an z; occurs, replace it with z;x;.

EXAMPLE 6. Using the above procedure, the following ex-
pression is transformed,

(a1b1 + b2)(aobo + a2)azbs —
(a1asby1bs + babz)(aoasbobs + azas)
— (a{02p{02) | j00hy (20512} | g0}y

Note that as is not put with ba in the first parenthesis since
no other a; occurs there with ba. Also, note that when as and
bs are put back, this results in a semi-algebraic factorization
(we use azas = az). This is the same result obtained by the
MYV factorization:

_ (a{0,2}b{0,2} + b{O,l})(a{l,Z}b{l,2} + a{O,l}).
EXAMPLE 7.
(a1b1 =+ b2)a3b3 — (a1a3b163 + b2b3)a3.

using Rule 2 for as.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

4.2 Algebraic Division

In algebraic division, a divisor, d, and an expression, f
are given; the problem is to find a quotient, ¢, and remain-
der, r, such that f = dq + r and where r has as few cubes
as possible. In the MV case, this is called exact algebraic
division®. Two algorithms were also defined, matching and
satisfiability matriz; the first was defined for the case where
the divisor had only two cubes; it was much faster.

Results obtained by EBD algebraic division and the MV
exact division method are comparable but not necessarily
identical for the same reasons as for factorization. In both
cases the divisor is given. So in the expression f = dgq + 7,
f and d are identical in both cases. Thus,

f=dg+r1=dg2+r2

where subscripts 1 and 2 refer to the EBD result and the MV
result respectively. For the reasons discussed for factoriza-
tion, the two quotients, g1 and g2, and the two remainders r;
and 72, may differ. 72 may be smaller than r; because the
semi-algebraic division may be able to absorb more cubes
in the product; the quotients can differ also because ¢; is
maximally raised and g2 is maximally lowered.

4.3 Common Divisor Extraction

EXAMPLE 8. This is an example of two functions, where
a common factor is found in the transformed binary domain
and not in the MV domain. The factorization in the MV
domain,

F o= a8 4 28 013) L 002 4 (020 (1)

= (@23} 4 1) ({28} | 412341120y

— L0313} 4 ({023} p(23} | {01311} 4 o{0.1.2}5(2)
— (a{0,1,3}b{1,3}+b{2,3})(a{0,2,3}+a{0,1,2}b{1,2})

However transformed into the binary domain we get

f = aoaiaz2bobi + apaibobs + apazazbobibs + apazbobabs
(asbs + a1)(a2b1 + b2)aobo

a1a2bobs + a1bob1 + a2azbobabs + azbobibs

(a3bs + a1)(azbz + b1)bo

S
Il

which has the common factor

azbs + a1 = 101,23 {0,1,2} + {923}

EXAMPLE 9. The expressions,
Foo a0 00 | (0012} | (012}
_ (a{0,2}b{1,2}+a{O,l}b{2,3})(a{1,2}b{1,3}+a{0,1}b{1,2})

g = (a0 4 GO 0 4 g0y
have a common factor in the MV domain but none using the
EBD method.

There are examples where both expressions have no common
algebraic factors when factored in either the MV domain or
the transformed binary domain, but by selectively adding
and deleting values a common factor can be obtained.
Another difference happens when a divisor is extracted
and algebraically divided into other expressions. The results

SInexact division was also defined for the MV case, where given
d we seek a better result of the form f = dg + 7 where d C d.

can be different between the EBD extraction and the MV
extraction e.g. the extraction may result in new nodes y = k
and f = yq + r where the EBD g and the MV ¢ may differ.

S. NON-ALGEBRAIC OPERATIONS

The interpretation of @; is a{*}. If we take a co-singleton-
transformed binary expression from an MV expression, the
new “binary variables” (co-singleton literals) occur in only
positive form, i.e. the binary expression is positive unate in
these variables.

ExAmMPLE 10.

a1bs + aghy = a19:2:315{0,2,3} + a{1:33{0,1,3}

Using T;T; = 0, the complement of the left-hand side is
(@1 + b1)(@2 + b2) = @1be + biaz

which translates into a{*}p{2} + a2p(1} . The complement
of the right-hand side is

(@™ 4 50 (@) 4 53 = o152 4 (1)

Thus we get equal results in this example. However in gen-
eral this is not always the case.

EBD manipulations, like simplification, yield equivalent
results to the MV versions, but EBD results may not be
prime and irredundant.

ExaMPLE 11.
x{l’z}y{o} +z 4 x{o’l}y{l} = Toy1 + ToT2 + T2Yo

is 1rredundant in the binary domain, but is redundant when
translated to the MV domain.

Also, being prime does not translate between domains, be-
cause in the binary domain, the relations Z;Z; = () are un-
known, since z; and z; are treated as independent variables
in the binary domain. Thus in expanding a cube until it just
meets the offset in order to generate a prime, we might not
expand far enough in the binary domain because there are
additional (unknown) cases where intersections are empty.

If the relation, T; = xox1 - - Ti—1Tit1 - Tn—1 is used,
then every expression is positive unate in the new binary
variables. But again, the relation zoz1...Zn—1 = 0 is un-
known. Of course, this information could be provided by
giving

> _(@m;), i

i,
as don’t cares, but then the minimization process becomes
more cumbersome®.

In general, single cube containment is equivalent between
both domains, i.e. C* C C7 if and only if B(C?) C B(CY),
where B(-) converts an MV cube to a binary one via the
co-singleton transform.

Although not minimal, EBD Boolean operations may be
useful since the EBD result could be improved by a single
step of making cubes prime. The result is already mini-
mal with respect to single cube containment. Optionally
further redundancy can be removed. The EBD Boolean op-
eration may be faster since in the binary domain the nocomp
option, which uses the concept of the reduced offset [9], is
available. Thus EBD Boolean operations can give a type of
sub-optimal MV operations which are possibly faster.

8 This might be useful and practical, but some experimentation
needs to be done here.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

Table 1: Comparison of EBD and MV scripts

BEBD EBD MV MV

|| circuit || time | lits-ff | time | lits-ff ”
vg2 2.9 87 2.6 85
sse 2.1 128 2.2 120
b12 2.4 70 2.3 70
cht 1.8 163 1.9 164
sqrt8 1.1 67 1.2 56
clip 5.3 134 7.6 129
duke?2 10.7 497 24.6 488
sand 23.6 545 47.5 525
£51m 1.8 108 2.4 97
sao2 2.4 109 4 110
terml 5.2 147 6.2 142
9sym 3 72 4.6 120
alu2 12.5 266 19.4 278
sct 1.9 83 2 90
£481 14.2 36 63.9 40
ttt2 3.1 233 4.4 221
bw 3.2 194 4.4 194
rd84 5.3 87 9.5 106
squar5 1.4 58 1.4 58
z4ml 1.2 38 1.4 38
Cca32 46.3 185 49.3 195
planet 24.7 605 63.5 611
vda 32.3 763 96 faad
cps 93.3 1479 | 364.1 1524
dk16 7.0 248 9.3 238
5953 18.6 510 29.6 516
k2 269.2 1426 3351 1428
balance 8.1 182 84.1 217
conv35cc 1.2 83 1 72
employ1l 1.7 42 1.5 36
mm3 0.9 23 0.8 23
mm5 5.3 137 8.5 130
pal3x 4 114 4.5 100
aluack 1.4 91 1.4 76
iris 1.3 12 1.3 12
mm4 2 75 2.3 60
monks2tr 1.2 51 1.2 43
monksltr 0.9 7 0.8 7
sleep 36.6 33 63.7 37
car 1.2 43 1.3 44

6. EXPERIMENTAL RESULTS

These ideas have been implemented in Mmvsis and the MV
algebraic methods compared with the EBD algebraic meth-
ods in the setting of optimizing multi-valued multi-level net-
works. For the benchmarks tested, an identical sequence of
operations’ was applied, except in the EBD version, called
EBD _script, all MV algebraic operations of MV _script were
replaced with their EBD counterparts. Each EBD algebraic
operation consists of

1. converting the MV expression(s) to their co-singleton
counterpart(s),

2. applying the corresponding binary algebraic operation,
and

3. converting the resulting co-singleton form(s) back to
MV expression(s).

The results are shown in Table 1 where EBD refers to run-

ning the EBD _script and MV refers to running the MV _script.

Time is in seconds and lits-ff refers to the total number
of literals in the factored forms of the MV expressions in a
circuit. The last set of examples are multi- valued.

As expected, the results show that quality is essentially
maintained by the EBD operations, but the speed is greatly
improved for the larger examples. In some benchmarks, a
slight loss of quality occurs in using the EBD operations.
This is possibly because there are no semi-algebraic opera-
tions in the binary implementation. Also, EBD_fx extracts
common cubes, and some of these are of the type [], =i,
which in the MV-domain is just a single literal cube and of
no value as a separate node in the network.

"The basic script used was an improved multi-valued version of
script.rugged used in SIS.

7. CONCLUSIONS

The co-singleton transform places most MV operations
(which include EBD ones) on an equal footing with the bi-
nary ones in terms of speed and quality of results. Thus it is
an important step towards our goal of making MVSIS the sys-
tem of choice for optimizing multi-level networks, whether
the network is MV or binary. Since MVSIS also includes a
number of new ideas that are not in siS, the quality of the
results already exceeds those obtained in s1s. We have also
observed that the ability of MVSIS to enter and leave the MV
domain during an optimization run, allows more freedom in
finding better optimizations and encourages new ideas.

We have not experimented with the MV Boolean opera-
tions, mentioned in Section 5, since the EBD Boolean op-
erations would lead to sub-optimal results. In addition, the
MYV Boolean operations are almost as fast as their binary
counterparts. The one exception is that there is no code for
the MV counterpart of the reduced offset in ESPRESSO-MV
even though the theory exists [9]. The reduced offset helps
in those cases where the complement of a large function
is needed in order to expand to primes during a two-level
SOP optimization. During node minimization, it is com-
mon to derive a large don’t care set, and a subsequent call
to ESPRESSO-MV requires complementation of the onset plus
don’t care set. However, we intend to experiment with us-
ing EBD node-minimization as a technique for trading lower
quality for increased speed.

As shown in Section 3, in principle through the co-singleton
transform, all MV semi-algebraic operations could be re-
produced in the binary domain if the binary operations had
semi-algebraic extensions. This result suggests that semi-
algebraic operations in the binary domain should be revis-
ited in the future.

8. REFERENCES

[1] R. K. Brayton. Algebraic methods for multi-valued logic.
Technical Report UCB/ERL M99/62, University of California,
Berkeley, Dec. 1999.

[2] R. K. Brayton and et al. MVSIS.
http://www-cad.eecs.berkeley.edu/mvsis/.

[38] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L.
Sangiovanni-Vincentelli. Logic Minimization Algorithms for
VLSI Synthesis. Kluwer Academic Publishers, 1984.

[4] S. Devadas and A. R. Newton. Exact algorithms for output
encoding, state assignment, and four-level boolean
minimization. JEEE Trans. on Computer-Aided Design,
10(1):13-27, Jan. 1991.

[5] M. Gao and R. K. Brayton. Semi-algebraic methods for
multi-valued logic. In Proc. of the Int’l Workshop on Logic
Synthesis, pages 73—-80, May 2000.

[6] M. Gao and R. K. Brayton. Multi-valued multi-level network
decomposition. In Proc. of the Int’l Workshop on Logic
Synthesis, pages 254-260, June 2001.

[7] T. Kam, T. Villa, R. K. Brayton, and
A. Sangiovanni-Vincentelli. Multi-valued decision diagrams:
Theory and applications. Int’l Journal on Multiple- Valued
Logic, 4(1-2):9-62, 1998.

[8] L. Lavagno, S. Malik, R. Brayton, and
A. Sangiovanni-Vincentelli. MIS-MV: Optimization of
multi-level logic with multiple-valued inputs. In Proc. of the
Int’l Conf. on Computer-Aided Design, pages 560—563, Nov.
1990.

[9] A. Malik, R. K. Brayton, and A. Sangiovanni-Vincentelli. A
modified approach to two-level logic minimization. In Proc. of
the Int’l Conf. on Computer-Aided Design, pages 106-109,
Nov. 1988.

[10] H.-M. Wang, C.-L. Lee, and J.-E. Chen. Algebraic division for
multi-level logic synthesis of multi-valued circuits. In Proc. of
the Int’l Symp. on Multiple- Valued Logic, pages 44-51, May
1994.

TEEE .2

COMPUTER
SOCIETY

Proceedings of the Design,Automation and Test in Europe Conference and Exhibition (DATE’03)
1530-1591/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

